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Preface

Segmentation is the process of partitioning image data into multiple regions, such that
elements of the same region share a certain property. Of particular interest is an image
partitioning which separates an object of interest from its background. In this case, a
segmentation is given by the boundary (or contour) of the object.
Segmentation plays a crucial role in many medical imaging applications such as locating
tumors, measuring tissue volumes or computer-guided surgery. Furthermore, image
segmentation is applied in face recognition, optical character recognition (OCR) and
machine vision, to mention but a few applications. As a typical example from medical
imaging, a 2D slice of an originally 3D ultrasound image of a cyst and a segmentation
is shown in Figure 0.1.
There are various segmentation methods like thresholding, region growing or clustering
which produce good results on clear, uncorrupted images, but fail to work if image data
is noisy, has low contrast or if the object is even partially occluded. In these situations,
energy minimization methods and deformable models have proven very succesful. There,
for given image data I0, a real valued functional of type

E(C, I0) (0.1)

is mininimized over a certain class of contours C. This way, segmentation can be for-
mulated in a more mathematical way: Every (local) minimizer of a functional of type
(0.1) is a segmentation of I0. Of course, this definition depends on the choice of E. A
common choice is

E(C, I0) = EDATA(C, I0) + ESMOOTH(C). (0.2)

In this functional, the fit-to-data term EDATA is constructed, such that C approximates
the contour of the object if EDATA(C, I0) is small. Vice versa ESMOOTH(C) penalizes
for smooth contours C. By this approach, the segmenting contour C allows for outliers
that are frequently present in noisy image data.
Smoothness of the segmenting contour can be regarded as special a priori knowledge
on the object to segment. If more generally, a priori knowledge on the shape of the
object is available, a template shape CT is modelled statistically, and functional (0.2) is
generalized to

E(C, I0) = EDATA(C, I0) + ESHAPE(C,CT ). (0.3)

The term ESHAPE(C,CT ) measures the distance between C and template shape CT .

Functionals (0.2) resp. (0.3) are often quite complicated and require elaborate techniques
for minimization. Common methods are graph theoretic approaches, gradient descent
methods or stochastic algorithms, if gradients are difficult to compute. However, quite
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Figure 0.1: Left:A 2D slice of a 3D ultrasound image of a cyst and its segmentation.
The hole inside the segmented object stems from a biopsy needle. Right:
Segmentation of an ultrasound image with a priori information. The ultra-
sound image has been corrupted by a bright stripe. If information on the
shape of the cyst is available, approximately the same segmentation as on
the left hand side should be obtained.

frequently, Euler-Lagrange equations of (0.2) and (0.3) can be computed, which in turn
imply (discrete) iteration equations of type

C0 = initial start contour

Cn+1 = f(Cn, I0) resp. Cn+1 = f(Cn, I0, CT ), (0.4)

such that Cn converges to a minimizer of (0.2) resp. (0.3). It has turned out, that slight
modifications of evolution equations of type (0.4) produce good segmentation results
in the sense of the rough definition as well, although they cannot be derived from
Euler-Lagrange equations of a functional (0.2) resp. (0.3). All these iterative models
can be interpreted as a deformation of the initial contour C0 towards the boundary of
the object, and are therefore called deformable models.

In this dissertation, we study segmentation of topologically complex objects in 3D
image data and provide new concepts and algorithms which improve existing approaches
regarding efficiency and stability.
When segmenting objects of unknown topology with deformable models (0.4), the
chosen initial contour C0 is in general topologically different from the final segmenting
contour, and therefore changes in topology during iteration are desired. While these
changes happen automatically in implicitly formulated deformable models [89, 101]
(which suffer from other shortcomings, like computational efficiency, artifacts in narrow
band implementations), this is not the case in parametric deformable models [60], and
a special topology adaptation system is required [84, 72, 17, 93].
We propose two main novel ideas to incorporate these topological transformations in
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Preface

parametric deformable models.
The first idea is a two-step approach, published in [3]: In a first step, a pre segmentation
with a deformable model (0.4) is carried out. During this evolution, topological trans-
formations of the mesh are not performed, but information on contour self-intersections
is obtained. In a second step, a topologically adapted segmentation is derived with a
mesh construction algorithm from surface normals.
The second idea is developed in [2, 4]: A spatial hashing technique is used to detect
self-collisions of the evolving discretized contour. For the topology adaptation, combi-
natorial formulas are derived from algebraic topology. The algorithm does not require
global re-parameterizations and is computationally very efficient.

In segmentation of topologically complex objects with a priori knowledge (0.3), the
efficiency and flexibility of the model crucially depends on the representation of the
template shape CT and its corresponding shape space. As our main idea, we propose
a shape space which combines advantages of medial axis shape spaces developed in
[58, 91] and level set function shape spaces developed in [78]. Our shape space consists
of medial ball representations, i.e. sets of balls which are located on the medial axis
of an object. Unlike the medial axis shape space [58, 91], this shape space can be
computed automatically from training data for arbitrary object topology. Furthermore,
the medial ball shape space is computationally efficient, since it does not require
computations on large grids as in [78]. We provide a statistical analysis of the medial
ball shape space to label different ball representations, measure distances between ball
representations and compute a mean ball representation. We employ medial ball shape
spaces in segmentation with a simplified Mumford-Shah functional and demonstrate its
advantages on synthetic and medical data.

Outline

In Chapter 1, an introduction to segmentation via energy minimization methods
and deformable models is given. Our focus is on topological adaptivity, flexibility
and computational efficiency of the models. In Chapter 2, a two-step approach for
topological adaptivity in parametric deformable models (0.4) is presented, which has
already been published in [3].
In Chapters 3 and 4, combinatorial methods to incorporate topological adaptivity in
deformable models (0.4) are developed. These ideas have already been published in [2]
and [4]. Chapter 5 gives a topological flexible and computationally efficient algorithm
for image segmentation with prior information (0.3) based on medial axis shape spaces.
This part of the thesis has been submitted to ECAM - European Journal of Applied
Mathematics.

Jochen Abhau Innsbruck, May 7, 2010
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1 Background on energy minimization
methods and deformable models for
segmentation

In this chapter, we give an introduction to segmentation with energy minimization meth-
ods and active contours (also called deformable models). We focus on segmentation of
topologically complex objects, which is the subject of this thesis.
We begin with a review of segmentation functionals in Section 1.1. The most common
methods to minimize these segmentation functionals are active contour methods. In
these models, the segmenting contour can be represented implicitly or parametrically.
We review implicit active contours in Section 1.2, a review of parametric active contours
is given in Section 1.3. In Section 1.4, we review graph theoretic approaches for segmen-
tation, since they emerged quite recently as an alternative to active contour methods in
minimization of segmentation functionals. Section 1.5 gives an introduction to segmen-
tation with a priori information on the shape of the object to segment. We conclude
this chapter with some material on mesh topology in Section 1.6, which is needed in
Chapters 3 and 4 later on.

1.1 Segmentation functionals

In this section, we review common functionals of type (0.2) for segmentation of 2D and
3D objects in grey value images I0 : Ω→ R, with Ω ⊂ Rd and d ∈ {2, 3}. Let

C2,m = {C : [0, 1]→ Ω piecewise m-times continuously differentiable with C(0) = C(1)}
(1.1)

and
C3,m = {C : [0, 1]2 → Ω piecewise m-times continuously differentiable with

C(0, ·) = C(1, ·) and C(·, 0) = C(·, 1)}. (1.2)

Functional (0.2) is constructed, such that minimizing elements are possible segmenta-
tions of the object of interest. In this functional, two terms are linked, a fit-to-data term
and a smoothness term. The fit-to-data term detects the boundary of the object. In the
literature, two main methods have been established for this purpose: Gradient-based
segmentation and region-based segmentation.

3



1.1. SEGMENTATION FUNCTIONALS

Gradient-based segmentation functionals
If edges or corners appear in an image, the corresponding image intensity function has
high gradients along these features. This observation is used in gradient-based segmenta-
tion models. These models were pioneered in [60], and are called snake models. Although
snakes are originally introduced in 2D, they can be generalized to arbitrary dimensions
d. Our representation follows the original two-dimensional setting in the literature.
For α, β, λ > 0, minimizers of the functional

E(C) = α

∫ 1

0
|C ′(q)|2dq + β

∫ 1

0
|C ′′(q)|2dq − λ

∫ 1

0
|∇I0(C(q))|dq. (1.3)

over C ∈ C2,2 determine contours which bound segments. Here, the first two terms
determine the smoothness of the curve (internal energy of the snake), and the last
summand is small for curves which are contained in regions of high image gradient (fit-
to-data term, external energy of the snake). For numerical implementation, an Euler
scheme is used, implicit in the smoothness terms and explicit in the fit-to-data term.
In this model, the energy functional E is not independent of the parametrization of a
curve C. This point is overcome in the geodesic active contours model of [26]. They
study the slightly simplified energy functional

E(C) = α

∫ 1

0
|C ′(q)|2dq − λ

∫ 1

0
|∇I0(C(q))|dq (1.4)

i.e., β = 0 in (1.3), arguing that minimzers of (1.4) are still sufficiently smooth. From
(1.4), a similar segmentation functional is derived,

min
∫ 1

0
g(|∇I0(C(q))|)|C ′(q)|dq (1.5)

with a strictly decreasing function g : [0,∞) → R+. Functional (1.5) is independent
of the parametrization of C and its minimization can be regarded as computation of a
geodesic in Riemannian space with metric g.

Region-based segmentation functionals
In contrast to the strategy of detecting edges, an alternative idea is to find image regions
of homogeneous intensity. For this purpose, the following functional is minimized over
I ∈ C1(Ω,R) and C ∈ Cd,1 in the work of [87]:

E(I, C) = µHd−1(C) + λ

∫
Ω

(I0(x)− I(x))2dx+
∫

Ω\C
|∇I(x)|2dx (1.6)

In this functional, Hd−1(C) is the length (d = 2) or area (d = 3) of the segmenting
contour, measured with the (d − 1)-dimensional Hausdorff measure. The interesting
idea incorporated in this segmentation functional is, that a smoothed image I from I0

and a segmenting contour C are computed simultaneously. Looking closer at the terms
involved in this functional, we see that the length (or area) of C is small, if the contour
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CHAPTER 1. BACKGROUND ON ENERGY MINIMIZATION METHODS AND
DEFORMABLE MODELS FOR SEGMENTATION

is expected to be smooth. The second term λ
∫

Ω(|I0(x) − I(x)|2)dx is the fit-to-data
term for the smoothed image I, and the last term

∫
Ω\C |∇I(x)|2dx imposes smoothness

conditions on I on regions inside and outside the contour.
A simplified version of (1.6) can be obtained, if the minimization is only performed over
functions I which are piecewise constant on connected components of Ω\C. Adding a
further energy term which measures the enclosed area (resp. volume) of the contour, the
Chan-Vese model [27] is obtained. For its formulation, let I(C) ⊂ Ω be the inner part
of C and O(C) ⊂ Ω the outer part of C. The functional to minimize is then given by

E(cI , cO, C) = µHd−1(C) + νHd(I(C)) + λ1

∫
I(C)

(I0 − cI)2 dx+ λ2

∫
O(C)

(I0 − cO)2 dx. (1.7)

Here, the variables cI and cO are values of a piecewise constant image I, which is given
by cI on I(C) and cO on O(C).

It is important to note, that Equations (1.4), (1.5), (1.6) and (1.7) do not depend on the
parameterization of the contour C and can as well be formulated implicitly. This means
that C is given as a d− 1 dimensional submanifold of Rd by some defining equations.
The common framework to compute minimizers of Equations (1.5), (1.6) or (1.7) consists
of computing Euler-Lagrange partial differential equations (PDE’s). These PDE’s are
solved numerically with iterative schemes of type (0.4). For initialization, a contour is
chosen which encloses the object and then shrinks, or which lies inside the object and
grows. At each iteration step, the contour evolves closer to the boundary of the object
to segment. Therefore, these methods are called active contour methods or deformable
models. In the following two sections, we present some evolution schemes. Here we
differ between implicit active contours, where the contour is represented implicitly, and
parametric active contours, where the contour is parameterized as in (1.1) or (1.2).

1.2 Implicit active contours

The most common implicit active contour methods are level set methods, established in
[89], and fast marching methods, established in [101]. We will discuss the principles of
level set methods in Subsections 1.2.1 and 1.2.2 and efficient implementations [5, 115, 69]
in Subsection 1.2.3 later on. Fast marching methods are reviewed in Subsection 1.2.4.
Implicit methods share the common property, that topology changes of the contour hap-
pen automatically when evolving the contour. In many applications, this is a desirable
feature. But under some circumstances explicit topological restrictions are imposed,
such as connectedness of the final segmenting contour. Recently, topological restrictions
have been implemented into level set evolutions and we discuss these works in Subsection
1.2.5 finally.

1.2.1 Level set methods

In level set implementations, a contour is represented as the zero level set of some real
valued function. Let C be a closed (d− 1)-dimensional manifold, embedded in Ω ⊂ Rd.
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1.2. IMPLICIT ACTIVE CONTOURS

A function
φ : Ω→ R (1.8)

is called a level set representation of C, if

φ(x) = 0⇐⇒ x ∈ C. (1.9)

Note that by the Jordan curve theorem [56, p.169], an interior int(C) and an exterior
ext(C) of C are well defined. The standard choice for φ is the signed distance function

Ω→ R, x 7→


−miny∈C ‖x− y‖ if x ∈ int(C)

0 x ∈ C
miny∈C ‖x− y‖ if x ∈ ext(C).

(1.10)

In the original paper [89], the surface C, represented by φ, is evolved over time in normal
direction by the partial differential equation

∂φ

∂t
+ F |∇φ| = 0 on Ω× [0,∞). (1.11)

Here, F is an arbitrary scalar function, depending on the curvature of C. At time t ≥ 0,
the contour C(t) is given by {x ∈ Rd | φ(x, t) = 0}. Note that as initial condition,
C(0) = C is required.

An appropriate solution concept for Equation (1.11) is given by viscosity solutions (for
a complete exposition of this subject, see [34]), which allows for solutions which need
not be differentiable.

1.2.2 Examples

For the following examples, note that the mean curvature κ of the evolving level set
function is given by

κ = div
(
∇φ
|∇φ|

)
(1.12)

In all examples, the initial value φ(x, 0) is restricted to be a fixed level set function φ0.

A motivating example for contour evolution (without taking image information into
account) is mean curvature motion, which is obtained by setting F (κ) = −κ in Equation
(1.11).

∂φ

∂t
= |∇φ| div

(
∇φ
|∇φ|

)
on Ω× [0,∞). (1.13)

The contour evolves in inward normal direction at mean curvature speed. As is shown in
[52], the contour length (resp. area) is minimized by steepest descent by this evolution.

For segmentation of images, the image data itself has to be inserted in Equation (1.11),
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CHAPTER 1. BACKGROUND ON ENERGY MINIMIZATION METHODS AND
DEFORMABLE MODELS FOR SEGMENTATION

thus stopping the evolution if the boundary of the object is reached.
In gradient based evolutions, edge indicator functions are used, such as

g =
1

1 + |∇I0|
(1.14)

and plugged into the following models.

(1) Geometric active contours
An evolution model, based on edge detection by high gradients, is given by the geometric
active contour model [25]

∂φ

∂t
= g(x)|∇φ|

(
div
(
∇φ
|∇φ|

)
+ k

)
on Ω× [0,∞), (1.15)

where k is a real positive constant. As in mean curvature motion, the contour is evolved
in direction of the inward normal, but at a speed depending on mean curvature, image
data and k. As a consequence, the initial contour has to enclose the object to segment.
The constant k is chosen such that κ + k is always positive, k can be interpreted as
a force pushing the contour towards the boundary of the object, when κ becomes
negative. If the contour moves over voxels with considerably different intensity values,
g(x) ≈ 0 and the contour tends to stop. On the other hand, the contour evolves over
voxels of low contrast at some nonzero speed, which is approximately equal to κ + k if
g is chosen as in (1.14).

(2) Geodesic active contours
The Euler-Lagrange equations for (1.5) in a level-set framework as derived in [26], give
an evolution

∂φ

∂t
= |∇φ|

(
div
(
g(x)

∇φ
|∇φ|

)
+ kg(x)

)
on Ω× [0,∞), (1.16)

where k is a real positive constant.
Similar to the geometric active contour model, the constant force k pulls the contour
towards the boundary of the object, which is detected by g.
Both the geometric and the geodesic active contour model are models, where the
evolution of the contour C is independent of its parametrization.

(3) Chan-Vese model
A level-set implementation of the Chan-Vese functional(1.7) is given by

∂φ
∂t = µ|∇φ|div

(
∇φ
|∇φ|

)
− ν − λ1(I0 − cI)2 + λ2(I0 − cO)2 on Ω× [0,∞)

with cI = 1
Hd({x | φ(x)<0})

∫
φ<0 I0(x)dx

and cO = 1
Hd({x | φ(x)>0})

∫
φ>0 I0(x)dx.

(1.17)
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1.2. IMPLICIT ACTIVE CONTOURS

Figure 1.1: For evolution of the curve, only the values of φ on the dots (the narrow band)
are computed

By this equation, evolution of φ is carried out on all level sets. Since the segmenting
contour is implied by the zero level set of φ, one is sometimes only interested in values
of φ around its zero level line. In this case, one can replace |∇φ| by δε(φ), a smooth
approximation of the Dirac measure δ0 evaluated on φ.
Arguing that the term Hd−1(C) in Equation (1.7) imposes sufficient regularity on the
contour, one can set ν = 0 and obtain a simpler version of Equation (1.17),

∂φ
∂t = µδε(φ)div

(
∇φ
|∇φ|

)
− λ

(
(I0 − cI)2 + (I0 − cO)2

)
on Ω× [0,∞). (1.18)

Thus, mean curvature motion is combined with iteratively updated terms, measuring
the distance of the image intensity to computed mean intensities inside and outside of
C.

1.2.3 Efficient implementations - the Narrow Band Method and Additive
Operator Splitting

In this subsection, we are concerned with efficient numerical implementations of level
set methods (1.11).

Basic Numerical Implementation

In order to solve (1.11) numerically, a grid of Nd points is used to discretize Ω, and on
each point (x1, . . . , xd), the signed distance function φx1,...,xd

of the contour is stored
and iteratively recomputed when solving (1.11). In the original work [89], an explicit
upwind scheme is computed in each evolution step. All implementations of numerical
schemes on the original grid are very costly, since each evolution step takes O(Nd)
time, although the contour itself is only (d− 1)-dimensional. Two main ideas have been

8



CHAPTER 1. BACKGROUND ON ENERGY MINIMIZATION METHODS AND
DEFORMABLE MODELS FOR SEGMENTATION

worked out to reduce computational costs when computing level set evolutions: Narrow
Band Methods [5] and Additive Operator Splitting [69].

Narrow Band Implementation

Having a closer look at the discretization scheme above, we note that in fact only the
values of φ on gridpoints close to the evolving contour are relevant for further evolution
of the contour. Therefore, a (narrow) band is arranged around the zero level set of φ
consisting of gridpoints close to the zero level set of φ, and during an evolution, only the
gridpoints lying in this band are processed. For an illustration, see Figure (1.1). Since the
band reduces computational complexity by one dimension, resulting computational effort
is O(nd−1). However, some technical difficulties have to be addressed when computing
on narrow bands:

• After a number of iteration steps, the narrow band has to be updated, since the
contour must not evolve out of the band. For this purpose, a scheme has to be
implemented which detects, if the contour is still inside the narrow band.

• If the narrow band is too small, approximations of the partial derivatives of φ
become inaccurate.

Therefore, implementing level set evolutions with narrow bands requires engineering.

Additive Operator Splitting

A fast semi-implicit scheme for level set evolutions is described in [114], focussing on ef-
ficient formulation of the evolution equations. The evolution equations (1.13), (1.16)and
(1.15) all fit into the general framework

∂φ

∂t
= a(x)|∇φ|div

(
b(x)
|∇φ|

∇φ
)

+ |∇φ|kg(x) on Ω× [0,∞) (1.19)

with real valued functions a and b. A semi-implicit scheme is derived for solution of
(1.19), which is of the form

φn+1 = φn + τ
∑

l∈{x1,...,xd}

Al(φn)φn+1. (1.20)

Here, τ is the time discretization parameter and Axi(φ
n) is a linear operator which

maps φnx1,...,xn
to a linear combination of elements φx1,...,xi−1,y,xi+1,...,xn , with y varying

over neighbors in direction xi. Therefore, each matrix Axi(φ
n) is tridiagonal and hence

efficient to invert by Gauss algorithm. Equation (1.20) can be transformed into

φn+1 = (Id− τ
∑

l∈{x1,...xd}

Al(φn))−1φn (1.21)

9



1.2. IMPLICIT ACTIVE CONTOURS

In this expression, the sum of matrices Axi(φ
n) occurs, which is no longer tridiagonal

and its inversion is therefore very time consuming. The important observation at this
point is, that splitting the linear operators into

φn+1 =
1
2

∑
l∈{x1,...xd}

(Id− 2τAl(φn))−1φn (1.22)

has the same approximation order as system (1.21), but for its solution, only d tridiagonal
matrices have to be inverted. Therefore, system (1.22) can be solved very efficiently with
the Gauss algorithm.

1.2.4 Fast marching methods

A related way to represent a closed submanifold C ⊂ Rd of codimension one implicitly
is given by its boundary value formulation. In this representation, a function T : Rd →
[0,∞) describes both the contour and its evolution, interpreting the value T (x) as arrival
time of the contour at point x. If F denotes a positive valued real function, the evolution
of T is given by

|∇T |F = 1 (1.23)

and the contour at time t is given by C(t) = {x ∈ Rd | T (x) = t}. Function F can be
interpreted as speed of the evolution, dependent on image features. There is an efficient
numerical implementation of (1.23), based on the special structure of T . This scheme
is comparable to the narrow band implementation of level set evolutions, and has even
one advantage: Since T measures distances of points from the contour, modification of
the narrow band after an iteration is very efficient.
However, an important restriction of evolutions with fast marching methods is, that only
outward evolution (F > 0) is allowed.

1.2.5 Preventing topology changes in implicit active contour evolutions

In several applications automated topology changes of the evolving contour are desirable.
However, in some applications like biomedical image segmentation where the topology
of the object to segment is known by anatomical knowledge, topology changes are not
desirable. In this section, we review level set evolutions under topology control.
As one of the first works in this direction, [54] use concepts of digital topology to suppress
topology changes during contour evolution in 3D. Assume that x, y are 3-dimensional
voxels. The following neighborhood relations can be defined between x and y, compare
[15]: If x and y share a face, they are called 6-connected, if they share an edge, they are
18-connected and if they share a corner, they are 26-connected. A binary image gives
a decomposition of discrete voxel space Ω into a foreground component X, containing
voxels of one intensity and a background component X = Ω\X containing voxels of the
other intensity. The (local) neighborhood relationships defined above enable to define
paths and hence (global) connectivity properties of foreground and background. This can
be done consistently, when using n-connectedness forX, and n-connectedness forX, with
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pairs (n, n) ∈ {(6, 26), (6, 18), (18, 6), (26, 6)}. A point x ∈ X is called simple point, if
X\{x} has the same connectivity as X, and X∪{x} has the same connectivity as X. The
interesting thing about simple points is, that they possess a local characterization: Point
x is simple, if the 26 voxels neighboring x consist of exactly one foreground component
(measured by n-connectivity) and exactly one background component (measured by n-
connectivity). In the topology controlled level set model of [54], voxels on which the level
set function is positive belong to the foreground, the others to the background. During
the evolution, the level set function is only allowed to change its sign on simple points.
This basic scheme suppresses all topological changes, hence the final segmenting contour
is homeomorphic to the initial contour. A generalization of this scheme is presented in
[100], using multisimple points, which allow for topology control in further detail.

A different approach to control topology during level set evolutions has been suggested
in [106] in 2D. There, the segmentation functional to minimize is supplemented by a
functional which becomes large, if parts of the evolving curve are close. For a curve C,
the energy

E2D,R(C) =
1
2

∫ ∫
C×C

(
1

‖C(s)−C(ŝ)‖
− 1
dC(s, ŝ)

)
dŝds (1.24)

is defined, where ‖·‖ is the Euclidean norm in R2 and dC(s, ŝ) is the geodesic distance
between C(s) and C(ŝ) along curve C. This energy becomes large, if the contour curve
evolves close to self-intersection. Recently, this approach has been extended to 3D in
[95].
Further work using penalty functionals to prevent topology changes in level set evolutions
is provided in [10]. There, an interior curve Id = {x+d∇φ(x) | x ∈ ∂D} and an exterior
curve El = {x − l∇φ(x) | x ∈ ∂D} with distance parameters d, l > 0 to the evolving
contour are maintained during level set evolution. The penalty functional is

H(φ) = −
∫
∂D

log[φ(x+ d∇φ(x))]ds−
∫
∂D

log[φ(x− l∇φ(x))]ds. (1.25)

If two parts of the curve evolve closer than max{d, l}, functional H becomes large.
In the work of [76] it is observed that the signed distance function fulfils

〈∇φ(x),∇φ(y)〉 ≈ −1 (1.26)

at points where an evolving curve comes close to self-intersection and incorporate this
term in a penalty functional prohibiting topology changes.

1.3 Parametric Implementation of Active Contours

In this section, we review parametric implementations of active contour models. The
segmenting contour C in Ω ⊂ Rd is parameterized by a piecewise m-times continuously
differentiable function

11



1.3. PARAMETRIC IMPLEMENTATION OF ACTIVE CONTOURS

C : [0, 1]→ Ω such that C(0) = C(1), (1.27)

resp.

C : [0, 1]2 → Ω such that C(0, ·) = C(1, ·) and C(·, 0) = C(·, 1). (1.28)

In most cases, m = 1 or m = 2. Implementations of gradient-based segmentation
are outlined in Subsection 1.3.1, a survey on region-based segmentation is given in
Subsection 1.3.2.

In standard curve (d = 2) or balloon (d = 3) evolutions, the contour is evolved
over time starting from a contour C0. Efficient parametric implementations are much
simpler than implicit implementations, and produce accurate segmentations without
artifacts, which can occur in implicit implementations with narrow bands. However, the
main problem of parametric implementations is the lack of topological adaptivity. If
C0 parameterizes a simple closed curve or surface, every iterate is a simple closed curve
as well, if no topological transformations are performed. In order to enable topological
flexibility, various topology adaptation systems in parametric active contour evolutions
have been considered in the literature. We will discuss these works in detail in Subsection
1.3.3.

1.3.1 Parametric implementations of gradient-based segmentation
functionals

In segmentation functional (1.3), we set Eext(C) =
∫ 1

0 |∇I0(C(q))dq|. The term Eext(C)
can be interpreted as external energy of the contour C. Functional (1.3) gives rise to
the Euler-Lagrange equations

∂

∂q

(
α
∂C(q)
∂q

)
− ∂2

∂q2

(
β
∂2C(q)
∂q2

)
−∇Eext(C) = 0 (1.29)

It is common to make the contour time dependent, such that iterative algorithms can
be applied to solve (1.29).

m
∂2C(q, t)
∂t2

+ γ
∂C(q, t)
∂t

+
∂

∂q

(
α
∂C(q, t)
∂q

)
− ∂2

∂q2

(
β
∂2C(q, t)
∂q2

)
= ∇Eext(C) (1.30)

Motion equation (1.30) is a particular version of motion by Newton’s law. Interpreting
∂2

∂q2

(
β ∂

2C(q,t)
∂q2

)
− ∂

∂q

(
α∂C(q,t)

∂q

)
as internal force Fint acting on the evolving curve, and

∇Eext(C)) as external force Fext, we obtain the following evolution by Newton’s law:

m
∂2C

∂t2
= −γ ∂C

∂t
+ Fint + Fext (1.31)

The acceleration ∂2C
∂t2

of a mass point C(t, q) of mass m is equal to a sum of its
velocity ∂C

∂t damped by γ plus internal and external forces. The internal forces of
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the model make the contour resist expansion or compression and make the model
expand, while the external forces stop the snake when salient image features are reached.

1.3.2 Parametric implementations of region-based segmentation models

A parametric curve evolution for the Mumford-Shah functional (1.6), called diffusion
snake, is presented in [36]. The curve C is represented as a closed spline curve

C : [0, 1]→ Ω, C(q) =
N∑
n=1

pnBn(q) (1.32)

where the Bn are periodic, quadratic B-spline basis functions, and the pn are the spline
control points. Since with this spline approach, the control points tend to overlap when
measuring the curve length with the Hausdorff measure in (1.6), energy functional (1.6)
is slightly changed into

E(I, C) = µ

∫ 1

0

∂2C

∂q2
dq + λ

∫
Ω

(I0(x)− I(x))2dx+
∫

Ω\C
|∇I(x)|2dx. (1.33)

Functional (1.32) is minimized alternating over contour C and image I.

• For fixed image I, the Euler-Lagrange calculus gives

∂E

∂C
[e−(q)− e+(q)] n(q)− µ∂

2C

∂q2
= 0 for q ∈ [0, 1] (1.34)

In this equation, e± = λ(I0(C)− I(C))2 ± |∇I(C)|2 and n is the outer normal on
the contour. Solving (1.34) by gradient descent gives the evolution equation

∂C

∂t
= −∂E

∂C
= [e+(q, t)− e−(q, t)]n(q, t) + µ

∂2C

∂q2
(q, t) for q ∈ [0, 1], (1.35)

with a time parameter t introduced. This equation is discretized and solved for
the spline representation of the curve.

• For a fixed curve C, Euler-Lagrange equations are computed for image variable I
and the diffusion process

∂I

∂t
= div(wc∇I) + λ(I0 − I) (1.36)

is obtained, wc being the characteristic function of the set Ω\C.
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1.3.3 Topology adaptive implementations of parametric active contours

In numerical implementations of (1.31), the evolved contour C is mostly discretized
by polygons or meshes. This way, normals, curvature etc. are approximated by
discrete mesh operators. However, the evolved contour cannot change its topology type
during evolution, unless special topology adaptation systems are implemented. In this
subsection, we study such systems, with a focus on 3D implementations.

Topology adaptations in mesh-like structures.
One of the first works which models surface evolutions allowing for topological trans-
formations is [108]. There, particles are evolved, which carry similar information as the
vertices of a mesh like position, normal vector and orientation, but do not contain any
neighborhood relations. In order to obtain a surface mesh after an evolution step, a
Delaunay triangulation of the particles is computed.
In [37, 38], the evolving surface is discretized as a 2-simplex-mesh, which is defined as
a mesh where every vertex is adjacent to three edges. Topological complex meshes are
put together from tubes or spheres for initialization and then evolved towards object
boundary.

The Delaunay approach of [93].
The topology adaptive model of [93] relies on iterative remeshing with the restricted
Delaunay triangulation. We first explain the geometrical concepts involved: For a set
of points E = {p1, . . . , pn} ⊂ Rd and Ω ⊂ Rd, the restricted Delaunay triangulation
Del|Ω(E) is defined as a subcomplex of the Delaunay triangulation Del(E). It consists
of simplices of Del(E), whose dual Voronoi cells have nonempty intersection with Ω. For
example, in dimension d = 3, Del|Ω(E) is an approximation of Ω with tetrahedrons. Un-
der the assumption that E is a sufficiently dense sample of Ω and Ω is smooth, Del|Ω(E)
is an approximation of Ω. This tetrahedrization can be computed in O(|E| log|E|)
time (in case d = 3). Using the restricted Delaunay triangulation Del|Ω(E), a topology
adaptive contour evolution step is performed in the following way:

At iteration step n, a point set En (representing samples of the evolving contour), set
Ωn (representing the space enclosed by the contour) and Dn = Del|Ωn

(En) are given.
The points En are evolved to En+1 by evaluating Equation (1.31). Here, the structure of
Dn is taken into account in order to compute discrete derivatives. After this evolution,
Dn is no valid triangulation of the evolved point set En+1, since overlappings can occur.
Therefore, the set Ωn+1 covered by En+1 with the (old) triangulation Dn is computed,
and the restricted Delaunay triangulation Dn+1 = Del|Ωn+1

(En+1) is calculated with
respect to Ωn+1. After this update step, Dn+1 is a valid triangulation of the point set
En+1, and Ωn+1 is the updated segmented object. By this approach, the topology of
the evolving contour is allowed to vary between different iterations.
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The fast-marching-methods-like approach of [17].
In [17], a discrete snake model is presented in 2D. Euclidean space R2 is supplemented
with the grid Z×R∪R×Z. A discrete snake, called r(estricted)-snake there and consisting
of vertices and edges assembled to a polygon, is evolved under certain restrictions:

• the r-snake vertices lie on the grid,

• if an r-snake vertex reaches a gridpoint, i.e. an intersection point of grid lines, it
is split,

• the r-snake is only evolved in normal direction.

During evolution, the computed normals are projected on the grid, and the vertices of
the r-snake are translated by these normals. Time stepping ∆t is chosen, such that a
vertex cannot move farther than the next gridpoint:

∆t = minV {(1− dV )/vV } (1.37)

In this equation, dV ∈ [0, 1] is the distance of vertex V to the next gridpoint, and vV
the evolution velocity of V along the unit normal vector. This rather slow evolution
speed enables unambiguous self-intersection detection and topology adaptation by
local procedures on each square. This model has some similarity to the fast marching
method in implicit active contour evolutions, see Subsection 1.2.4, since its evolution is
parameterization independent and main information on the evolving contour is stored
in the distance variable dV .

Works of Lachaud, [70], [72], [73],[71].
In these works, a triangular mesh is evolved over time. In order to have some guarantees
on the mesh at any time of the evolution, a parameter δ > 0 is associated to the evolving
mesh. It determines two geometric constraints:

• every edge fulfils δ ≤ edge length ≤ 21
2δ,

• two non-neighboring vertices cannot come close, ‖u− v‖ ≥ 2 1
2√
3
δ.

After each evolution of the mesh vertices by Equation(1.31), a distance field is computed
to check these conditions and perform local mesh refinement or coarsening if necessary.
Self-collisions are detected, if the contour violates the second geometric constraint.
This basic geometric topology adaptation framework has been applied to a Riemannian
space setting, where distances are measured depending on the properties of the object
to segment, thus allowing for a resolution adaptive implementation of the mesh.
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Topology adaptive snakes [83] of and [84].
In these works, a Freudenthal triangulation of the image domain is utilized. This trian-
gulation is constructed by subdividing the d-dimensional image domain into a uniform
cubic grid and further subdividing each cube into d factorial simplices. After an evolution
step of the contour by Equation (1.31), the contour is reparameterized such that every
vertex lies on an edge of one of the Freudenthal triangles. Locally on each Freudenthal
triangle, self-intersections of the contour are detected and topological transformations
are performed, which is similar to [17]. The evolution speed has to be chosen sufficiently
small, such that no ambiguities occur in this framework.

1.4 Graph theoretic segmentation approaches

In graph theoretic segmentation approaches, discrete images are regarded as weighted
graphs, and theory as well as algorithms from combinatorial optimization are transferred
to image segmentation problems. In this section, we review popular methods for image
segmentation via graph theory. These include rather direct ones like [45, 102] in Sub-
section 1.4.1 and also methods for minimization of segmentation functionals like (1.7)
by graph cuts (Subsection 1.4.4). Theory on graph cuts is presented in the intermediate
Subsections 1.4.2 and 1.4.3.

In order to interpret (discrete) images as graphs, let P be the set of pixels, correspond-
ing to vertices in graph interpretation. The edge set N of the graph is given by two
neighboring pixels. The neighborhood relation can be understood in several ways, for
example 4- or 8-neighborhood in 2D, 6-, 18- or 26- neighborhood in 3D. In some cases,
complete graphs are considered as well, i.e. each two vertices are connected by an edge.
An image intensity function I0 induces weights on the graph edges by setting

wp,q = |I0(p)− I0(q)| for neighboring pixels p, q. (1.38)

We first review greedy segmentation algorithms working directly on the graph structure.

1.4.1 Greedy algorithms

From a decomposition of an image into different segments, one can in principle expect
that two pixels of highly differing intensity should lie in different segments, whereas
pixels of similar intensity lie in the same segment. This observation can be translated
directly into a segmentation algorithm of greedy type. The image is considered as a
weighted graph as in (1.38), and as initialization of an iterative procedure, every vertex
(=pixel or voxel) is considered as a different segment of the image. The edges are sorted
by weights in non-decreasing order, and iteratively, in a greedy manner, two segments
are merged if they are connected by an edge with currently minimal weight. This
algorithm is based on purely local criteria and fails to work on most real world images.
As an improvement on the basic greedy algorithm, the Felzenszwalb-Huttenlocher
algorithm [45] applies convolution with a Gaussian kernel to I0 in a preprocessing step,
thus reducing the influence of noise. Then the basic greedy algorithm is supplemented
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by a criterion, which actually decides if two components are merged. Here, internal
differences, i.e. the largest weight in the minimal spanning tree of a component, and
differences between components, i.e. the smallest weight of an edge connecting the
two components, are taken into account. By this criterion, global guarantees on the
segmentation result can be inferred.

Note that after algorithms of greedy type, different segments are basically separated
by edges of high weights. In noisy images, this strategy sometimes fails to produce good
results, since single edges have a high impact on the segmentation. A more stable concept
consists of computing segments, such that the sum of weights between different segments
is maximized. Thus, the influence of single edges is reduced and more data variability
inside a segment is enabled. This class of algorithms can still be solved efficiently, using
the minimal cut - maximal flow duality in graph theory.

1.4.2 Background from graph theory - maximal flow and minimal graph cuts

Assume G = (P,N ) is a directed graph with nonnegative edge weights we for e ∈ N , as
can occur in our image segmentation context. Furthermore, let s, t ∈ P be two distinct
vertices, called source and sink. Interpreting the edge weights as maximal capacities (i.e.
maximum amount of flow which can pass), a flow is defined as a mapping f : N → R+

such that the capacity condition

fe ≤ we for all e ∈ N (1.39)

and the flow conservation condition∑
(q,p)∈N

f(q,p) =
∑

(p,q)∈N

f(p,q) for all p ∈ P\{s, t} (1.40)

hold. The flow conservation condition guarantees that the amount of flow going into
a vertex equals the amount flowing out again. The maximum flow problem consists of
computing a flow f which maximizes

|f | =
∑
e∈N

fe. (1.41)

On the other hand, an s-t cut of G is a partition of P into disjoint subsets S, T such that
s ∈ S and t ∈ T . The minimum cut problem consists of computing an s-t cut P = S ∪T
minimizing

cut(S, T ) =
∑

p∈S,q∈T,(p,q)∈N

wp,q (1.42)

As shown in [6], the minimal cut problem is dual to the maximum flow problem. For the
max-flow problem with integer edge weights, efficient algorithms like the Ford-Fulkerson
algorithm [6] exist, which solve the maximum flow problem in O(|P|2|N |) time. Hence
by duality, (1.42) can as well be solved efficiently by the Ford-Fulkerson algorithm.
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1.4.3 Segmentation algorithms based on minimal graph cuts

The theory above is applied to segmentation by replacing we by max
ẽ∈N

wẽ − we, thus

transforming a maximization problem into a minimization problem. As with greedy
segmentation algorithms, difficulties arise when directly computing minimal cuts of an
image represented as in (1.38). This is for example done in [117]. Since the cut defined
in (1.42) increases with the number of edges connecting two segments, the direct graph
cut strategy would favor cutting small sets of isolated vertices in the graph. Notable
improvements have been made in the normalized cuts algorithm [102]. This algorithm
does not search for segments minimizing (1.42), but minimizes instead

Ncut(A,B) =
cut(A,B)
cut(A,P)

+
cut(A,B)
cut(B,P)

(1.43)

Here, cut(A,P) and cut(A,P) serve as normalizing quantities and as consequence, small
segments A do not necessarily have a small normalized cut value Ncut(A,P\A) and are
thus prevented. Unfortunately, minimization problem (1.43) can no longer be minimized
efficiently. Therefore, (1.43) is formulated for real weights and an approximate solution
is proposed in [102].

More general, the graph cuts technique can be applied to minimization of segmentation
functionals like (1.7). In the following, we explain this general theory.

1.4.4 General energy minimization via minimal graph cuts and applications

In this part, we explain how general energy minimization problems can be interpreted
as graph cut problems and discuss its applications to image segmentation.
Consider a finite set F , an ordered set P and a functional

E : FP → N (1.44)

which can be written in the form

E(I) =
∑
p∈P

Ep(Ip) +
∑

p,q∈P,p<q
Ep,q(Ip, Iq) (1.45)

with functionals Ep : F → N, Ep,q : F 2 → N.
In the image processing context, P is the finite set of pixels or voxels, and F is the set
of gray values an image I can attain, typically F = {0, . . . , 255}.
The graph theoretic approach to minimize (1.45) consists of constructing a graph G̃ =
(P̃, Ñ ), such that minimizers of (1.45) can be computed from minimal cuts of G̃. A
general solution theory has been developed in [67] for sets F = {0, 1}. We repeat
its main elements here, since it gives a criterion which functionals can be minimized
via graph cuts and a constructive proof. The main result states, that (1.45) can be
minimized by graph cuts, if and only if

Ep,q(0, 0) + Ep,q(1, 1) ≤ Ep,q(0, 1) + Ep,q(1, 0) for all p, q ∈ P (1.46)
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holds. The graph G̃ is constructed in the following way:

1. Define additional vertices s and t as source and sink, and set P̃ = P ∪ {s, t}.

2. if Ep(0) < Ep(1), then add the edge (s, p) with weight Ep(1)−Ep(0) to the graph,
otherwise add (p, t) with weight Ep(0)− Ep(1) to the graph (for all p ∈ P).

3. set A = Ei,j(0, 0), B = Ei,j(0, 1), C = Ei,j(1, 0) and D = Ei,j(1, 1). Note that
[

A B
C D

]
=

[
A A
A A

]
+

[
0 0

C − A C − A

]
+

[
0 D − C
0 D − C

]
+

[
0 B + C − A−D
0 0

]
(1.47)

In the sum on the right hand side, the first term is constant, the second term only
depends on the value of Ip and the third term only depends on the value of Iq.
Therefore these terms can be treated as in item (1). Concerning the last term, an
edge (vi, vj) with weight Ep,q(0, 0) + Ep,q(1, 1) − Ep,q(0, 1) − Ep,q(1, 0) is inserted
into graph G̃, which is greater or equal to zero because of the assumption.

Since all weights in this graph are greater or equal to zero, a minimal cut of this graph
is well-defined and can be computed efficiently by the Ford-Fulkerson algorithm. As can
be seen easily, a minimal s-t cut of this graph induces a binary valued function I which
is a minimizer of (1.45).

In the following, we describe the graph cut algorithm for minimization of the Chan-Vese
functional (1.7) with ν = 0,

E(cI , cO, C) = µHd−1(C) + λ1

∫
I(C)

(I0 − cI)2 dx+ λ2

∫
O(C)

(I0 − cO)2 dx. (1.48)

For minimization via graph cuts, this functional (1.48) is discretized in [120], see also
[43], in the following way:

• Ω is discretized by a regular grid of pixels (or voxels) p ∈ P.

• regions implied by the contour C are translated into values Ip ∈ {0, 1} for p ∈ P,
by the rule

Ip =
{

1 if p ∈ I(C)
0 if p ∈ O(C).

(1.49)

• the curve length (resp. surface area) of C is approximated using a discrete Cauchy-
Crofton formula. The Cauchy-Crofton formula enables to compute the curve length
(resp. surface area) of C using the number of intersections with given lines. The
exact derivation of formulas in 2D and 3D can be found in [21]. As system of lines
e1, . . . , ek and weights w̃1, . . . , w̃k (both independent of C) is obtained, such that

Hd−1(C) ≈
n∑
k=1

nC(k)w̃k (1.50)
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The term nC(k) denotes the number of intersections of C with ek. For a contour C
implicitly given by a binary image I, it can written in the form

nC(k) =
∑

(p,q)∈P2,(p,q)∩ek 6=∅

(1− Ip)Iq + Ip(1− Iq) (1.51)

Altogether, we obtain

E(cI , cO, I) ≈∑
p∈P

(
µ

n∑
k=1

∑
q∈P,(p,q)∩ek 6=∅

w̃k[(1− Ip)Iq + Ip(1− Iq)]

)
+ λ1(I0,p − cI)2Ip + λ2(I1,p − cO)2(1− Ip)

(1.52)
To a fixed binary image I, the optimal value of cI and cO in (1.52) is given by

cI =

∑
p∈P IpI0,p∑
p∈P Ip

(1.53)

and

cO =

∑
p∈P(1− Ip)I0,p∑
p∈P(1− Ip)

. (1.54)

Functional (1.52) is minimized by an alternating procedure: After choosing an arbitrary
initial contour C (and hence I),

1. values of cI and cO from the value of I are computed by (1.53) and (1.54).

2. for fixed values of cI and cO, functional (1.52) is a special case of the general
functional (1.45) and minimized by graph cuts, and goto (1).

The iteration is stopped if the value of (1.52) remains constant.

There are two main advantages of minimizing the Chan-Vese functional (1.7) by graph
cuts:

• the result of the iterative optimization procedure is independent of the initializa-
tion.

• the graph cut algorithm always finds a global extremum.

1.5 Segmentation with prior information

The segmentation models presented in Sections 1.1, 1.2 and 1.3 work well in situations,
when the image data is uncorrupted, as has already been pointed out in the Preface.
But if noise, low contrasts, partial occlusions or weak object boundaries are present,
active contour models without a priori information on the object to segment tend to fail.
Therefore, it is useful to incorporate a shape prior (if available) into the segmentation
model.
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To do that, either uncorrupted training images are segmented with methods of the previ-
ous sections, or corrupted data is segmented by an expert and the segmented objects are
used to compute a statistical shape model. Standard statistical concepts utilized herein
are principal component analysis (PCA) and Mahalanobis distance. These concepts are
reviewed in Section 5 and we omit a discussion in this section. Furthermore, there are
several ways to represent the shape prior and define shape space, and we list the most
common ones in Subsection 1.5.1. The shape prior is then inserted in the active con-
tour model, mainly by a Bayesian approach or by adding a further penalty term (shape
energy) to the energy functional, see Subsection 1.5.2. Finally, we review some recent
work on segmentation with a priori shape knowledge in Subsection 1.5.3.

1.5.1 Shape spaces and representations of the shape priors

A priori knowledge on the object to segment is often knowledge on size or shape. We
define the shape of an object as collection of data of an object, which is invariant under
similarity transformations, i.e. translations, rotations and scaling as in [62]. In the
segmentation literature, shapes are represented in several different ways, and we give
some shape models here.

Medial axis representation
A shape representation which has been introduced in [49, 92] and studied extensively
[58, 91, 80, 47, 46, 48] is the Medial Axis Representation (M-Rep) of shapes. Generally,
the medial axis of an arbitrary open set X in Euclidean space is defined as the set of
points which have at least two closest points in the complement of X. (For an extensive
survey on medial axes computation, see [14]). The medial axis is discretized by a mesh
consisting of medial atoms and edges connecting the atoms. Medial atoms carry the
following data:

• a position x ∈ R3

• a distance r > 0 to two or more implied boundary positions

• a local coordinate frame F ∈ SO(3), parametrized by three orthonormal vectors
(n, b, b⊥), where n denotes the normal to the medial mesh and b is a tangent vector
of the implied boundary, pointing in direction of steepest implied volume descent.

• an object angle θ ∈ [0, π2 ], which is the angle between the implied boundary and b.

Medial atoms which lie on the boundary of the mesh carry a parameter η as extra
data. For a visualization of medial atoms, see Figure 1.2. The implied boundary of
an object represented by an M-rep is reconstructed by Bezier spline interpolation.
A distance measure between M-reps is obtained by regarding M-reps (consisting of
n1 inner and n2 boundary medial atoms) as elements of the Riemannian manifold
(R3 × R+ × SO(3)× [0, π2 ])n1 × (R3 × R+ × SO(3)× [0, π2 ]× R+)n2 .

The main advantage of M-reps is its stability under small perturbations of the implied
boundary. Furthermore, meshes of different scale can be combined, therefore allowing
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Figure 1.2: Medial Atoms (taken from [91]). On the left hand side, an inner medial atom,
in the middle, a boundary medial atom is shown. The points y0 and y1 lie
on the surface. On the right hand side, a mesh of medial atoms is shown.

for a multiresolution representation of objects by M-reps. On the other hand, there is
no simple method to extract a medial atom mesh from segmented objects automatically,
and some manual calibration is required.

Sampling of boundary points
Alternatively, the shape models can base on sample points. A representation employed
in [33] consists of a uniform sampling of the object boundary. In order to cancel out the
influence of similarity transformations, distances between point samples are measured
by the Procrustes distance.
A further point based approach is the landmark approach detailed in [20], where
instead of a uniform sampling of the object boundary, points are only placed at salient
boundary features.

Level set shape representation
A shape representation which is suitable for active contours in the level-set formula-
tion has been introduced in [78]. In the basic numerical implementation of level sets
(Subsection 1.2.3) the signed distance function is sampled on a grid at Nd points. The
implied discrete surface can therefore be considered as a point in high dimensional space
RNd

. The shape of an object is obtained by taking equivalence classes modulo similarity
transformations in RNd

.

1.5.2 Bayesian models versus variational models

A priori shape knowledge is incorporated into segmentation functionals, by penalizing
deviations of the shape of the segmenting contour to the precomputed mean shape.
From a conceptual point of view, these penalizations can be carried out in two ways, a
Bayesian framework and a variational framework.

Bayesian framework
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In a Bayesian framework, shape priors are incorporated into the segmentation algo-
rithm via maximum a posteriori(MAP) estimators. For related applications of MAP
estimators in imaging, we refer to [99].Assume that f(C|θ) is the conditional probability
density function of some probability distribution, which is dependent on parameter θ.
Furthermore, assume that h(θ) is a density function for the distribution of θ. Then
Bayes theorem for probability densities states that

h(θ|C) =
f(x|θ)h(θ)∫
f(x|θ̃)h(θ̃)dθ̃

. (1.55)

Maximizing h(θ|x) for θ leads to the MAP estimator

θ̂MAP (x) = argmaxθh(θ|x) = argmaxθf(x|θ)h(θ) (1.56)

In this equation, the normalisation term in the denominator is omitted since it is inde-
pendent of θ and therefore irrelevant in maximization. The MAP estimator θ̂MAP (x) can
be interpreted as parameter θ, for which the probability to observe x is maximal under
the assumption that x depends on θ and assuming a certain distribution on parameter θ.

In the segmentation context, we are given training shapes depending on some param-
eter θ. Let µ be the computed mean shape and dMAHAL be the Mahalanobis distance
between shapes. It is common to define a probability density function from these data
on shapes (for example in [78]) by

h(θ) = D exp(−dMAHAL(θ, µ)). (1.57)

Here, D is a positive normalizing constant. This function is maximal for θ = µ,
otherwise it becomes small.
Interpreting x as the segmenting contour, and plugging a density function as (1.57) into
(1.56), one can estimate the most probable shape θ when observing x, knowing a priori
that µ is the mean shape, and which variability among shapes is present.
In Subsection 1.5.3, we give some examples in the literature using such an approach for
segmentation with a priori information.

Variational framework
In a variational framework, shape priors are entered into segmentation functionals as a
shape energy. Typically, a segmentation functional of type

E(C) = EDATA(C) + λESHAPE(C,CT ) (1.58)

is minimized. Here, EDATA(C) can be for example functional (1.3) or (1.4), and
ESHAPE(C) is a functional penalizing deviations of C from a priori expected contours.
We give some examples using this approach in Subsection 1.5.3.
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1.5.3 Recent Work on Segmentation with Prior Information

In this subsection, we present recent work in segmentation with prior information
utilizing the concepts discussed in Subsections 1.5.1 and 1.5.2.

In [78], a level set approach is developed to implement the geodesic active contour
model 1.16. The a priori shape is represented in the level set representation of Subsection
1.5.1. This shape model is integrated into the geodesic active contour evolution as MAP
estimator of the shape (1.56). The (discrete) evolution equation reads as

φt+1 = φt + λ1v(t) + λ2(r(θ̂MAP (φt)− φ(t)). (1.59)

Here, r is a map taking a shape to its implied segmenting contour and v(t) is the geodesic
active contour evolution speed, depending on image data I0 and curvature of the contour.
Starting from this work, several modifications and improvements have been made in the
last years. An evolution similar to [78] has been studied in [113]. The only difference is,
that the Chan-Vese functional (1.17) is employed instead of the geodesic active contour
model.

In the segmentation model of [30], the shape model is implemented in the variational
formulation (1.58), compare also Equation (1.5).

E(C, f) =
∫ 1

0
g(|∇I0(C(q))|)|C ′(q)|dq +

λ

2
d2(f(C), CT )|C ′(q)|dq (1.60)

In this equation, f is a similarity transform, aligning template shape CT to C, and d
is a distance measure. For minimization of (1.60) over C and f , a level set evolution is
derived.
The approach chosen in [36] also fits into the general variational framework (1.58), but its
implementational details differ from the concepts above in several ways. The segmenting
contour C is represented parametrically as a spline. The term EDATA(C) is given the
Mumford-Shah functional (1.6), the Hausdorff measure of the contour length (resp. area)
being replaced by a squared L2 norm. As shape energy ESHAPE(C), the Mahalanobis
distance (5.20) is utilized.
More recently, in [23] gradient based and region based segmentation is combined in a
level set framework with shape priors. The proposed energy functional is

E(C,CT , f) = βsESHAPE(C,CT , f) + βbEBOUNDARY (C, I0) + βrEREGION (CT , f, I0)
(1.61)

In this functional, ESHAPE is given by the distance of C from template shape CT
(aligned by f) measured by distances of coefficients in a reduced basis after PCA,
EBOUNDARY is defined as in Equation (1.5) and functional EREGION is similar to
functional (1.7) without regularization, i.e. µ = ν = 0 in (1.7).
Attempts to generalize these ideas were made in [51].
The medial axis representation of the prior shape is implemented in a segmentation
functional of type (1.58) in [91]. Recent applications of M-reps with Mumford-Shah
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segmentation are presented in [31], using a CMA algorithm for minimization of a
Mumford-Shah energy over the Riemannian shape manifold.

1.6 Background on Topology and Homology

In this section, we give some background on topology and homology theory, which is
required for a better understanding of Chapters 3 and 4. We start with basic definitions,
and then list some theorems which enable computation of homology groups for various
spaces. For bibliographic sources, we refer to [96, 82, 56], background on algebra can be
found in [75].

1.6.1 Basic definitions

Homology groups can be most easily defined for topological spaces which are built from
simple objects, namely simplices.

1.6.1 Definition. Let {v0, . . . , vn} be an affine independent subset of some Euclidean
space. An n-simplex [v0, . . . , vn] is the convex hull of {v0, . . . , vn}. The points v0, . . . , vn
are called vertices of the simplex, and every simplex whose vertex set is a subset of
{v0, . . . , vn} is called face of [v0, . . . , vn]. The number n is called the dimension of
[v0, . . . , vn].

If a topological space consists of simplices, it is called a simplicial complex.

1.6.2 Definition. A finite simplicial complex K is a finite set of simplices, such that

1. if s ∈ K, then each face s′ of s is also an element of K.

2. if s, t ∈ K, then s ∩ t is either empty or a face of both s and t.

The geometric realization |K| of a simplicial complex K is defined as the union of all its
simplices,

|K| =
⋃
s∈K

s. (1.62)

Reversing the point of view, a simplicial complex K is called triangulation of a topo-
logical space X, if |K| = X.
Note that for some purposes, as the definition of simplicial homology groups later on,
only the combinatorial data of how the simplices are glued is relevant. A logical gener-
alization of simplicial complexes, containing only their combinatorial data, are abstract
simplicial complexes.

1.6.3 Definition. Let V be a finite set. An abstract simplicial complex K is a set of
nonempty subsets of V , called simplices, such that
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1. for every v ∈ V , it holds {v} ∈ K

2. if s ∈ K, and s′ ⊆ s, then s′ ∈ K.

In order to define the geometric realization of an abstract simplicial complex K, every
element s of K is identified with a simplex s̃ in Euclidean space, such that every vertex
of K is in one-to-one correspondence with vertices of the simplices s̃. Then the geo-
metric realization of K is defined as the geometric realization of the simplicial complex
consisting of the simplices s̃. This construction is unique up to homeomorphism. In the
following, homology theory is developed for simplicial complexes, but everything works
analogously for abstract simplicial complexes as well.
In order to analyze the structure of simplicial complexes, the n-simplices are given an
orientation. Every linear order on V induces an orientation of the simplices [v0, . . . , vn].
Oriented simplices are denoted by <v0, . . . , vn>. Two oriented simplices <v0, . . . , vn> and
<vπ(0), . . . , vπ(n)> are equivalent, iff π is an even permutation. Hence, each n-simplex
with n ≥ 2 can carry exactly two orientations. The oriented simplices of the same di-
mension n of a simplicial complex K are collected in the set Kn.
Oriented simplicial complexes are arranged in abelian groups in the following way:

1.6.4 Definition. The free abelian group Cn = C(Kn) generated of a finite set Kn of
oriented simplices is defined as

Cn =

{∑
s∈Kn

kss | ks ∈ Z for all s ∈ Kn

}
(1.63)

The sums in the above definition are understood in a formal sense independent of the
structure of the simplicial complex K, adding c =

∑
s∈Kn

kss and c̃ =
∑

s∈Kn
k̃ss ∈ Cn

is defined by c+ c̃ =
∑

s∈Kn
(ks + k̃s)s.

These simplicial chain groups are related each other by defining group homomorphisms
between them, mapping a simplex to a linear combination of its faces.

1.6.5 Definition. For an oriented simplicial complex K, the differential operator ∂n is
defined as

∂n : Cn → Cn−1, <v0, . . . , vn> 7→
n∑
i=0

(−1)i <v0, . . . , v̂i, . . . , vn> (1.64)

and uniquely extended to a homomorphism. In this equation, v̂i means deletion of vertex
vi.

It is common to denote chain groups and differentials by a sequence

· · · → Cn+1
∂n+1→ Cn

∂n→ Cn−1 → . . . (1.65)

and sometimes we omit the dimension index of the differential operator (we simply write
∂n = ∂), since its construction is independent of the dimension of the chain group. An
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easy computation shows, that Im(∂n+1) ⊆ Ker(∂n), and therefore ∂n ◦ ∂n+1 = 0. On the
other hand, kernels of differentials ∂n are in general not equal to images of ∂n+1, this
difference is measured by the homology groups of a simplicial complex.

1.6.6 Definition. The simplicial homology groups of an (abstract) simplicial complex
are defined as

Hn(K) = Ker(∂n)/Im(∂n+1) (1.66)

Homology groups fulfil several nice properties, which make them suitable to measure
the structure of topological spaces. We want to recall

• Independence of the triangulation: If a topological space X is triangulated by both
K and K̃, then Hn(K) = Hn(K̃). Note that this statement implicitly also says that
homology groups are independent of the choice of orientation of the triangulating
simplicial complex K.

• Invariance property: If two topological space X and X̃ are homotopy equivalent
[96, p.16], then Hn(X) ∼= Hn(X̃). (The ∼= operator means isomorphic.)

• There are (at least) two other common notions of homology of a space X, namely
cellular homology HC(X) and singular homology HS(X). As is proven for example
in [56, p.128 and p.139], these homology theories are all isomorphic, Hn(X) ∼=
HC
n (X) ∼= HS

n (X). As a consequence, homology can be defined for all topological
spaces without necessarily having a triangulation, and can be computed in various
ways.

We want to interpret homology groups by giving two classical examples. The following
example of the k-sphere motivates the interpretation, that the n-th homology group
counts the number of n-dimensional holes.

1.6.7 Example. The homology groups of Sk, the k-sphere, are given by

Hn(Sk) =
{

Z k = 0, n
0 otherwise.

(1.67)

Closed orientable surfaces of genus g possess 2g 1-dimensional holes:

1.6.8 Example. The homology groups of Tg, the closed orientable surface of genus g,
are given by

Hn(Tg) =


Z n = 0, 2

Z2g n = 1
0 otherwise.

(1.68)

In general, topological spaces with isomorphic homology groups need not be homotopy
equivalent, and particularly not homeomorphic. But here, the following holds:

1.6.9 Theorem (Surface Classification Theorem). A closed surface with homology
groups as in (1.68) is homeomorphic to Tg.

For a proof, see [82], Chapter 1.
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An important property of a simplicial complex K is the Euler characteristic:

1.6.10 Definition. The Euler characteristic of a simplicial complex K is defined as the
alternating sum (compare [56, p. 146])

χ(K) =
n∑
i=0

(−1)i #Ki (1.69)

Here, # denotes the cardinality of a set.

The Euler characteristic can be computed over homology groups of the complex:

χ(K) =
n∑
i=0

(−1)i rank Hi(K) (1.70)

Since homology groups are independent of a special triangulation, the Euler characteris-
tic is independent of a special triangulation as well. Given a triangulated, closed surface,
the Euler characteristic can be used to determine its genus, since χ(K) = 2− 2g holds.

1.6.2 Some tools to compute homology groups

In this subsection, we recall some important theorems on computation of homology
groups.
Some theorems rely on the basic algebraic notion of an exact sequence.

1.6.11 Definition. An exact sequence is a sequence of groups (An)n∈Z and homomor-
phisms ∂n : An → An−1, such that Ker(∂n) = Im(∂n+1). It is common to write

· · · → An+1
∂n+1→ An

∂n→ An−1 → . . . , (1.71)

and sometimes the mappings are even omitted.

Special attention is paid to short exact sequences.

1.6.12 Definition. A short exact sequence is an exact sequence of the form

0→ A→ B → C → 0 (1.72)

In the following, we want to list some important properties of short exact sequences:

• By definition, a short exact sequence 0→ A
s→ B

t→ C → 0 splits, if there exits a
homomorphism r : C → B such that rt = idC . In such a case, we have a splitting

B ∼= A⊕ C, (1.73)

see [56, p.147]. If C is a free abelian group, such a homomorphism r always exists.
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• The rank formula
rank(B) = rank(A) + rank(C) (1.74)

holds, [96, p.87].

Useful tools to compute the homology of a union of topological spaces are long exact
sequences, the Mayer-Vietoris sequence and the excision theorem.
To start with, let X be a topological space and A ⊆ X a subspace. Relative homology
groups Hn(X,A) are defined by taking homology of the sequence

· · · → Cn+1(X)/Cn+1(A)
∂n+1→ Cn(X)/Cn(A) ∂n→ Cn−1(X)/Cn−1(A)→ . . . (1.75)

The boundary operators are the quotient maps of the standard boundary operators, for
simplicity denoted by the same symbol ∂n. Then the following holds:

1.6.13 Theorem (Long Exact Sequence). Let X be a topological space and A ⊆ X.
Then the sequence

· · · → Hn(A)→ Hn(X)→ Hn(X,A)→ Hn−1(A)→ . . . (1.76)

is exact [96, Thm 5.8].

Note that for application of this theorem, the actual definition of the maps making the
sequence exact (which we omit here) plays a minor role. Frequently, some groups in such
a sequence equal zero and the long exact sequence breaks into short exact sequences.
Another frequently used sequence of this kind is the Mayer-Vietoris sequence. The
Mayer-Vietoris sequence links the homology of subspaces A,B ⊂ X to the homology of
the union of their interiors Å ∪ B̊. It is stated in the following theorem.

1.6.14 Theorem (Mayer-Vietoris Sequence). Let A,B ⊆ X such that Å∪B̊ = X. Then
the sequence

· · · → Hn(A ∩B)→ Hn(A)⊕Hn(B)→ Hn(X)→ Hn−1(A ∩B)→ · · · → H0(X)→ 0
(1.77)

is exact [96, Thm 6.3].

The main argument to prove the exactness of the Mayer-Vietoris sequence from the
long exact sequence is the excision theorem, which is itself a useful tool in some homology
computations.

1.6.15 Theorem (Excision). Let X be a topological space and Z ⊆ A ⊆ X, such that
Z ⊆ Å. Then the inclusion map of pairs (X\Z,A\Z) ↪→ (X,A) induces isomorphisms

Hn(X\Z,A\Z)→ Hn(X,A) for all n ∈ Z (1.78)

For a proof, see [56, Thm 2.20].
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1.6.3 Proofs of the Main Theorems

In this subsection, we discuss two topological problems concerning spheres. In Chapters
3 and 4, results on these two problems are given and utilized without proof, which is
preponed to this part of the thesis.

Theorem 4.3.6

Let M = (V,E, F ) be a 2-dimensional simplicial complex. Furthermore, let Mb be the
simplicial subcomplex of M obtained by removing k connected components from M such
that the geometric realization of Mb is a surface with boundary consisting of k simple
closed polygons (see also Figure 4.1, top left). Let C1, . . . , Ck be caps such that its
boundaries consist of the boundary polygons of Mb (see also Figure 4.3). Moreover, let
K be a handle for C1, . . . , Ck, so that |

⋃k
i=1C

i ∪K| ≈ S2. Then

|Mb ∪K| ≈ Tk−1+g(M), (1.79)

where Tk−1+g(M) is the closed, orientable surface of genus k − 1 + g(M) and g(M) is
the genus of M .

Proof.

It is obvious, that |Mb ∪H| is a closed surface, so it remains to show that

g(Mb ∪H) = k − 1 + g(M).

The Mayer-Vietoris sequence (Theorem 1.6.14) for Mb ∪H reads as

· · · → H2(Mb)⊕H2(H)→ H2(Mb ∪H)→ H1(Mb ∩H)→ H1(Mb)⊕H1(H)→

H1(Mb ∪H)→ H0(Mb ∩H)→ H0(Mb)⊕H0(H)→ H0(Mb ∪H)→ 0.

In order to compute the terms in the sequence, note that the homology groups of a
closed orientable surface F of some genus g(F ) minus k distinct points p1, . . . , pk are

H∗ (F\{p1, . . . , pk}) =


Z ∗ = 0

Z2g(F )+k−1 ∗ = 1
0 ∗ ≥ 2

This can be proven easily by excision,

H∗ (F, F\{p1, . . . , pk}) ∼= H∗ (D,D\{p1, . . . , pk})

and using the long exact sequence for (F, F\{p1, . . . , pk}).
Let us now have a closer look at the spaces occuring in the Mayer-Vietoris sequence for
Mb ∪H:
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• Mb ∪H is homotopy equivalent to
∐k
i=1 S1.

• Mb is homotopy equivalent to a closed surface of some genus g(Mb) minus k points.

• H is homotopy equivalent to a 2-sphere minus k points by defintion of a handle.

Therefore, the Mayer-Vietoris sequence for Mb ∪H computes to

0→ Z→ Zk → Z2g+k−1 ⊕ Zk−1 →

H1(Mb ∪H)→ Zk → Z⊕ Z→ Z→ 0.

Since Mb ∪H is a closed surface, and because of the rank formula for abelian groups in
exact sequences (Equation (1.74)), we deduce that

H1(Mb ∪H) ∼= Z2(k−1+g(M)),

and therefore
g(Mb ∪H) = k − 1 + g(M).

�

When is the geometric realization of a mesh homeomorphic to S2?

The segmentation algorithms presented in Chapters 3 and 4 require a criterion which
tells, when a given mesh is the geometric realization of a sphere. We give a little
discussion here.

1. Given a mesh M = (V,E, F ).
If the Euler charateristic (see 1.6.10) fulfils χ(M) = 2 and
for each v ∈ V , the link Lk(v) of v is a simple, closed polygon then the geometric
realization of M is homeomorphic to a 2-sphere.

Proof: The link condition ensures, that the mesh triangulates a closed surface.
Since the Euler characteristic of this surface equals two, its genus is zero (because
χ(M) = 2− 2g(M)) and therefore, M triangulates a sphere.
This criterion is especially suitable for computational purpose, since it can be
checked in linear time, depending on the number of vertices of M .

2. Since the Euler characteristic of a closed surface can be computed from its homol-
ogy groups (see1.70), Criterion 3.4.1 follows directly from the first item. Hence
this is a second possible criterion to check, whether a mesh triangulates a sphere.

3. As was pointed out by H. Edelsbrunner (personal communication), Theorem 4.3.7
does not hold.
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As a consequence, we recommend to use the first item instead of Theorem 4.3.7 in
Chapter 4.
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2 Segmenting surfaces of arbitrary
topology: A two-step approach

Joint work with W. Hinterberger and O. Scherzer.

Published in Proceedings of SPIE, Ultrasonic Imaging and Signal Processing. Volume
6437, 2007.

This paper presents a topology adaptation system for parametric active contours in 3D.
In a first step, the contour is discretized as a triangular mesh and evolved by evolution
equations similar to (1.31). To incorporate topological adaptivity, intersecting triangles
are detected and stopped in the evolution. In a second step, we show that from the
evolved mesh and intersection data, a topologically transformed mesh can be computed
which segments the object.
As main contribution of this paper, segmentation of 3D objects of unknown topology
can be carried out in a stable and very efficient way.

External Contributions: W. Hinterberger provided parts of the numerical implementa-
tion (with which the results were computed) and O. Scherzer participated in discussions
and revised the paper.
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Abstract. We propose a two-step approach to segment closed surfaces in 3D of
arbitrary topology. First, a pre segmentation step with an active contour method is
performed. This evolution process does not take into account topology adaptions. Topo-
logically correct segmentations are derived with Kazhdan’s algorithm in a second step.
Kazhdan’s algorithm requires information on the surface normals, which are obtained
from the active contour method. We show that the two-step algorithm is computation-
ally efficient. Moreover, we apply the algorithms for segmentation of 3D ultrasound data.

Key Words. Image segmentation, active contour model, topology changes.

1. INTRODUCTION

Starting with the pioneering work [116], active contour models have been extensively
studied and applied in many applications such as image segmentation, surface recon-
struction and shape modeling.

In this paper we investigate parametric active contour (AC) models for segmentation
of three dimensional data which allow for topological changes. There have been several
contributions on topology adaptive active contours in 2D, some of them are reviewed
below. However, there has been done much less work in 3D. In 2D discrete active contours
are curves given by a discrete number of vertices which are connected by lines. The curves
are called snakes. In [84], snakes are implemented topology-adaptive using an additional
Freudenthal triangulation of the image plane. With this additional simplicial structure,
a re parametrization (and therefore a topology adaption) is performed cyclically after a
fixed finite number of iterations of the active contour evolution. The re parametrization
is performed by computing the intersections of the (discretized) snake with the triangles
of the Freudenthal triangulation and the snake is locally adapted to the topology. After
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a re parametrization, the snake vertices are edges of the Freudenthal triangulation. A
related approach is suggested in [16] where the discretized snake is a-priori restricted
to have its snaxels on edges on an underlying two-dimensional grid. If the number of
snaxels is large, already in 2D, the evolution is rather time-consuming. This is due to the
fact that a vertex is not allowed to move further than the next gridpoint, and therefore
many iterations are required.

AC models evolve a contour over time. The evolution is driven by the propagation
speed vS , which is specified a-priori and usually image content specific. We discretize
the AC model in time and space by a sequence of triangular meshes (see e.g. [70]).
Alternatively, one could discretize the surface by hexagons (see e.g. [37]) or by spline
surfaces (see e.g. [77]).

We suggest and investigate the following segmentation procedure:

Initialization: The user provides a starting point inside the object to be segmented. Au-
tomatically, a sphere inside the object to be segmented with center at the starting
point is generated.

Segmentation: During the evolution of AC model the sphere expands towards the
boundary of the object until boundaries or self intersection (for instance topology
changes) are detected. We perform segmentation, that is the boundary detection,
borrowing the ideas of intelligent scissors (see [104]). Given the costs of moving
between neighboring pixels (for instance the absolute value of the directional gradi-
ent between two neighboring pixels), the intelligent scissors calculate the minimal
costs of moving from a user specified center to all other points. The segmenta-
tion is the closest contour to the center where all pixels exceed a cost threshold.
Intelligent scissors are used to segment objects of different topology, for instance
objects with inclusions. In our AC model we use a cost model, where the costs
are evaluated along trajectories during the evalution. These costs are certainly
higher than for intelligent scissors but it can be implemented more efficiently in
the context of AC models. The advantage of intelligent scissors is that it can be
implement more stable. Since the step length of the AC model is not restricted by
the grid size of an underlying simplical structure, our algorithm is computational
efficient.

Post Processing: The contour is re parametrized using Kazhdan’s algorithm and topol-
ogy adapted.

The paper is organized as follows: the active contour segmentation model with speed
function motivated from intelligent scissors is derived in Section 2. Section 2 is concerned
with the numerical implementation of the AC model. Kazhdan’s algorithm for surface
reconstruction is described in the Section 2. Moreover, we present some numerical
experiments for segmentation of 3D clinical image data.
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2. THE ACTIVE CONTOUR MODEL IN 3D

Let I ∈ C1
0 (Ω,R) be a representation of intensities of an image with image domain

Ω ⊂ R3.
The continuous active contour model (see [110]) consists in calculating a sequence of

parametrized surfaces
(St : Γ→ Ω)t≥0, Γ ⊂ R2

which for t → ∞ approximates the segment of the object of interest. Following [29]
we use physical considerations and derive an evolutionary partial differential equation
where a surface evolves like a rubber skin of a balloon which is blown up. We use the
momentum equation

∂St
∂t

= ft on Γ . (2.1)

The forcing term is modelled as ft = kt(f intt + fextt ):

1. f int describes an internal force, which physically simulates a steady air flow into
the balloon. Neglecting other forces this results in a steady expansion in normal
direction to the surface

f intt = ~nt .

Here ~nt denotes the outer unit normal vector to the surface St.

2. An external force, the surface tension, which depends on the shape of the balloon
and is given by

f intt = ∆St.

This simulates the forces on the rubber skin. For segmentation application this
enforces a smooth surface.

3. The indicator function
kt : Γ→ {0, 1} ,

is used to ensure that the contour does not move across edges and corners. For
modelling kt we use a boundary indicator Ψcost

t for the image, a smoothness indica-
tor of the surface Ψcurv

t and an indicator for self intersections. Let (u, v) ∈ Γ, then
in case Ψcost

t (u, v) and Ψcurv
t (u, v) do not exceed a certain threshold we assume

that there do not occur self intersections, and we set kt(u, v) = 1, otherwise we
put kt(u, v) = 0. The later enforces termination of the evolution at (u, v) ∈ Γ.

We use the following boundary indicator function

Ψcost
t : Γ→ R,

(u, v)→
∫ t

0
max

{
0,
〈
∇I(Sr),

∂Sr
∂t

〉
(u, v)

}
dr

which is motivated from segmentation with intelligent scissors [104]. Intelligent
scissors are hybrid indicator functions combining region based and gradient based
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Figure 2.1: A small triangulated sphere is placed inside the object of interest.

segmentation. A typical examples of gradient based segmentation is Canny’s edge
detector [24] and an example of a region based segmentation technique is Mumford-
Shah segmentation [87]. The functional Ψcost takes into account the sum of abso-
lute values (costs) of all gradients along a trajectory. This is different to intelligent
scissors where the path with minimal costs is selected, while we follow the path
of evolution of the surface. We restrict our attention to the evolution along tra-
jectories of the surface evolution since this allows 3D real time segmentation. We
observed, that for our application of filtering ultrasound data (see below) this
approach is more stable than pure gradient based segmentation.

The smoothness control of the contour is achieved with

Ψcurv
t = Ht,

where Ht denotes the mean curvature of the surface St.

The contour moves outwards until internal and external forces balance, or kt becomes 0.
Discretizations of the forcing terms can be compared with established AC models in

the literature, like for instance [29] and [84]; there the external forces are interpreted as
spring forces (the forces serve as edge indicators and are related to the strength of an
edge).

3. NUMERICAL IMPLEMENTATION OF THE BALLOON
MODEL

Initially, we use a regularly triangulated sphere S0 in R3 with 102 vertices and 200
triangles centered around a user supplied point, which is completely contained in the
object of interest. Let P be a vertex of the mesh of the contour St.

In the numerical implementation the derivatives in the active contour model (2.1) are
approximated as follows:
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• We use the following approximation of the time derivatives in the evolustion pro-
cess:

∂St
∂t

(u, v) =
1
h

(Sn+1(u, v)− Sn(u, v)))

if
Sn(u, v) = Shn(u, v).

That is, we use an explicit Euler method. An explicit Euler method is considered
to be inefficient in terms of numbers of iterations, however for this particular
application where the cost functional is dependent on the trajectory, (semi-)implicit
methods are inpractical.

• The Laplacian of the surface at P = Sn(u, v) is approximated by the umbrella
vector (see [66]):

U(P ) =
1

|NV (P )|
∑

Q∈NV (P )

(Q− P ),

where NV (P ) = {neighbor vertices of P}.

• The normal vector to the triangulated surface at P is approximated by the nor-
malized mean of normal vectors of the neighboring triangles:

~nn(P ) =

∣∣∣∣∣∣
∑

∆∈NT (P )

~nn∆

∣∣∣∣∣∣
−1 ∑

∆∈NT (P )

~nn∆, (2.2)

where ~nn∆ is the outer normal vector of the triangle ∆ and NT (P ) is the set of
triangles with vertex P . The normal vector is unique up to a sign. If in addition
the mesh is given an orientation at t = 0, the orientation is preserved as long as
no topology changes occur, and the outer normal vectors are uniquely specified
during the evolution.

• The boundary indicator function Ψcost is approximated as follows:

Ψn,cost =
1
n

(
n∑
i=1

max
{

0,
〈
∇hI(Sn),

∂Sn

∂t

〉})

where ∇hI is a finite difference approximation of gradient of I. Let P and Q be
two vertices of the mesh, then for each point R on the edge

eP,Q = {tP + (1− t)Q|0 < t < 1} ,

the mean curvature Ht can be approximated by (see [105])

Ht(R) = |(Q− P )× ~n(n)
∆1
− (Q− P )× ~n(n)

∆2
|

Here, ~n(n)
∆i

denote the outer unit normals on the two adjacent triangles to eP,Q.
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During the numerical evaluation of AC we store an array At, which marks all voxels inside
the contour at time t. Using this array we can detect self intersections by checking, if
the next evolution step will move a mesh point into a marked voxel.

Using the above numerical approximations the evolution of the nodes is given by

S(n+1) = S(n) + hk(n)(λU(S(n)) + µ~n(n)) on Γ.

In our numerical implementation, we additionally implemented a re meshing scheme
(refinement and coarsening) to get regular triangles during the iteration. This ensures
higher accuracy of the umbrella vector approximating the surface Laplacian and of the
normal at the vertex points. Both approximations are inaccurate in case of obtuse
triangles or highly varying triangle sizes at a vertex.

Refinement and coarsening is implemented as follows: If the length of an edge e
exceeds a certain user-defined parameter, a refinement of the two neighbor triangles
is performed. Vice versa, it if the edge length is smaller that another threshold then
coarsening is perormed. The two algorithms read as follows:

Algorithm: Refinement

Given triangular mesh (V,E, F ) and lower length bound ε.

WHILE {e ∈ E | length(e) > ε} 6= ∅
S, T ← endpoints(e)
P,Q← opposite vertices(e)
R← 1

2(S + T )
V ← V ∪ {R}
E ← E\{(S, T )}
E ← E ∪ {(P,R), (R,Q), (S,R), (R, T )}
F ← F\{(P, S, T ), (Q,T, S)}
F ← F ∪ {(P,R, S), (Q,S,R), (T,R, P ), (Q,R, T )}

END WHILE

Algorithm Coarsening

Given a mesh (V,E, F ) and upper distance bound ε.

WHILE {e ∈ E | length(e) < ε} 6= ∅
P,Q← endpoints(e)
S, T ← opposite vertices(e)
R← 1

2(P +Q)
V ← V \{P,Q}
V ← V ∪ {R}
E ← E\{(S, P ), (S,Q), (P, T ), (Q,T ), (P,Q)}
E ← E ∪ {(S,R), (R, T )}
F ← F\{(S, P,Q), (T,Q, P )}
replace coordinates P and Q by R in each triangle

END WHILE

Some results of the active contour model are presented in Figure 2.4.
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Figure 2.2: If the edge e appears to be too long, vertex R and lines PR, RQ are inserted
to subdivide the triangles.

Figure 2.3: If two points are closed, they are melted.

(a) (b)

(c) (d)

Figure 2.4: In (a) and (b), the end of the balloon evolution is shown for the cyst example. The
evolution result for the torus can be seen in (c) and (d). All these four meshes are
still homeomorphic to a sphere.
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4. THIRD STEP: TOPOLOGY CHANGES

The AC contour model described in the previous section did not allow for topology
changes. In fact whenever topology changes are predicted, the iteration is locally termi-
nated. Therefore the result of the AC model the balloon evolution is homeomorphic to
a sphere. An example for the result of the AC model is shown in figure 2.4.

In the following we present an algorithm that allows to reconstruct the correct topology
of surfaces of genus g > 0 from the output of the AC model.

Let P1, . . . , PNterm denote the mesh points of the stationary surface of the AC model.
Moreover, we denote by ~n1, . . . , ~nNterm the weighted normals at the mesh points, com-
puted with formula (2.2). In practice the informations on the mesh points and their
weighted normals is sufficient to uniquely determine the mesh surface. However, there
can occur situations when the mesh is not uniquely determined, which in a mathematical
notation means that for each mesh point Pi there exists a scalar µi such that∑

∆∈N 1
T (Pi)

~n∆ = µi
∑

∆∈N 2
T (Pi)

~n∆. (2.3)

The set of configurations {P1, . . . , PNterm} admitting such a relation is a finite intersection
of a finite union of codimension-2-subspaces of R3Nterm and hence has Lebesgue measure
zero. If the mesh after the balloon evolution encloses a flat region, the upper mentioned
ambiguities do not influence the shape of the mesh. Otherwise we can think of the
vertices as a random sample of surface points, such that the upper relation is not satisfied.
These considerations motivate to use as mesh information just points and normals.

Given the mesh after the balloon evolution, to approximate the surface in a topological
correct form, we distinguish beetween two types of vertices:

1. The flow of a vertex has been stopped during the AC evolution since a self inter-
section has been detected. Such a vertex must be discarded as an interior point of
the object.

2. In all the other cases, a vertex is considered to be part of the boundary of the
object.

The following procedure shows how to remove vertices of type 1 which belong to the
interior of the object. For this purpose the mesh is first opened and afterwards remeshed.

Opening of mesh for topology adaption

A procedure for opening and updating of the normal is as follows:

• [1] Mark all triangles which contain a vertex of type 1.
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(a) (b)

(c) (d)

Figure 2.5: Opening Algorithm: vertices and triangles at places of self-intersection are discarded.
The remaining vertices and triangles are remeshed.

• [2] For all vertices P contained in a marked triangle, update the surface normals:
Set NT (Pi)) = {triangles incident to Pi, not marked}, and

nPi =

∣∣∣∣∣∣
∑

∆∈NT (Pi)

~n∆

∣∣∣∣∣∣
−1 ∑

∆∈NT (Pi)

~n∆

• [3] Delete all marked triangles and vertices of type 1 from the mesh.

We obtain a meshed surface with boundaries and update the normals of the vertices
which had a neighboring triangle which has been cut out.

The result of the opening procedure is shown in figure 2.5.

The remeshing algorithm

We discard all the edges of the mesh after the opening procedure, such that only surface
points and their normals remain.

We compute the topology adapted mesh with vertices and outer unit normals following
the mesh reconstruction method described in [61]. To be self-contained, we shortly
summarize this algorithm, the features and adapt it to our purposes.

Let P1, . . . , PN denote the remaining points on the surface after the opening procedure,
and ~n1, . . . , ~nN the corresponding outer unit normals. Moreover, let M ⊂ R3 denote the
object of interest. We approximate the indicator (or characteristic) function 1M of the

42



CHAPTER 2. SEGMENTING SURFACES OF ARBITRARY TOPOLOGY: A
TWO-STEP APPROACH

set M by computing the fourier series expansion of 1M . For this purpose, let

1̂M (k) =
∫
M

e−i〈k,x〉dx

be the k-th Fourier coefficient of 1M , k ∈ Z3.
Moreover, for x ∈ R3, let

Fk(x) =


ik1
|k|2 e

−i〈k,x〉

ik2
|k|2 e

−i〈k,x〉

ik3
|k|2 e

−i〈k,x〉

 .

This function satisfies
divFk(x) = e−i〈k,x〉, k ∈ Z.

Therefore, by Stokes’ Theorem, we have∫
M

e−i〈k,x〉dx =
∫
∂M

〈Fk(p), ~n(p)〉 dp.

Therefore, by using Monte-Carlo-Approximation we find∫
∂M

〈Fk(p), n(p)〉 dp ≈ c(M)
N

N∑
i=1

〈Fk(Pi), ~ni〉 .

Here c(M) denotes the surface area of M , a constant which actually need not be com-
puted for what follows.

To summarize, we have shown that for every x ∈ R3

1M (x) =
∑
k∈Z3

1̂M (k)ei〈k,x〉

≈ const
∑
k∈Z3

N∑
i=1

〈Fk(Pi), ~ni〉︸ ︷︷ ︸
=:1̃M (x)

.

Following [61], an approximation of the characteristic function 1M can be calculated
using the mean value µ = E(1̃M ) and by appropriate thresholding

1M (x) ≈
{

1, 1̃M (x) ≥ µ
0, 1̃M (x) < µ.

Once the indicator function of the object has been computed, the surface mesh can be
computed with the marching cubes algorithm, see [79].

Figure 2.6 illustrates the algorithm for topology adaption and the result obtained after
applying the marching cube algorithm.
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(a) (b)

(c) (d)

Figure 2.6: After remeshing, the mesh shown in (a) and (b) is obtained, (c) and (d) show the
result for the torus. Note that both surfaces have genus 1, hence a topological
change has taken place.

(a) (b)

Figure 2.7: (a) Zoom into the cyst mesh. (b) The segmentation of the torus is equally good in
regions where no topological change occured.
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5. RESULTS AND DISCUSSION

We tested our algorithm with artificial and real 3D voxel data. Wo have considered
two examples showing a cyst in a kidney and an artificial torus shown in Figures 2.1
and 2.4-2.7. During biopsy a needle has been sticked into the cyst. Since the needle
penetrates the object, mathematically we might say that this object has genus 1. The
sequence of pictures shows

• the original voxel image,

• the voxel image filtered (which is applied before segmentation to stabilize the
algorithm),

• the small sphere is placed inside the object for initialization (is the single user
interaction),

• the final result of the AC evolution (the surface is still homeomorphic to a sphere),

• the sphere points which were stopped because of threatening self-intersections are
discarded,

• the surface mesh after reconstruction by normals and the marching cubes algo-
rithm,

• the final segmentation result.

We computed the two examples on a Pentium 4 Computer with 2 GB RAM and 3,5
GHz CPU.

While Step 2 took approximately 8 seconds for the cyst and 5 seconds for the torus,
the remeshing step 3 was done in ca. 0.1 seconds in both cases.

The drawback of our method can be seen in figure 2.7(b). In regions of topological
change, the segmentation is a bit imprecise. This is a consequence of the curvature
control. At the end of the evolution the deformed sphere fills the object up to small
pieces at the boundary. Discarding intersection triangles, the normals of the resting
triangles on the boundary of the opened mesh point slightly backwards, away from the
boundary. Therefore, the torus is a bit thinner in this region. One possible solution
to this problem might be a second usage of the first step, now blowing up the present
(topologically correct) surface.

6. SUMMARY AND FUTURE WORK

In this paper we have proposed a new approach for active contours which allows for topol-
ogy adaptations. The algorithms consists of two steps, and AC model which supresses
topology changes and a topology adaptions using Kazhdans algorithm and a marching
cube algorithm. The AC model is time efficient since it evolves a surface withour using
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an underlying grid structure. In practical applications we applies the segmentation al-
gorithm to filtered data. The topic of adequate filtering has not been addressed in this
paper but is important to achieve relyable results. As a future work we intend to study
adaptions of the contour where the topological adaptation has taken place.
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Abstract. In this paper, we present a novel algorithm for calculating topological
adaptations in explicit evolutions of surface meshes in 3D. Our topological adaptation
system consists of two main ingredients: A spatial hashing technique is used to detect
mesh self-collisions during the evolution. Its expected running time is linear with
respect to the number of vertices. A database consisting of possible topology changes
is developed in the mathematical framework of homology theory. This database allows
for fast and robust topology adaptation during a mesh evolution. The algorithm
works without mesh reparametrizations, global mesh smoothness assumptions or vertex
sampling density conditions, making it suitable for robust, near real-time application.
Furthermore, it can be integrated into existing mesh evolutions easily. Numerical
examples from medical imaging are given.

Key Words. Segmentation, deformable model, topology adaptation, homology theory,
medical image analysis.

1. INTRODUCTION

Since the pioneering work [116], deformable models have been used very successfully in
the areas of computer vision and pattern recognition. In general, one can differ between
two classes of deformable models: Explicit or parametric models, and implicit ones.
Implicit models, i.e. level-set techniques, were introduced in [89] and further develop-
ments were done in [25]. Since the contour is given as the isosurface of a scalar function,
topology adaptations are handled naturally in implicit models. Nevertheless, explicit
models are often preferred. This is due to the fact, that the mathematical equations are
sometimes easier to formulate, and user interaction and special geometrical constraints
can be incorporated easily. However, topological transformations are difficult to imple-
ment in explicit (2D or 3D) contour evolutions.
In [84], evolving polygons in 2D are made topology-adaptive by using a Freudenthal
triangulation of the image plane. A reparametrization is performed cyclically after a
fixed finite number of iterations of the polygonal evolution by intersecting the poly-
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gon with the Freudenthal triangles. Polygon self-intersections are detected inside each
Freudenthal triangle, and topology adaptations - if necessary - are obtained by some
case distinctions. Similar ideas have already been developed in [37]. In [17], the mesh is
a-priori restricted to have its vertices on edges on an underlying two-dimensional grid.
If the number of vertices is large, already in 2D, the evolution is rather time-consuming.
This is due to the fact that vertices must move grid point by grid point. In [70], special
restrictions on edge lengths and angles in the mesh are imposed to detect self-collisions
and to adapt topology in 3D mesh evolutions. Some progress has been made in [72], [73]
and [71] allowing for less mesh vertices. Nevertheless, global mesh restrictions remain
which have to be controlled in every iteration step, slowing down the evolution. Further-
more, self-collisions of the mesh are checked by a distance field which is time-consuming
and not fast enough for near real time applications, see also [111]. A two-step topology
adaptive algorithm has been proposed in [3], where a standard active contour evolution
is performed first, and topology is adapted by a postprocessing step afterwards. In [93],
after each evolution step the mesh is retriangulated by a restricted Delaunay triangula-
tion in O(n log n) time, n being the number of mesh vertices. As is reported there, the
performance of this algorithm is in the range of [71].

To summarize, most of the algorithms mentioned above work well in 2D, but in 3D
they tend to be very time-inefficient, because of the additional structure to be updated
and maintained. Furthermore, the topology adaptation systems have effects on the mesh
evolution and do not run independently.

We propose a topology adaptive active contour algorithm which bases on two novel
ingredients:

• For collision detection during mesh evolution, the image space is subdivided into
small axis-aligned bounding boxes. Every mesh vertex is mapped to a hash index,
depending on the bounding box it lies in. Intersection tests are performed between
triangles which contain vertices of the same hash index. By choosing the hash
function and the bounding boxes appropriately, this algorithm runs linear in the
number of vertices.

• For topology adaptation, we delete colliding mesh parts. The boundaries of these
mesh parts are reconnected by using a database which consists of reasonable con-
nections. This database is mainly derived from homology theory. During mesh
evolution, possible mesh reconnections are looked up from the database and by a
few triangle-triangle intersection tests, we decide which one to take. Since topology
adaptations are always performed locally, the running time for collision detection
dominates, and therefore the running time for the whole topology adaptation sys-
tem is linear in the number of mesh vertices.

Outline

This paper is organized as follows: In Section 3, we give a general decription of our novel
topology adaptation algorithm. In Section 3 we present the collision detection system.
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(a) (b) (c)

Figure 3.1: In (a), a surface (yellow) has evolved around the nested ball in the middle. A small
tube connects the nested ball and the outer object. Edges of this tube self-intersect.
The tube is cut in (b). For sake of clarity, only the 2D projections are drawn. In
(c), three mesh parts collide. A handle has to be inserted between these parts to
adapt topology.

In the next section, we explain the generation of a database used for topology adapta-
tions. In Section 3, we summarize the topology adaptive mesh evolution algorithm. In
Section 3, we provide and discuss experimental results of the new method in 3D image
segmentation. Section 3 concludes the paper.

2. GENERAL DESCRIPTION OF OUR ALGORITHM

Our algorithm is designed for multiple connected surfaces in 3D and consists of
the following steps: An active contour model is used to evolve a mesh until mesh
self-collisions are detected. The topology adaptation is performed and afterwards the
active contour evolution is further continued. In this paper we focus on algorithms for
detection of self collisions and topology adaptations. Active contour models are not
discussed further and can for instance be found in [29].

Collision detection is performed by a spatial hashing algorithm, motivated by [111]:
A hash function is used to index each mesh vertex according to its position relative to
small axis aligned bounding boxes. Triangles having vertices with the same hash index
are checked for intersection. Since this test can be performed by iterating through hash
indices, the expected running time for the collision detection algorithm is linear in the
number of vertices and the hash table size.

Topology adaptation is mainly performed by a precalculated database of topology
changes derived from homology theory:
The collision detection algorithm computes intersecting triangles. Triangles can collide
during an evolution because of two reasons:

(1) A nested object has been detected, i.e. there is a smaller object enclosed by a
larger one, see Figure 3.1(a).

(2) Two or more mesh parts are actually forming a handle, see Figure 3.1(c).
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(a) (b) (c) (d) (e)

Figure 3.2: In (a), a mesh with three open holes (in yellow) surrounded by simple, closed poly-
gons is shown. It results from deleting the overlapping mesh parts in Figure 3.1(c).
A possible handle for mesh retriangulation is shown in (b), inserting the handle
results in (c). The same handle can be used to triangulate the caps shown in (d) to
a topological sphere in (e).

These two cases can be distinguished by analyzing the positions of the vertices which
belong to the intersecting triangles. Case (1) is treated by cutting the small tube shown
in Figure 3.1(b). In case (2) we delete the overlapping triangles, and after some pre-
processing, we obtain a mesh with k holes surrounded by simple, closed polygons as
demonstrated in Figure 3.2(a). Among all sets of edges and faces (E,F ) connecting the
mesh parts (call them handles), we are looking for a handle (E0, F0) such that

(a) (E0, F0) produces a combinatorially consistent mesh, i.e.

(i) every edge belongs to the boundary of exactly two triangles

(ii) every triangle borders exactly three triangles

(iii) all mesh parts are connected to each other

(b) the edges and faces of (E0, F0) produce an intersection-free adapted mesh.

It turns out, that condition (a) is just dependent on k and the number of vertices in
each of the k closed polygons, and independent of the vertex coordinates. We use this
observation for computation of a database of handles before any mesh evolution. There,
for every realistic k and realistic vertex numbers of the k polygons, handles fulfilling
condition (a) are stored. Now during a mesh evolution, a topology change is simply
performed by looking up handles fulfilling (a) in the database, and choosing one which
fulfils (b). This can be done very efficiently by a fast triangle-triangle intersection test.
Beforehand generation of the handle database:
Assume that we want to retriangulate k open mesh parts consisting of λ1, . . . , λk ver-
tices, but that the vertex coordinates are unknown. Since the combinatorial consistency
criterion (a) already makes sense in this (purely combinatorial) situation, we use it for
computation of the database. In order to keep the actual number of stored handles small,
we also study the structure of the database. Both for computation and for structure
analysis, it is useful to reformulate the combinatorial consistency criterion in mathemat-
ical terms of homology groups. This is done by the following key observation, which is
depicted in Figure 3.2: Handles for mesh retriangulation, as shown in Figure 3.2(b)-(c),
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Figure 3.3: Triangles T1 and T2 are checked for intersection, since vertices V1 and V2 are mapped
to the same hash key.

are the same as handles which connect caps to spheres, as shown in Figure 3.2(d)-(e).
The caps are obtained from the open mesh parts. This observation allows for database
generation by standard homology software, and the database structure can be described
easily by actions of the symmetric group which leave the homology invariant.

3. THE (SELF-)COLLISION DETECTION SYSTEM

In order to detect self-collisions of one mesh component as well as collisions between two
or more components, we use a spatial hashing approach.

We are given a triangular mesh M = (V,E, F ) in a bounded region Ω ⊂ R3. As in
[111], the collision detection algorithm subdivides Ω into small axis aligned bounding
boxes. In a single pass, all vertices v = (vx, vy, vz) ∈ Ω are mapped to hash indices by a
function

hash : V → {0, . . . ,m− 1},
v 7→ bvx/lc p1 + bvx/lc p2 + bvx/lc p3 mod m

(3.1)

Here, l is a parameter for the box size. The coordinates are scaled by l and rounded
down to the next integer. In image segmentation, we usually set the box size parameter
to 1, such that a box is given by one voxel. The pi are large prime numbers, and m
indicates the hash table size. In a second pass, for each hash index i ∈ {0, . . . ,m − 1},
the algorithm processes the vertices with hash index i. First, the vertices are gathered
to connected components, where two vertices are connected, if they are neighbors, i.e.
there is a mesh edge connecting them. Each two triangles adjacent to vertices of different
components are intersected by a fast triangle-triangle intersection test, f.e. [86]. If an
intersection between two triangles is detected, we store the adjacent component vertices
as (self-)intersection data. For an illustration, see Figure 3.3. We have optimized the
parameters of the spatial hashing algorithm in order to obtain maximum speed. As
[111] reports, spatial hashing with tetrahedral meshes works best if the hash table size is
chosen approximately equal to the number of mesh vertices. In numerical experiments
with our triangle-triangle intersection test, we found out that the number of hash indices
chosen to be twice the number of vertices is appropriate for triangle meshes. With this
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Figure 3.4: Star and link of a vertex. Here, the link is a simple, closed polygon.

choice, only a very few number of hash collisions occurs, and the complexity of processing
the vertices of one hash index can be regarded as constant. Therefore, the expected time
for detecting (self-)collisions of the mesh is linear, the memory usage is small (twice the
number of vertices) and the required data structures are simple. Note that in most
applications with a sufficiently smooth mesh, only a very small number of colliding
vertices occurs.

4. GENERATION OF THE HANDLE DATABASE

Assume we are given k simple closed polygons consisting of λ1, . . . , λk vertices. The con-
siderations in this section are independent of the vertex coordinates. As explained in Sec-
tion 3 and Figure 3.2, the database consists of handles (E,F ) for the data (k;λ1, . . . , λk),
which produce a combinatorially consistent mesh. These handles can be computed by
forming caps out of the simple, closed polygons and looking for triangulations of the caps
to a single sphere (as in Figure 3.2(d)-(e)). Therefore, we first formulate a topological
characterization of 2-spheres in Subsection 3, which allows for easy computation of the
handle database and examination of its structure in Subsection 3.

4.1. Topological Characterization of 2-Spheres

We introduce some required topological notions here, details can be found f.e. in [39]
and [56], Chapter 2. We are given a mesh M = (V,E, F ) embedded in R3.
A measure of connectivity of M are its homology groups H0(M), H1(M) and H2(M), in-
dicating the number of connected components, tunnels and voids of M . As an important
example, if M is a triangulation of the 2-sphere S2,

Hi(M) =
{

Z i = 0, 2
0 i = 1.

(3.2)

For a vertex v ∈ V , Star and Link are defined by

St(v) = {τ ∈M | exists τ ′ ∈M with v ⊆ τ ′, τ ⊆ τ ′}, (3.3)

Lk(v) := {τ ∈ St(v) | τ ∩ v = ∅}. (3.4)
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(a) (b) (c)

Figure 3.5: In (a), cap vertices are numbered. Group actions are shown in the next two dia-
grams: A rotation is shown in (b), an exchange is shown in (c).

Star and link are visualized in Figure 3.4.
With these notions, we can characterize a 2-sphere:

3.4.1 Criterion. Given a mesh M = (V,E, F ). If

(1)

Hi (M) =
{

Z i = 0, 2
0 i = 1

(3.5)

and

(2) for each v ∈ V , Lk(v) is a simple, closed polygon

then M triangulates a 2-sphere.

This criterion follows easily from the fact, that a mesh triangulates a compact surface,
if condition (2) is fulfilled, and that a compact surface with homology groups as in
condition (1) is homeomorphic to a 2-sphere, [82], Chapter 1.

4.2. Computation and Structure of the Handle Database

We now use the sphere classification criterion 3.4.1 for construction of the handle
database. Let us first compute the number of faces fh of a handle (E,F ). We set
µl =

∑l
i=1 λi and number the vertices of the k polygons by 1, . . . , µ1; . . .; µk−1 +1, . . . µk.

The (artificial) cap vertices are numbered by −1, . . . ,−k, see Figure 3.5(a). Let v, e, f
denote the number of vertices, edges and faces of the final sphere. From Euler’s formula
we deduce v− e+ f = 2. In a triangulated sphere, each edge is the boundary of two tri-
angles, and each face has three edges, which gives 2e = 3f . Both formulas together give
f = 2v−4, and from v=µk+k it follows f = 2µk+2k−4. Since the caps contain µk faces
altogether, and the sphere is constructed out of the caps, we obtain fh = µk + 2k − 4.
For computation of handles, fh faces are generated and Criterion 3.4.1 is checked. We
use [90] for the homology part of the criterion. As an example, in case λ1 = 5, λ2 = 4,
λ3 = 3, we obtain faces
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(1,2,11) (1,5,12) (1,11,12) (2,3,8) (2,8,10) (2,10,11) (3,4,7)
(3,7,8) (4,5,6) (4,6,7) (5,6,9) (5,9,12) (8,9,10) (9,10,12)

and adjacent edges as handle. Altogether, we computed 120 handles in this case. It
is not necessary to compute all handles by Criterion 3.4.1, since we can also compute
handles from existing ones by application of symmetric group actions on the handles.

(1) Rotations: As the vertices of a polygon are cyclically ordered, the vertex which
gets the start number µi+1 is arbitrarily chosen. Therefore, these numbers can be
rotated arbitrarily, as shown in Figure 3.5(b).

(2) Exchanges: Reflecting the fact, that on this combinatorial level two polygons with
the same number of vertices λi = λj cannot be distinguished, we note that two
such neighborhoods can be exchanged. This is depicted in Figure 3.5(c).

As an example, rotating the handle of the previous example by the operation shown
in Figure 3.5(b), gives another handle with faces

(5,1,11) (5,4,12) (5,11,12) (1,2,8) (1,8,10) (1,10,11) (2,3,7)
(2,7,8) (3,4,6) (3,6,7) (4,6,9) (4,9,12) (8,9,10) (9,10,12).

With this knowledge, the size of the database becomes very small, since only a few
generating elements need to be stored, the others are obtained by applying group actions.

5. THE TOPOLOGY ADAPTATION SYSTEM

The main ingredients of the topological adaptation system are self-collision detection
and the handle database, as described in Sections 3 and 3. Here we give the missing
routines necessary for a complete, executable algorithm.

• Make components of colliding vertices: Assume that the self-collision detection
algorithm has detected overlapping mesh regions, represented by non-neighboring
vertices lying in the same axis aligned bounding box, which are adjacent to in-
tersecting triangles. These vertices vi are grouped to connected components
C1, . . . , Ck, such that for i 6= j, two arbitrary vertices v ∈ Ci, w ∈ Cj have no
common neighbor. This is done by initializing each set Ci with the single element
vi, and as long as two sets Ci, Cj have common neighbors, they are merged and
these common neighbors are inserted to the union additionally.

• Local refinement: As a next step, we plan to remove all vertices of the sets Ci
(and adjacent pieces) from the mesh. Since the holes we obtain after removal
are not always surrounded by simple, closed curves as required for the following
steps, we perform a local refinement around the sets Ci first. This procedure is
shown in Figure 3.6. All edges between cluster vertices Ci and vertices of V \Ci
are subdivided by an additional vertex, and edges between the new vertices are
inserted for triangulation, see Figure 3.6(b). After this refinement procedure, the
vertices of the mesh Ci are removed from the mesh.
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(a) (b) (c)

Figure 3.6: In (a), edge e ver that removing Ci leads to a simple closed polygon around the
hole. A local refinement is performed in (b). After removal of Ci, a simple closed
polygon around the hole arises in (c).

• Nested objects: After refinement, a component Ci needs not be simply connected,
i.e. Ci encloses non-colliding mesh parts as shown in Figure 3.7. In this case, nested
objects are detected. Nested objects are processed as follows: Edges connecting Ci
and a nested object are removed, and both parts are triangulated. This procedure
works stable, since both components are surrounded by simple, closed polygons
after local refinement.

Let us now summarize our topology adaptation system:

Once and for all mesh evolutions: Compute the handle database. This database
can be used for all evolutions and has to be computed only once. We have computed
handles for k = 2, 3, 4 and λi ≤ 15.

During a mesh evolution:

(1) Detect self-intersections of the mesh and construct connected vertex components
C1, . . . , Ck.

(2) Apply the local refinement algorithm around the components.

(3) Handle possible nested objects.

(4) Remove the vertices of C1, . . . , Ck and its adjacent triangles and edges from the
mesh.

(5) For the neighborhood data k and λ1, . . . , λk, look up handles for a possible topology
change in the database.

(6) Check each possible handle for self-intersections.

(7) Among the handles which do not produce self-intersections, take one minimizing
edge length, or accept a set of triangles with least self-intersections.

After a topology change, the mesh is usually rather coarsely sampled at the location,
where the mesh has been adapted. Therefore, Taubin’s local smoothing method [109] is
applied to these pieces.
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(a) (b)

Figure 3.7: In (a), Ci is not simply connected. The inside component is separated from Ci
as shown in (b), by removing the connecting edges. Both parts are triangulated
afterwards (small dotted lines).

6. RESULTS AND DISCUSSION

We tested our topology change algorithm with the segmentation routine of [29] on ar-
tificial and medical images. The dark part is regarded as the object. In all examples,
a small sphere is manually placed inside the voxel image, and automatically evolved
towards the boundary of the object. As far as possible, we compare the experimental
results to those given in [71].

• In an ultrasound dataset a cyst is segmented in Figure 3.8. The white part inside
the cyst, running from front to back, stems from a biopsy needle. A segmentation
is performed to determine the shape of the cyst and the position of the needle.
Cyst and needle are accurately segmented.

• Figure 3.9 shows a cube with spherical cavity. Differing from the example in [71],
every side of the cube contains a hole, such that the segmenting contour has genus
5.

• The left part of Figure 3.10 shows an object of genus 3, the starting ball chosen
on one crossing of the four parts. Therefore, a topology change with four parts
hitting at the same time is performed.

• The right part of Figure 3.10 shows a torus with 4 nested objects. Segmentation
result is a torus enclosing 4 spheres.

The performance of our topology adaptation system tested on the four examples is given
in table 3.1. As expected, the running times of the segmentation algorithm roughly
depend linearly on the number of iterations resp. vertices. The running time for seg-
mentation of the object of genus 3 is a bit shorter, since many vertices reach the object
boundary rather early, and only a comparably small number of vertices is actually up-
dated during an evolution step. Altogether, we obtain a speedup versus previous 3D
topology adaptive segmentation routines. The cube with spherical cavity can be com-
pared to the first example in [71]. There, only one face of the cube is penetrated by the
ball, such that their object has genus 0. We obtain comparable segmentation quality in
some seconds, in spite of more complex topology, more faces and more iteration cycles.
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Figure 3.8: The original ultrasound image is given on the left hand side. The final segmenting
mesh is shown in the middle. A projection on the y-z plane is presented on the right
hand side.

Figure 3.9: A cube with a spherical cavity and some Gaussian noise added. As a segmentation
result, we obtain the mesh shown on the middle and right. In the middle diagram,
only the edges are visualized.

Figure 3.10: Voxel images for the last two examples, with Gaussian noise added, and the seg-
mentation results.
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Object Voxel size Iterations Number of vertices Running time in s.
Cyst 199× 99× 171 133 8687 3

Cube with spherical cavity 100× 100× 100 709 13576 33
Object of genus 3 100× 100× 100 677 9680 14

Torus with nested objects 100× 100× 100 215 5454 6

Table 3.1: For each test example, the number of iterations and vertices and the running time of
the segmentation algorithm is given. Tests were performed on a 3.5 GHz computer
with 2 GB RAM.

7. CONCLUSION AND OUTLOOK

Based on a database derived from homology theory, we have introduced a very efficient
novel topology adaptation system which runs independently of the evolution, does not
require any reparametrizations and runs stable, even if the mesh is not regularly sam-
pled. Based on spatial hashing, we have introduced a novel and efficient (self)-collision
detection algorithm for triangular meshes, which runs in linear time and does not require
complex data structures or huge memory resources. The presented examples show that
accurate 3D segmentation can be performed in some seconds. As a future work, we want
to combine the presented topological adaptation algorithm with a locally adaptive mesh
evolution as presented in [71] to reduce the number of mesh vertices and obtain further
speedup.
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Abstract. In this paper we propose an efficient algorithm for topology adaptation
of evolving surface meshes in 3D. This system has two novel features: First, a spatial
hashing technique is used to detect self-colliding triangles of the evolving mesh.
Secondly, for the topology adaptation itself, we use formulas which are derived from
homology. In view of this the advantages of our algorithm are that it does not require
global mesh re-parameterizations and the topology adaptation can be performed in a
stable way via a rather coarse mesh. We apply our algorithm to segmentation of three
dimensional synthetic and ultrasound data.

Key Words. Deformable model, triangular mesh, topology adaptation, segmentation,
homology

1. INTRODUCTION

Since the pioneering work [116] deformable contours have been used successfully in var-
ious areas of applications, such as image processing, medical imaging, cloth modeling
and game development.

It is common to differ between explicit and implicit deformable contours – that is,
such are parametric and level set models respectively. The later have been introduced in
[89] and since then, a number of achievements have been made both on the theoretical
side [25] and on the numerical side, using additive operator splitting schemes (which are
surveyed in [114]) and narrow-band methods (introduced in [5], for recent applications
see also [53, 118, 57]). One advantage of implicit methods is that topology adaptations
are handled automatically during the evolution process. Nevertheless explicit models
are often preferred since efficient narrow-band implementations require complicated data
structures and can lead to artifacts when discretizing with axes aligned bounding boxes.
Having segmentation of medical images in mind, a major problem with level set methods
occurs with low-contrast images. In this case, many different connected components are
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segmented, whereas the user only wants to obtain the contour of one single connected
object, which possibly contains some enclosed objects.

In this work we develop an explicit method which allows for topological adaptive
segmentation, and we believe that it is superior to level set techniques in the above
mentioned medical context. Such methods have already been subject to extensive re-
search. To our knowledge, explicit contour models with topological adaptiveness have
been considered first in [77] and [108]. There, deformable contours are represented as
tensorial spline products [77] and sets of dynamic particles [108], respectively. The basic
snake model, introduced in [83], has been complemented with topology adaptivity in
[84] utilizing a supplemental Freudenthal triangulation. This triangulation is obtained
by subdividing the d-dimensional image domain into a uniform cubic grid and further
subdividing each cube into d factorial simplices. With this additional simplicial structure
a re-parametrization is performed periodically after a fixed finite number of iterations
of the snake evolution. In each Freudenthal triangle mesh self-collisions are checked for
and topology is adapted where collisions have been detected. Similar ideas have been
presented in [37]. Basically, the algorithms of [84, 37] consist of three steps. First a grid
is aligned on the two dimensional image domain containing the object to be segmented.
Secondly, intersections of the contour edges with the grid edges are computed and stored
as grid vertices. From the grid vertices new contour edges are computed, which are edges
connecting the grid vertices. Thirdly, self-intersections of the re-parameterized contour
are detected and the topology of the contour is adapted in all simplices composed of the
grid edges. In [17] it is suggested to evolve a polygonal contour where the vertices are
restricted to lie on a supplemental rectangular grid of the image domain. An advantage
of this approach is that no re-parameterizations have to be performed and topology
adaptations are along the lines of [84]. On the other hand, if the underlying grid is
fine, small time stepping is required and thus the evolution becomes numerically expen-
sive. In [70] a mesh transformation algorithm is proposed which discards overlapping
mesh parts and performs a re-triangulation afterwards. This method only works if the
mesh satisfies geometrical properties, which are controlled by a distance field evolution.
According to [112, Sec. 4] distance field computations are numerically very expensive.
A speed up of the algorithm of [70] has been obtained in [72, 73, 71] by relaxing the
(global) geometrical constraints by local conditions. A heuristic approach to topology
adaptive segmentation is chosen in [22], requiring a large number of parameters and
transformation rules.

Our proposed algorithm is designed for segmentation of multiple connected surfaces
in 3D and consists of the following steps:

4.1.1 Scheme (Topology adaptive segmentation scheme).

1. An active contour model is used to evolve a mesh until self-intersections are de-
tected. Detection is performed by a spatial hashing algorithm described in Section
4. This algorithm is motivated from [111].

2. Neighboring vertices of colliding parts of the mesh M are removed to get an opened
mesh Mb whose boundary consists of a number of simple closed polygons. Possible
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Figure 4.1: Top Left: Opened mesh Mb. Top Right: Handle K. Bottom: Closed mesh
Mc.

enclosed objects are taken into account. The algorithm is described in Section 4.

3. The opened mesh Mb is completed by a handle, which consists of a mesh K,
that is topologically equivalent (i.e. homeomorphic) to a sphere with holes. The
completed mesh Mc consists of the union of Mb and K. The topology adaption
is illustrated in Figures 4.1. To make the completion algorithm efficient we use
a precomputed database of topologically equivalent meshes for the handles. The
database is structured by the number of connected polygons and the numbers of
faces, respectively.

4. Afterwards the active contour evolution is further continued.

In this paper we focus on algorithms for detection of self intersections and topology
adaptations. Active contour models are not discussed here further, we refer to [29] for a
standard reference on this topic.

The outline of this paper is as follows: Section 4 describes the self-collision detection
system. Section 4 introduces handles as the main tool to perform topological adapta-
tions, using concepts from homology theory. Section 4 describes the complete topology
adaptation system. Section 4 provides some results from segmentation of artificial and
medical test images. Section 4 concludes the paper, and proofs of some theorems are
given in the Appendix.
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2. (SELF-)COLLISION DETECTION

For collision detection of the evolving surfaces we use a spatial hashing algorithm which
is motivated from [111]. However, in comparison, our proposed algorithm has several
additional features. For instance, for implementation it does not require complicated
data structures and the running time is linear with respect to the number of vertices
and the chosen hash table size. We are given a triangular mesh M = (V,E, F ) in a
bounded region Ω ⊂ R3. The proposed hashing algorithm consists of the following two
steps:

4.2.2 Scheme (Collision Detection Algorithm by Spatial Hashing).

1. For all mesh vertices v, eight hash functions hi1,i2,i3(v) (with i1, i2, i3 ∈ {0, 1}) are
computed by a subdivision of Ω into axes aligned bounding boxes.

2. Let i1, i2, i3 ∈ {0, 1}. For all hash values j let

V i1,i2,i3
j = {vertices with hi1,i2,i3(v) = j} ,

the sets of vertices with hash value j. In this step it is checked whether triangles
containing vertices of V i1,i2,i3

j intersect.

In the following we present some details of the spatial hashing algorithm. In the first
step, for a definition of the hash functions, we use large prime numbers pi, i = 1, 2, 3,
and choose a hash table size htblSize. Moreover, we denote by the real parameter l the
size of the axes aligned bounding boxes (see Figure 4.2). By bac we denote the greatest
integer smaller than a. For a > 0 and i ∈ {0, 1} let

r(a, i) =
{ ⌊

a
l

⌋
l if i = 0⌊

a
l + 1

2

⌋
l if i = 1

(4.1)

For i1, i2, i3 ∈ {0, 1} we define hash functions:

hi1,i2,i3(v) = r
(vx
l
, i1

)
p1 + r

(vy
l
, i2

)
p2 + r

(vz
l
, i3

)
p3 mod (htblSize + 1) (4.2)

4.2.3 Theorem. If ‖P −Q‖ ≤ l
2 , then at least for one of the eight tripels (i1, i2, i3) ∈

{0, 1}3, we have

hi1,i2,i3(P ) = hi1,i2,i3(Q) (4.3)

Proof. Since ‖P − Q‖ ≤ l
2 we have |Pj − Qj | ≤ l

2 for all j = 1, 2, 3. For each j, one of
the following two statements holds:

(1) there exists k ∈ N such that Pj , Qj ∈ [kl, (k + 1)l]

(2) there exists k ∈ N such that Pj , Qj ∈ [(k − l
2), (k + 1

2)l]
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Figure 4.2: A 2D-projection of the hash function construction. In 2D, four systems of
axes aligned bounding boxes cover Ω. Two systems are shown on the left
hand side, and two systems are shown on the right hand side, respectively.
Points closer than l/2 to each other are contained in at least one common
square. The two marked points are detected by the dashed system on the
right hand side. In 3D, eight hash functions are used.
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If (1) holds, we choose ij = 0, otherwise we choose ij = 1. Then for every j, we have

r
(
Pj

l , ij

)
= r

(
Qj

l , ij

)
and therefore equation (4.3) holds.

We use vertices with Euclidean distance smaller than l/2 as indicators for intersecting
triangles.

For an optimal choice of the box size l we use Theorem 4.2.4, below. For a proof of
the theorem we refer to the Appendix.

4.2.4 Theorem. Assume that the length of every edge of a mesh M = (V,E, F )
is bounded by s. Moreover, we assume that the triangles T = (T1, T2, T3) and S =
(S1, S2, S3) of the mesh intersect. Then there exist i, j such that

‖Ti − Sj‖ <
√

2
3
s.

Here and in the following we identify the triangle with the triple of edge points.

According to the theorem we choose l > 2
√

2/3s, because this choice guarantees, that
at least two vertices of intersecting mesh triangles are mapped to the same hash key,
and thus in the sequel an intersection test is performed. For our applications we have
chosen the hash table size to be twice the number of mesh vertices. This choice is based
on numerical experiments with meshes of approximately 10k vertices and 20k triangles,
respectively. The hash table sizes have been varied (see Figure 4.2). From this table
we see that the running time for the collision detection is monotonously decreasing in
hash table sizes smaller than twice the number of mesh vertices, and remains nearly
constant for greater hash table sizes. Therefore, from a point of memory usage the
suggested choice appears to be optimal. In the second step we iterate through the hash
keys and check for each pair of non-neighboring vertices with the same hash key if they
are contained in triangles which intersect. This is done with a fast triangle-triangle
intersection test, see [86].

3. THE HANDLE DATABASE

In this section we show how to generate a data base of simplices which allows for com-
pletion of an opened mesh Mb to a closed mesh Mc. A set of such simplices will be
called a handle. Here we make use of concepts from topology (see e.g. [56, 82, 96] for
background material). We are mainly concerned with combinatorics and use simplicial
complexes and subcomplexes in a coordinate free abstract sense as in [96, p.141]. We
recall that abstract simplicial complexes are not necessarily defined by coordinates in
Euclidean space, but only by abstract data like integers. Therefore the geometric real-
ization |M | of an abstract simplicial complex M (see [96, p.142]) is only defined up to
homeomorphism.

To start with, we make a basic definition of handles:
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4.3.5 Definition. We call an abstract simplicial complex C = (C0, C1, C2) a cap, if
there exist m ∈ N, a0, . . . , am ∈ Z, a0 < . . . < am such that:

C0 = {a0, . . . , am} ,
C1 = {{a0, a1} , . . . , {a0, am} , {a1, a2} , {a2, a3} , . . . , {am−1, am} , {am, a1}} ,
C2 = {{a0, a1, a2} , {a0, a2, a3} , . . . , {a0, am−1, am} , {a0, am, a1}} .

The orientation of the complex is given by (a0, a1, a2), (a0, a2, a3), . . .,
(a0, am−1, am), (a0, am, a1). a0 is called the vertex center.

Let C1, . . . , Ck be caps. An abstract simplicial complex K = (K0,K1,K2) is called
handle if the geometric realization |

⋃k
i=1C

i ∪K| of

k⋃
i=1

Ci ∪K :=

(
k⋃
i=1

Ci0 ∪K0,
k⋃
i=1

Ci1 ∪K1,
k⋃
i=1

Ci2 ∪K2

)

is homeomorphic to a 2-sphere (in signs |
⋃k
i=1C

i ∪K| ≈ S2) and for all j ∈ {1, . . . , k},
the inclusion

Cj ↪→
k⋃
i=1

Ci ∪K

is orientation preserving. We recall that homeomorphisms are defined to respect topo-
logical properties. A cap is visualized in Figure 4.3.

The following theorem characterizes topological properties of a handle and states that
the a mesh M after opening at k locations and closing by a handle (this is the mesh
Mc) constitutes a surface which has k − 1 tunnels more than M , that is the genus is
increased by k − 1.

4.3.6 Theorem. Let M = (V,E, F ) be an abstract 2-dimensional simplicial complex,
such that |M | is an orientable, connected surface without boundary. Furthermore, let
Mb be the simplicial subcomplex of M obtained by removing k connected components
from M such that |Mb| is a surface with boundary consisting of k simple closed polygons
(see also Figure 4.1, top left). Let C1, . . . , Ck be caps such that its boundaries consist
of the boundary polygons of Mb (see also Figure 4.3). Moreover, let K be a handle for
C1, . . . , Ck, so that |

⋃k
i=1C

i ∪K| ≈ S2. Then

|Mb ∪K| ≈ Tk−1+g(M), (4.4)

where Tk−1+g(M) is the closed, orientable surface of genus k− 1 + g(M) and g(M) is the
genus of M .

This theorem can be proven by standard methods of algebraic topology.
Topological equivalent 2-spheres can be characterized by simplicial homology (see e.g.

[96, p.144] for background on this topic).

4.3.7 Theorem. Let M = (V,E, F ) be an abstract 2-dimensional simplicial complex
such that every edge e ∈ E is a face of some f ∈ F . If the homology conditions
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Figure 4.3: Left: A cap. Right: A simple closed boundary polygon of Mb.

• H0(M) ∼= Z

• H1(M) = 0

• H2(M) ∼= Z, generated by
∑
f∈F

εff with εf ∈ {−1, 1}

hold, then the geometric realization of M is homeomorphic to S2.

This theorem is similar to the well-known Whitehead Theorem (see [56, p.346]) which
states that spaces with isomorphic homotopy groups are homotopy equivalent. Theorem
4.3.7 can be proven again by standard methods of algebraic topology.

Based on these basic definitions and Theorem 4.3.7 we can present an algorithm for
computation of handles which contain given simple closed polygons as boundary poly-
gons. With each simple closed polygon we can associate a cap by adding a center vertex
and connecting the center with the vertices by edges. Therefore, we concentrate now on
computation of handles given disjoint caps.

Let us assume that we have given k disjoint caps Ci, i = 1, . . . , k with numbers of
vertices mi, i = 1, . . . , k, respectively.

We use the notation m =
k∑
i=1

mi and denote by vc, ec, fc the numbers of vertices,

edges, and faces of the mesh
⋃k
i=1C

i ∪K. Let us assume that the geometric realization
of
⋃k
i=1C

i ∪K is homeomorphic to a sphere – that is the case if K is a handle. Then,
from the Euler formula (see [96, p.146]) we know that vc − ec + fc = 2. Moreover,
by induction on the number of triangles, we can show that 2ec = 3fc, and therefore
fc = 2vc − 4. If k caps are connected by a handle, the number of vertices of the arising
sphere is vc = m+ k, and therefore

fc = 2m+ 2k − 4.

Since the caps Ci contain m faces altogether, m+ 2k − 4 faces have to be added to the
faces of the set

{
Ci : i = 1, . . . , k

}
to obtain a sphere. We differ between two different

kinds of faces to be added (see Figure 4.4):
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Figure 4.4: Different types of faces.

• When a face to be added has two vertices in common with some Ci, i = 1, . . . , k,
then it is called of Type 1.

• Else it is called of Type 2. That is the case if the face has at most one vertex in
common with every Ci.

There exist m faces of Type 1 and 2k − 4 faces of Type 2.
Based on these considerations we are able to generate the handle database, which

associates tuples consisting of the number of connected polygons k and the numbers of
vertices mi, i = 1, . . . , k, a set of handles, respectively. Without loss of generality we
always assume in the sequel that mi+1 ≥ mi, i = 1, . . . , k − 1. For given k and mi,
i = 1, . . . , k, a handle of the database is determined as follows:

1. For each boundary edge of a cap choose a vertex in a different cap. The face
determined by the edge and the chosen vertex is one of the m triangles of Type 1.

2. Locate two edges which share a common vertex such that all three vertices are
contained in different caps. This determines the 2k − 4 triangles of Type 2.

3. Check if the abstract simplicial complex made of the caps and the added faces is a
sphere, that is, it satisfies the conditions of Theorem 4.3.7. Computationally, one
can check the homology criterion using the PARI software [90].

Given caps Ci, i = 1, . . . , k with mi vertices, respectively, it is useful for our purposes
to associate a sequential enumeration to the vertices. To this end we use the notation
µl =

∑l
i=1mi. Vertices between µl−1 + 1 and µl (where we set µ0 := 0) correspond to

the vertices in the cap C l.
For i ∈ {1, . . . , µk}, we set

i⊕ 1 =
{
µj−1 + 1 if i = µj for some j ∈ {1, . . . , k}
i+ 1 otherwise.

Therefore, i⊕ 1 is the subsequent vertex of i in the cap Ci.

4.3.8 Example. In this example we calculate the number of different elements of the
handle database for some test cases of small k.
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k = 3:

m1 m2 m3 m4 handles generators

3 3 4 - 72 1

3 4 5 - 120 2

4 4 6 - 192 2

k = 4:

3 3 4 4 576 1

Table 4.1: The numbers of possible handles in the database, and the number of generators taking
into account group actions.

k = 2: Because we have 2k − 4 = 0, only faces of Type 1 occur. For a function

f : {1, . . . ,m1} → {m1 + 1, . . . ,m1 +m2} ,

which we assume to be monotonously decreasing and surjective we define

g : {m1 + 1, . . . ,m1 +m2} → {1, . . . ,m1} ,
j 7→ max {i : f(i) = j} .

Note that f maps vertices of the first cap onto vertices of the second and g is a
right inverse. These two functions define a handle with the face set

{(1, 2, f(1)), . . . , (m1 − 1,m1, f(m1 − 1)), (m1, 1, f(m1)),
(m1 + 1,m1 + 2, g(m1 + 1)), . . . ,
(m1 +m2 − 1,m1 +m2, g(m1 +m2 − 1)),

(m1 +m2,m1 + 1, g(m1 +m2))} .

For k = 3, 4 and some tuples of edge numbers the numbers of possible handles have
been summarized in Table 4.1.

We consider symmetric group actions on the set of handles K = K(k;m1, . . . ,mk) for
k caps of sizes m1, . . . ,mk, respectively. For the theory of group actions, see [74, p.25].
By a group action on a set S, the set S is partitioned into disjoint orbits S1, . . . , Sn (see
[74, p.28]), and a set of generators of S is a choice of elements si ∈ Si, i = 1 . . . , n. We
identify generators of K which completely determine K modulo group actions.

Rotations: The topology of the caps remains unchanged if a rotation of the vertex
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Figure 4.5: A rotation.

numbers of a cap is performed. More precisely, let

ωR,i(l) =
{
l ⊕ 1 µi < l ≤ µi+1

l otherwise,
,

ΩR = ΩR,1 × . . .× ΩR,k ,

ΩR,i = subgroup of Σµk
generated by ωR,i ,

Σµk
denotes the symmetric group on the set {1, . . . , µk} .

We obtain a group action of ΩR on K by applying ΩR to every vertex of every
simplex of a handle K. Rotations are illustrated in Figure 4.5.

Exchanges: The order of two caps, consisting of the same number of vertices, can be
exchanged. If

ωE,i,j(l) =


l − µj + µi µj < l < µj+1

l + µj − µi µi < l < µi+1

l otherwise

and ΩE,i,j = {id, ωE,i,j} the group of exchanges of cap i and cap j, then

ΩE =
∏

i<j,mi=mj

ΩE,i,j

operates on K. Exchanges are illustrated in Figure 4.6.

An easy computation shows that the two operations commute, i.e.

ωτ(K) = τω(K) for ω ∈ ΩR, τ ∈ ΩE and K ∈ K.

As a consequence, we can apply rotations and exchanges in an arbitrary order to a
handle. With these operations, only very few elements are required to generate elements
of K. This is illustrated by comparing the last two columns of Table 4.1.

72



CHAPTER 4. A COMBINATORIAL METHOD FOR TOPOLOGY ADAPTATIONS
IN 3D DEFORMABLE MODELS

Figure 4.6: An exchange

4. IMPLEMENTATION OF THE TOPOLOGY ADAPTATION

For implementation of the topology adaptation algorithm (compare Scheme 4.1.1), we
use the handle database as main tool. Moreover, further routines for mesh opening and
splitting into components are implemented, which we describe below.
We are given an initial triangular mesh M0 = (V0, E0, F0). The initial mesh is assumed
to be free of self-intersections and without boundary, but several components of arbitrary
genus are allowed. An iterative evolution is performed on the mesh. (Self-)intersections
of the evolving contour are detected by the spatial hashing algorithm of Section 4. This
algorithm computes vertices with the same hash index which belong to intersecting
triangles.

Mesh Opening.
The opening of the mesh is performed in such a way that the boundary of the opened
mesh Mb consists of simple closed polygons. For this purpose vertices of colliding
mesh parts are grouped into disjoint connected sets Λ1, . . . ,Λk such that for i 6= j,
two arbitrary vertices v ∈ Λi, w ∈ Λj have no common neighbor. The set Ni of
all neighboring vertices of vertices in Λi without Λi is a neighborhood of Λi, which
consists of connected components N0

i , . . . , N
li
i . We assume that the neighborhoods

N j
i are pairwise disjoint and that its edges form a simple, closed polygon, otherwise

the following neighborhood refinement routine is used: We insert new vertices on the
bisectors of edges between vertices of Λi and of N j

i , and connect these vertices by
edges as shown in Figure 4.7. Arising quadrilaterals are triangulated. As a result,
the edges connecting the bisectors form a simple closed polygon around Λi, and their
neighborhoods are pairwise disjoint. The routine is illustrated in Figure 4.7(a)-(d).

Splitting.
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Figure 4.7: In (a), Λ1 consists of two and Λ2 of three vertices connected by a bold line. N1 and
N2 have three common neighbor vertices, and N2 forms no simple closed polygon
because of edge e. The iterative refinement algorithm is demonstrated in (b) and (c).
Bisector vertices vj are inserted as well as edges between them (dashed line), and
the arising quadrilaterals are triangulated (dotted line). The result of the refinement
algorithm is shown in (d).

In general, the neighborhood Ni consists of several components N0
i , . . . , N

li
i . One com-

ponent, say N0
i , encloses Λi, and the other components are enclosed by Λi, see Figure

4.8. The outside component N0
i can be computed from the orientation of the mesh.

Components N1
i , . . . , N

li
i belong to enclosed parts of the mesh. There are two different

kinds of enclosed object neighborhood components N j
i for j ≥ 1 and we propose two

different procedures:

• If N j
i contains a triangle, i.e. there exist v1 ∈ N j

i , v2, v3 ∈ V \Λi neighbors of v1,
s.t. (v1, v2, v3) ∈ F . Then the neighborhood refinement routine is applied such
that the boundary of Λi towards N j

i as well as the boundary of N j
i towards Λi

are Jordan polygons. The connections between the two polygons are discarded.
For each polygon, the barycenter of the vertices is inserted, and connected to the
polygon. Thus, the mesh is split into two separate components.

• If N j
i contains no triangle, no real enclosed object has been detected, and N j

i is
added to Λi.

Deleting components.
After discussing possible splittings, we can assume that the neighborhood Ni of a set Ci
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(a)

N0

N1

Λ

(b)

Figure 4.8: In (a), the neighborhood of Λ consists of two components. N0 is the component
outside C, N1 is an enclosed component. In (b), the edges connecting Λ and N1 are
deleted, barycenters and connecting edges inserted, and two components arise.

is connected and a simple, closed polygon. In case that Ci does not collide with another
set Cj , we consider the following possible procedures:

• The mesh component containing Ci andNi consists of no more vertices than Ci∪Ni.
Then this component is deleted.

• Otherwise Ci is rather coarse and smoothed by Taubin’s method [109].

Note that every decrease in genus is obtained by vanishing components.

Inserting handles from the database.
From now on, assume that C1, . . . , Ck are overlapping, with k ≥ 2. In this situation, we
discard the vertices of C1, . . . , Ck and its adjacent mesh elements. The neighborhoods
N1, . . . , Nk have to be reconnected by inserting edges and faces between them. In this
situation, we use the handle database. Every handle gives a possible connection of the
neighborhood polygons. The only thing to check is if the triangles given by the formulas
self-intersect. This test is performed by the triangle-triangle intersection test of [86].
Then among the possible handles the one with shortest edge length is taken. We believe
that this choice is the most natural one and gives suitable meshes for further evolution.

We implemented the topology adaption system for an active contour evolution, where
only outward movement of the vertices is possible. Therefore, the volume bounded by the
mesh is monotonously increasing, and no infinite loops (consisting of handle attachment
and splitting) are possible. Furthermore, mesh splittings only arise, when an enclosed
object has been detected. On the other hand, if mesh shrinking is also allowed, the
topology adaptation system works as well, but infinite loops are possible. This arises
naturally in the simple case where the object to segment consists of two pieces with
small overlap, like [−1, ε]3 ∪ [−ε, 1]3 for some small ε > 0 or also ε = 0. In such a case
with noisy data, the user has to choose the parameters of his active contour model (like
edge length bounds) appropriately to ensure convergence of the segmentation algorithm.
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Figure 4.9: The upper left image shows the original ultrasound data. The upper right image
shows the biopsy needle in greater detail, using a contrast enhancing colormap.
The final segmenting mesh is shown at lower left. A projection on the y-z plane is
presented at lower right.

5. RESULTS AND DISCUSSION

We tested our algorithm for topology adaptation in connection with the active contour
algorithm published in [3] on artificial and medical test images. In both cases the dark
part is regarded as the object to be segmented. To initialize the segmentation algorithm
a small sphere is manually placed inside the dark part of the voxel image. The evolving
surface moves towards the boundary of the object.

As far as possible we compare the numerical results to those given in [72].

• An ultrasound image of a cyst is segmented. The white part inside the cyst, running
from front to back, stems from a biopsy needle, see Figure 4.9. The segmentation
is used to determine the shape of the cyst and the position of the biopsy needle.
As the projection to the y-z plane shows the cyst and the needle are accurately
segmented, also in regions where the topology of the mesh has been adapted during
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Figure 4.10: A cube with a spherical cavity and some Gaussian noise added is shown at upper
right. As a segmentation result we obtain the mesh shown in the remaining images.
At lower left, only the edges are visualized.

Object Voxel size Iterations Vertices Sec.
Cyst 199× 99× 171 133 8687 9
Cube 100× 100× 100 709 13576 65

Genus 3 100× 100× 100 677 9680 28
Torus 100× 100× 100 215 5454 8

Table 4.2: For each test example, the number of iterations and vertices and the running time of
the segmentation algorithm is given. Tests were performed on a 3.5 GHz computer
with 2 GB RAM.

the evolution of contour.

• The next example concerns a computer generated voxel image of a cube with a
spherical cavity (see Figure 4.10). Different from the example in [72], every side of
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Figure 4.11: Voxel images for the last two examples and the segmentation results.

the cube contains a hole such that the segmenting contour of the object has genus
5.

• The next example shows an object of genus 3, the starting ball chosen on one
crossing of the four parts. Therefore, a topology change with four parts hitting at
the same iteration step is performed. The result is shown in the top part of Figure
4.11.

• The last example shows a torus with 4 enclosed objects. As segmentation result a
torus enclosing 4 spheres is obtained, see the bottom part of Figure 4.11.

The performance of our topology change algorithm tested on the four examples is
summarized in Table 4.2.

The numerical experiments demonstrate the robustness and efficiency of the topol-
ogy completion algorithm. Its basic components, consisting of the handle database and
triangle-triangle intersection tests, do not assume global mesh restrictions. On the other
hand, the collision detection system requires globally bounded edge lengths, since other-
wise there is no efficient choice of the box sizes. However, this is no substantial drawback,
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since mesh regularity assumptions are usually inferred for a reliable computation of the
force terms directing the evolution. As expected, the running times of the segmentation
algorithm roughly depend linearly on the number of iterations, respectively vertices. The
running time for segmentation of the object of genus 3 is a bit shorter than expected,
because many vertices reach the object boundary rather early, and only a comparably
small number of vertices is actually updated during an evolution step. As a consequence,
we obtain a speedup versus previous 3D topology adaptive segmentation routines. The
cube with spherical cavity can be compared to the first example in [72]. There, only one
face of the cube is penetrated by the ball, such that their object to recover has genus
0. Due to possibly different computing modalities, it is hardly possible to compare pure
computation times to [72], but our result seems to be very promising.

6. CONCLUSION AND OUTLOOK

We introduce a very efficient novel topology completion system which runs independently
of the evolution, does not require any reparameterizations and runs stable, even if the
mesh is not regularly sampled. We introduce a novel and efficient collision and self-
collision detection algorithm for triangular meshes, which runs in linear time and does
not require complex data structures or huge memory resources. The system is designed
for interactive applications.

Due to the topological completion formulas obtained by the homology criterion, we
were able to develop a very robust topological completion system, working with arbitrary
mesh deformation algorithms. Since our (self-)collision detection algorithm works in
linear expected time, the system is also very efficient resulting in significantly reduced
computation times. For numerical experiments, we used a standard balloon model,
thus losing overall efficiency for segmentation a bit. As a future work, it seems to be
interesting to combine the presented topological completion algorithm with a locally
adaptive mesh evolution as presented in [72, 71].
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Appendix

For a triangle T in R3 given by its vertices T1, T2, T3 and a point P in R3 let

d(P, T ) := min {‖P − T1‖ , ‖P − T2‖ , ‖P − T3‖} .

We use the notation T = (T1, T2, T3) and denote by prT (P ) the orthogonal projection of
P in the plane spanned by T - which is of course only well-defined if the triangle does
not degenerate.

4.5.9 Lemma. Assume that T = (T1, T2, T3) is a triangle in R3, and P ∈ R3. Then

d(P, T ) =
√
‖P − prT (P )‖2 + d(prT (P ), T )2.

Proof. The situation is illustrated in Figure 4.12(a). Looking at the Voronoi diagram
of the three points T1, T2, T3 ∈ R3, we deduce that for some i = 1, 2, 3, ‖P − Ti‖ ≤
‖P − Tj‖ for all j = 1, 2, 3 if and only if

‖prT (P )− Ti‖ ≤ ‖prT (P )− Tj‖ for all j = 1, 2, 3. (4.5)

Therefore, if d(P, T ) = ‖P − Ti‖ for some i, we have

d(P, T ) = ‖P − Ti‖ =
√
‖P − prT (P )‖2 + ‖prT (P )− Ti‖2

=
(4.5)

√
‖P − prT (P )‖2 + d(prT (P ), T )2.

Now we can give a proof of Theorem 4.2.4:

Proof of Theorem 4.2.4.
Without loss of generality we can assume that every edge of both triangles S and T has
maximal edge length s, i.e. both triangles are equilateral. Moreover, we assume that an
edge e of S intersects T (otherwise we interchange the role of S and T ), and we denote
the intersection point by Q.

Let P be an endpoint of e which fulfils ‖P −Q‖ ≤ 1
2s. Denote by barT the barycenter

of T . (see Figure 4.12(a)). We consider two cases concerning the position of prT (P ):

• d(prT (P ), T ) ≤ d(barT , T ): In this case, we have that

‖P − prT (P )‖ ≤ ‖P −Q‖ ≤ s

2
and

d(prT (P ), T ) ≤ d(barT , T ) =
1
3

√
3s.

Therefore, using Lemma 4.5.9 we deduce that

d(P, T ) =
√
‖P − prT (P )‖2 + d(prT (P ), T )2 ≤

√
1
4

+
1
3
s ≤

√
2
3
s.
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(a) (b)

Figure 4.12: In (a), edge PR intersects triangle (T1, T2, T3) in Q. In (b), the projection prT (P )
of P onto the plane spanned by T lies outside the three circles.

• d(prT (P ), T ) > d(barT , T ): In this case, prT (P ) lies in the complement of the discs
around the points Ti with radius ‖barT − Ti‖, as illustrated in Figure 4.12(b). Since
P is projected to prT (P ) outside T , there exists a point B contained in an edge
(Ti, Tj) of T , such that

‖P −B‖ ≤ ‖P −Q‖

(namely the intersection point of the line (prT (P ), Q) with one of the triangle
edges). Since ‖P −Q‖ ≤ s

2 , we can deduce that

‖P −B‖ ≤ s

2
. (4.6)

From (4.6) it also follows that ‖prT (P )−B‖ ≤ s
2 , and moreover one of the norms

‖Ti −B‖, ‖Tj −B‖ is smaller than s
2 . Therefore, we obtain

d(prT (P ), T ) ≤
√

min{‖Ti −B‖2 , ‖Tj −B‖2}+ ‖prT (P )−B‖2

≤ 1
2

√
2s .

(4.7)

Let A be the image of barT under reflection along the edge (Ti, Tj). Since prT (P )
lies in the complement of the discs around the points Ti with radius ‖barT − Ti‖,
we have

‖B − prT (P )‖ ≥
∥∥∥∥A− 1

2
(Ti + Tj)

∥∥∥∥ =
∥∥∥∥barT −

1
2

(Ti + Tj)
∥∥∥∥ =

1
6

√
3s (4.8)

Altogether, using Lemma 4.5.9, we obtain
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d(P, T ) =
√
‖P − prT (P )‖2 + d(prT (P ), T )2

=
√
‖P −B‖2 − ‖B − prT (P )‖2 + d(prT (P ), T )2

≤︸︷︷︸
(4.6)(4.8)(4.7)

√
(1

2s)
2 − (1

6

√
3s)2 + (1

2

√
2s)2

=
√

2
3s.

Altogether, we have found a point P of triangle S which is closer to T than
√

2
3s, and

the assertion follows. �
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5 Medial axes shape spaces and
segmentation of 3D voxel data

Joint work with O. Aichholzer, S. Colutto, B. Kornberger and O. Scherzer.

Submitted to European Journal of Applied Mathematics.

This paper deals with supervised segmentation of topologically complex objects. Its
focus is on modelling the prior shape space by medial axis representations, i.e. sets of
medial center points and radii. Procrustes analysis is used to compute a mean shape
and determine deviations between shapes. Skin surfaces are taken to define the implied
boundary of a shape. The information is plugged into a functional of type (1.58) for
segmentation.
As main contribution of this paper, topologically complex objects can be segmented
using a small amount of computational data (compared to [78] f.e.) but not requiring
much user interaction and modelling as in [58, 91].

External Contributions: B. Kornberger provided the Section on the medial axis trans-
form. S. Colutto provided parts of the numerical implementation of the algorithm. O.
Aichholzer and O. Scherzer participated in discussions and revised the paper.
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Abstract. In this paper we construct a shape space of medial ball representations from
given shape training data using methods of Computational Geometry and Statistics.
The ultimate goal is to employ the shape space as prior information in supervised
segmentation algorithms for 3D voxel data. The construction of the shape space,
the statistics of the training data, and their subsequent use in segmentation require
up-to-date, respectively novel, methods to standardize the medial ball representation of
the shape space. Aside from novel methods the whole pipeline of shape space, statistics,
and segmentation is novel to the best of our knowledge.

Key Words. Medial ball representation, medial axis transform, image segmentation,
Procrustes analysis, skin surfaces, EM algorithm.

1. INTRODUCTION

Segmentation and detection of objects in image data is of major importance in sev-
eral applications, such as for instance medical imaging, video surveillance and motion
tracking.

Segmentation methods based on minimization of energy functionals have proven to
be very efficient. In this context it is common to differ between edge based [116] and
region based energy functionals [87]. Another distinctive feature of segmentation algo-
rithms is whether they perform supervised and unsupervised. Historically, unsupervised

84



CHAPTER 5. MEDIAL AXES SHAPE SPACES AND SEGMENTATION OF 3D
VOXEL DATA

segmentation algorithms have been introduced first. However, the segmentation results
are poor if the data is noisy, has little contrast, or if the object is partially occluded. To
cope with these difficult situations supervised segmentation is performed, which com-
monly is implemented by incorporating a shape statistics term in the energy functional
for unsupervised segmentation.

In the following we review some energy minimization segmentation approaches which
incorporate shape prior information:
A compact representation of shapes, called M-reps (Medial atom representation) has
been proposed in [49] and [92]. An M-rep consists of medial atoms aligned on a regular
grid structure. Medial atoms consist of a coordinate position in space, a radius, a local
coordinate frame, and an angle. The atoms are samples of the medial axis [18]. The
actual surface associated with the M-rep is an enfolding B-spline of the medial atoms. M-
reps can be regarded as elements of a Riemannian shape manifold, which defines distances
between M-reps by lengths of geodesics amongst them. An M-rep shape space is suitable
for modeling shapes of very similar geometry and topology. Image segmentation with
M-reps has been considered in [58, 91]. Mumford-Shah energy segmentation on an M-rep
space has been presented in [32].

In [36] (this work is actually in 2D) contours are represented as simple, closed B-
spline curves. The shape prior and statistic are computed as the mean and the principal
components of the spline control points of the training shapes. For segmentation a
Mumford-Shah like energy functional is supplemented by the Mahalanobis distance to
the shape prior, which is calculated from the statistics. This approach is based on
the assumption that the shapes are distributed according to a multivariate Gaussian
distribution. Using kernel space techniques, a generalization to non-Gaussian distributed
shapes is given in [35]. Applications to medical MR image segmentation have been
studied in [28].

A level set approach for segmentation with shape priors has been studied in [78].
There shapes are associated with the associated signed distance functions. On the train-
ing distance functions of the shapes the actual statistics, which is used in the segmen-
tation algorithm, is calculated. Shape statistics are implemented in a geodesic active
contour evolution as maximum a posteriori estimator of the shape. By this approach
geometrically and topologically complex shape priors can be considered. However, this
representation requires large computational resources, and efficient implementations with
narrow bands tend to create inaccuracies and artifacts in the segmentation results. In
[44], the work of [78] has been improved concerning efficiency. The same shape prior
strategy as in [78] has been used in combination with the unsupervised Chan-Vese energy
minimization [27] in [113]. Further generalizations of [78] are given in [97] and [98].

In [30], shape statistical prior information is incorporated in a variational segmenta-
tion functional with an additional regularization term. A generalization of this work is
presented in [51]. More recently, the paper [23] proposes a variational level set frame-
work that takes into account shape prior information which combines gradient and region
based segmentation.

In this paper, we consider the construction of medial ball shape spaces and the com-
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putation of statistics of training shapes, which are then used for supervised energy
minimization segmentation. We are given training shapes, which are represented as tri-
angular surface meshes. Such can either be provided by expert segmentation, or have
been obtained from unsupervised segmentation (see e.g. [3, 32]). For the latter one can
also imagine to use data of other imaging modalities, which have higher contrast or are
less affected by noise.

The following scheme, which can as well serve as an outline of our work, is studied:

5.1.1 Scheme.
Preprocessing (Shape Statistics)

• For each mesh a discrete medial axis transform

M = (x1, . . . , xk; r1, . . . , rk) (5.1)

is computed. We refer to c(M) = (x1, . . . , xk) ∈ R3×k as the centers of the medial
balls of M . It is important for our application that each discrete medial axis
transform Mj consists of the same number k of medial balls (xi, ri) ∈ R3 × R+.
The algorithm developed in here is capable to do so, which is a novel aspect in the
literature. For sake of simplicity, the discrete medial axis transform computed in
this step will be called ball representation according to its definition (Section 5).

• A labeling of the ball representation Mi is computed by an EM-algorithm and the
Kuhn-Munkres algorithm (Section 5).

• Using Procrustes analysis, a mean ball representation is computed from the labeled
ball representations, and a Mahalanobis distance between ball representations
is defined. These are the building blocks of our medial ball shape space. (Section 5).

Segmentation

• For segmentation the shape space is implemented as shape prior information in a
simplified Mumford-Shah functional. The implied surface of the ball representa-
tions is constructed by a skin surface [41] (Section 5).

The following case examples for segmentation are considered. In Section 5 the full
pipeline of statistics and segmentation is applied to medical prostate data and synthetic
data, and Section 5 concludes the paper.

2. MEDIAL AXIS TRANSFORM

In this section we consider the problem of approximating a number of bounded open
sets Ω1, . . . ,Ωn ⊂ R3 by sets B1, . . . , Bn of approximate medial balls, where all sets
Bi have the same cardinality. Stability of the approximation, described below, is of
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vital importance for the statistical analysis of medial axis representations. Our novel
approach for calculating sets of approximate medial balls of the same cardinality for a
class of objects combines three well known methods. First we utilize Voronoi diagrams
to approximate objects by sets of (approximate) medial balls [11, 12]. As these sets
will usually have a rather huge cardinality we then use set covering methods to obtain
sufficiently small and stable subsets [8, 7]. Finally, we use a k-means [59] clustering
algorithm to control the cardinality of the approximating sets in order to obtain sets of
approximate medial balls of uniform cardinality.

We start by reviewing some basic facts of the medial axis transform.

2.1. Discrete medial axis transform

The following definitions of the medial axis and medial axis transform are standard and
can for instance be found in [19].

5.2.2 Definition ([19]). The inner Medial Axis M(Ω) of a bounded open set Ω ∈ R3 is
the set of points x ∈ Ω which have at least two closest points in ∂Ω, where ∂Ω denotes the
boundary of Ω. The inner Medial Axis Transform MTin(Ω) is the collection of maximal
(with respect to inclusion) open balls centered at M(Ω) and included in Ω.

Note that the cardinality of the inner Medial Axis Transform is in general infinite.
Moreover the medial axis M(Ω) behaves unstable with respect to perturbations of high
curvature of ∂Ω. That is, the medial axis might contain branches that are far from
being intuitive. The corresponding inner medial axis transform MTin(Ω) expresses this
unstable behavior by small balls near the surface of Ω. For these reasons we seek for an
approximation of MTin(Ω), which we define next.

5.2.3 Definition ([19]). The inner Discrete Medial Axis Transform DMT(Ω)in is a
finite set of open, approximate medial balls, which approximates the inner Medial Axis
Transform MTin(Ω).

In the following we assume that the input object Ω is given by a set SΩ of sample
points of the boundary ∂Ω of Ω and a triangular mesh T (SΩ), representing ∂Ω. We first
show how to approximate one three-dimensional object Ω by the union of its discrete
medial axis transform DMT(Ω)in in a stable way. We start with the well known Voronoi
approach [11, 12].

5.2.4 Definition. The Voronoi Diagram of a set of points SΩ in R3 is a partition of
R3 into (possibly unbounded) convex polyhedral regions, called Voronoi cells, such that
each point si ∈ SΩ has an associated Voronoi cell v(si) with

v(si) := {x ∈ R3 : ‖x− si‖ ≤ ‖x− sj‖ ,∀i 6= j, si, sj ∈ SΩ}.

We first compute the Voronoi diagram of SΩ. Then we extract for each sample point
si ∈ SΩ the inner pole point pi, which is the vertex of the Voronoi cell v(si) being
farthest away from si and inside Ω. Finally, we construct for each inner pole point pi a
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so called polar ball Bpi,ρi centered at pi with radius ρi = ‖si − pi‖. The set of all polar
balls created in this way is the inner discrete medial axis transform DMT(Ω)in, and SΩ

is contained in the boundary of its union [11, 12]. See Figure 5.1(a) for an example with
more than 10000 balls.

In the original approach a dense sampling SΩ of a smooth surface ∂Ω of Ω is required
in order to be able to distinguish inner Voronoi vertices from outer ones [11, 12]. To
overcome this restriction we use, as mentioned above, the triangular surface mesh T (SΩ)
as additional input. This allows us to easily distinguish between inner and outer Voronoi
vertices. Thus noise - always present in real-world data sets - and poor sampling quality
do not affect the correctness of our inner/outer labeling, and correct operation of this
step is ensured.

The centers of DMT(Ω)in are close to M(Ω), see [9] for a quantitative analysis and
a precise statement of that fact. This implies that DMT(Ω)in might include small,
surface near balls corresponding to unwanted features of MTin(Ω). Moreover, DMT(Ω)in

approximates Ω by up to |SΩ| balls. For our purposes the instability and the high
cardinality of DMT(Ω)in prevent its direct usage.

To avoid these disadvantages we apply a pruning algorithm to DMT(Ω)in in order to
extract a proper subset of DMT(Ω)in. The result will be a stable (we remove surface near
balls which result from instability) and compact representation of Ω, cf. Figure 5.1(d) for
an example. Moreover the pruning step will give us control to obtain sets of approximate
medial balls of predefined cardinality, see Subsection 5 for details. In the following we
briefly describe the pruning approach of [7], see there for further details.

By the above construction each ball in DMT(Ω)in has four sample points on its bound-
ary but none in its interior. We enlarge each ball of DMT(Ω)in by a sufficiently small
constant ε > 0. Then we use a spatial search structure to find for each enlarged ball bi all
sample points from SΩ which are now covered by bi (typically tens or even hundreds of
sample points are contained). Finally we use a set-covering algorithm to find an (almost)
minimal subset DMT(Ω)in

∗ of the enlarged balls whose union covers all sample points
SΩ. This set DMT(Ω)in

∗ is the output of the pruning step.
Let us stress the fact that the applied set-covering algorithm to find a minimal subset

of balls will favor balls that cover a large fraction of SΩ and thus large areas of ∂Ω in
order to make the cardinality of DMT(Ω)in

∗ ,
∣∣∣DMT(Ω)in

∗

∣∣∣, as small as possible. These
balls are centered near stable parts of M(Ω). This implies that surface-near balls, which
originate from small perturbations of high curvature of ∂Ω (recall the above discussion)
are avoided. Thus stability of our approach is greatly improved by the set-covering
algorithm, see also [7]. In addition the one sided Hausdorff distance from the union of
the obtained compact discrete medial axis transform DMT(Ω)in

∗ to the original object Ω
is bounded by O(ε).

2.2. Sets of approximate medial balls of uniform cardinality

As described in Section 5 our goal is to obtain sets of approximate medial balls of
uniform cardinality for different input objects, Ωi, i = 1, . . . , n. So far we have shown
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how to compute a stable representation DMT(Ωi)
in
∗ of the enlarged discrete medial axis

transform for one fixed object Ωi. We can control |DMT(Ωi)
in
∗ | to some extent by the

value ε by which we enlarge the polar balls.
For each single object Ωi, the value ε is chosen such that the resulting set |DMT(Ωi)

in
∗ |

is at least as large as the desired uniform cardinality k, that is, k ≤ min
i

(|DMT(Ωi)
in
∗ |).

This approach is justified by the fact, that for piecewise linear ∂Ω, the quantity
|DMT(Ωi)

in
∗ | tends to infinity if ε→ 0. We then apply the k-means clustering algorithm

to each DMT(Ωi)
in
∗ and get for every set DMT(Ωi)

in
∗ exactly k clusters. For each cluster

we choose as an representative ball the one whose center is closest to the center of
that cluster. This results in n stable representations of {Ω1, . . . ,Ωn} by sets of balls
{B1, . . . , Bn} with uniform cardinality k.

For the remainder of the paper we will use the term ball representation to refer to the
pruned inner discrete medial axis transform of uniform cardinality.

3. LABELING OF THE BALL REPRESENTATIONS

In this section we use statistical algorithms for labeling of the ball representations. Given
two ball representations M = (x1, . . . , xk; r1, . . . , rk) and
M̃ = (x̃1, . . . , x̃k; r̃1, . . . , r̃k), the labeling problem consists in determining a rearrange-
ment of indices such that the two ball representations optimally match. Every matching
involves a distance measure between ball representations. In view of the used defini-
tion of an Euclidean invariant shape space of ball representations considered below (see
Section 5), we consider the following minimization problem for determining the optimal
alinement:

min
ρ>0,A∈SO(3),b∈R3,π∈Sk

k∑
i=1

‖ρAxπ(i)−b−x̃i‖2 + α(ρrπ(i)−r̃i)2 . (5.2)

Here SO(3) is the special orthogonal group of degree 3 (that is the group of rotations
in R3, which can be represented as unitary matrices with determinant one), Sk is the
symmetric group of degree k, and ‖·‖ denotes the Euclidean norm in R3. The parameter
α is a weighting parameter, providing a trade-off between matching of balls and radii.
Since it is difficult to compute global minimizers of (5.2) efficiently, we use a two-step
algorithm from [64], to compute approximate minimizers. This algorithm consists of the
following two steps:

• An Expectation Maximization (EM) algorithm is used to compute a similarity
transformation, i.elet@tokeneonedota translation b ∈ R3, a rotation A ∈ SO(3),
and a scaling ρ > 0, which is close to an optimal one in (5.2). The algorithm is
explained in Subsection 5.

• Keeping the similarity transform fixed, the Kuhn-Munkres algorithm is used to
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(a) Unpruned discrete
medial axis transform
(10603 balls)

(b) Transparent (c) Unpruned discrete
medial axis

(d) Pruned discrete me-
dial axis transform (55
balls)

(e) Transparent (f) Pruned discrete me-
dial axis

Figure 5.1: Discrete Medial Axis Transforms and Discrete Medial Axes
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compute an optimal labeling π ∈ Sk in (5.2). This algorithm is explained in
Subsection 5.

3.1. EM-algorithm to compute the similarity transformation

EM-algorithms have been used successfully for solving a wide range of labeling problems
[63]. In general, EM algorithms [85] consist in maximizing a likelihood function, which
depends on parameters and hidden variables. There two successive steps are performed
iteratively:

• An Expectation step, which consists in computation of the expected values of the
hidden variables and

• a Maximization step, which is to optimize the likelihood function for the parame-
ters.

We propose an algorithm which is closely related to [64]. However, the difference is that
we take into account information on the radii of the medial balls in addition. The key
idea of [64] is to compute the optimal similarity transformation of (5.2) relaxing the
constraint π ∈ Sk. This allows to apply the EM algorithm.

1. Relaxation step.

A mapping π ∈ Sn can be represented as a matrix P ∈ {0, 1}k×k with entries

Pj,i =
{

1 if π(j) = i
0 otherwise

.

The relaxation consists in assuming instead of Sk stochastic matrices

{P ∈ [0, 1]k×k :
k∑
i=1

Pj,i = 1 for all j} .

It is common to interpret Pj,i as the probability that j is mapped to i. For medial
ball representation this means that the ball (xj , rj) is mapped onto (x̃i, r̃i).

Furthermore, a distribution p = (p1, . . . , pk) is assumed over {1, . . . , k}. The num-
ber pi represents the probability, that an arbitrary element of {1, . . . , k} is mapped
to i.

2. Distances of balls.

Under the condition π(j) = i and for a given similarity transformation (ρ,A, b), we
assume that the transformed ball (xj , rj) is normally distributed around (x̃i, r̃i),
i.e. ρAxj + b is normally distributed with mean x̃i and ρrj is normally distributed
with mean r̃i. Concerning the radii, this assumption is slightly inaccurate since
radii cannot become negative; we overcome this problem by choosing the variance

91



σ sufficiently small, such that the 0.01 quantile is positive. Hence we define (for i,
j = 1, . . . , k)

gi(xj , rj) = (2πσ2)−
1
2 exp

(
− 1

2σ2

(
||ρAxj + b− x̃i||22 + α(ρrj − r̃i)2

))
. (5.3)

The function gi(xj , rj) is large if (xj , rj) is mapped closely to (x̃i, r̃i) and small
otherwise.

The likelihood function for the parameters of the similarity transform (ρ,A, b) and the
relaxed labeling (P, p) for given ball representations M and M̃ is then given by the
product probability

L(ρ,A, b, P, p) =
k∏

i,j=1

(pigi(xj , rj))Pj,i . (5.4)

Taking the logarithm on both sides defines the log-likelihood function

l(ρ,A, b, P, p) =
k∑

i,j=1

Pj,i (log pi + log gi(xj , rj)) . (5.5)

It is important to note, that if P is a permutation, then pi = 1/k. Therefore in this case,
maximizers of (5.5) are minimizers in (5.2) and vice versa. Following [64], enlarging the
class of labelings from Sk to stochastic matrices has little effect on the optimal similarity
transform.
The advantage of the formulation (5.5), compared to (5.2), is, that (5.5) can be min-
imized efficiently with an EM-algorithm, where the variables ρ,A, b, p are regarded as
parameters, and the entries of P are regarded as hidden variables of the likelihood func-
tion l. The EM algorithm for minimization of (5.5) reads as follows:

Algorithm 1 EM Maximization of l
Initialize ρ = 1, A = id and b = 0 ∈ R3. Choose values for σ, α.
while l still increases do

E-Step: Compute the expected value of the relaxed permutation matrix P ,

Pj,i ←
pigi(xj , rj)∑k
s=1 psgs(xj , rj)

(5.6)

By this assignment it is guaranteed that
k∑
i=1

Pj,i = 1 for all j.

M-Step: Maximize
k∑

i,j=1

Pj,i(log pi + log gi(xj , rj)) (5.7)

over A, ρ, b and p1, . . . , pk.
Compute the new value of l.

end while
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The formulas to compute the maximum in (5.7) and their derivation are given in the
appendix.

Compared to different algorithms for minimizing (5.2) such as Markov Chain Monte
Carlo Methods (MCMC), the output of the EM Algorithm is more sensitive to initial
values of the parameters. This is no drawback in our case, since the ball representations
are often already quite well aligned. However, the provided algorithm is assumed to be
more efficient than MCMC.

3.2. Labeling

This subsection is concerned with computing an optimal labeling π ∈ Sk in (5.2).
It is instructive to reformulate the labeling problem as a combinatorial optimization

problem.

1. A weighted graph is constructed of the following data:

• Nodes are the 2k balls (x1, r1) . . . , (xk, rk) and (x̃1, r̃1), . . . , (x̃k, r̃k).

• Let α be as in (5.2). The weights of the edges between the nodes are defined
by

wj,i = ||ρAxj − b− x̃i)||2 + α(ρrj − r̃i)2, with α ∈ [0, 1].

Here, (ρ,A, b) is the similarity transform computed in Subsection 5.

2. A permutation π ∈ Sk minimizing

k∑
i=1

wπ(i),i (5.8)

is computed.

For the fixed similarity transform transformation (ρ,A, b), a minimizer π ∈ Sk of (5.2)
is a minimizer of (5.8) and vice versa. For the solution of the matching problem (5.8) we
apply the Kuhn-Munkres algorithm, which is a special case of the primal-dual algorithm
in linear programming [6]. According to [107] the complexity of the algorithm is O(k3).
In our applications, the high order of complexity of the algorithm is not an issue since
it is only applied for medial ball representations of dimension k, which is in the range
of 10 to 50.

4. MEDIAL BALL SHAPE SPACE BY PROCRUSTES
ANALYSIS

In the following we perform a statistics of the ball representations M1, . . . ,Mn and estab-
lish a shape space, which we call medial ball shape space. Moreover, a distance between
elements of the medial ball shape space is employed to compare them quantitatively.
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4.1. Elements of the medial ball shape space

A shape is all the geometrical information that remains when location, scale and rota-
tional effects are filtered out from an object (taken from [40, Chapter 1]). We consider
this definition when constructing the medial ball shape space as the factor space of ball
representations M = (x1, . . . , xk; r1, . . . , rk) modulo similarity transformations. That is

Σ = R3×k × (R>0)k/ ∼ST . (5.9)

That is, two ball representations M = (x1, . . . , xk; r1, . . . , rk) and M̃ =
(x̃1, . . . , x̃k; r̃1, . . . , r̃k) represent the same shape (or in other words are equivalent with
respect to ∼ST ) if there exists a similarity transformation (ρ,A, b) such that

ρAx̃i + b = xi and ρr̃i = ri for i = 1, . . . , k (5.10)

We emphasize that in the segmentation literature (see e.g. [32, 91, 78, 36]) frequently
shape spaces are not defined as factor spaces. As a consequence the according shape
space allows for different representations of the same shape.

Below we derive a segmentation model taking into account the original shape concept
and coordinates of Kendall [62]. Compared to Bookstein [20], Kendall coordinates do
not depend on the choice of a baseline i.e. two medial balls in our case. Therefore
statistical analysis like PCA is not distorted. Since it is bulky to define a distance
between equivalence classes we systematically choose representatives, for which we define
a shape distance. The process is similar to [40, Chapter 4] where mid axis representations
M = (x1, . . . , xk) (without radii) have been considered.

1. A mean ball representation µ of the (labeled) ball representations M1, . . . ,Mn is
defined by

µ = arg min
µ̃={(µ̃1,r̃1),...,(µ̃k,r̃k)}

n∑
l=1

d(Ml, µ̃)2 (5.11)

where

d(Ml, µ̃)2 = min
ρ>0,A∈SO(3),b∈R3

k∑
i=1

‖ρAx(l)
i −b−µ̃i‖

2 + α(ρr(l)
i −r̃i)

2 (5.12)

The parameter α is the same as in Equation (5.2). The minimization problem
(5.11) can be solved with an iterative algorithm, which is along the lines of [40,
Chapter 5].

2. M is normalized with respect to translation by multiplying the ball centers of M
with the (k − 1)× k Helmert submatrix H (see [40, p.34] for the definition). The
advantage in using the Helmert matrix for this task (compared to for instance
centering the coordinates) is that the arising representation only consists of k − 1
centers and that the Helmert matrices can be computed efficiently inductively. The
resulting representation T (M) is given by

T (M) = ((H[c(M)T ])T ; r1, . . . , rk) ∈ R3×(k−1)\{0} × (R>0)k . (5.13)
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3. T (M) is normalized with respect to scaling by dividing the coordinates and radii
by the Frobenius norm ‖c(T (M))‖. The resulting scaled representation is denoted
by S(T (M)).

4. S(T (M)) is normalized with respect to Rotation by minimizing the Frobenius norm

min
A∈SO(3)

‖c(S(T (µ)))T − c(S(T (M)))TA‖ . (5.14)

Rotating S(T (M)) by the optimal A ∈ SO(3) gives

Rµ(S(T (M))) =
(
c(S(T (M)))A;

r1

‖c(T (M))‖
, . . . ,

rk
‖c(T (M))‖

)
, (5.15)

which is the representative of the class.

As shown in [62], the optimal rotation A in (5.14) can be calculated as follows: If

(c(S(T (µ))))c(S(T (M)))T = V ΛUT (5.16)

is the signed singular value decomposition (see Appendix) of
(c(S(T (µ))))c(S(T (M)))T , then

A = UV T . (5.17)

The mean shape µ and the representative are utilized to compute distances in Σ in
the next Subsection 5.

4.2. Variability in the medial ball shape space

Standard techniques for capturing the variability of data are principal component anal-
ysis (PCA) and the Mahalanobis distance. Historically, these techniques have been
defined in Euclidean space. A standard way to transfer these concepts to Riemannian
manifolds is to project the data to a tangent space (which is Euclidean) and perform
an variability analysis there. Recently, techniques have been established, which consider
the whole tangent bundle for parallel transport of tangent vectors along geodesics and
perform a principal geodesic analysis, [46]. In our case, the medial ball shape space Σ
is a Riemannian manifold with singularities. As is detailed in [103] for shape spaces of
point configurations and carries over to our situation, Σ has singularities at equivalence
classes of ball representations under translation and scaling, where the rotation group
does not act free. These shapes arise from ball representations consisting of balls of the
same radius lying on a straight line. We can exclude these ball representations from our
further considerations since they are not of interest to us, or apply the simulation of
simplicity concept [42] to ball representations M1, . . . ,Mn and avoid this case. For sake
of simplicity, we present only details on the projection technique, although the whole
shape analysis and segmentation pipeline is generalizable to a nonlinear framework.
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vec(µ)
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Figure 5.2: On the left hand side, Procrustes tangent coordinates of the centers of a ball
representation are shown. Translated, scaled and rotated ball representations
µ, M are on the circle. vec(M) is orthogonally projected to the subspace
spanned by vec(µ). The difference between the projection of vec(M) and
vec(µ) is c(Pµ(M)). PCA and Mahalanobis distance are visualized on the
right hand side. The data points vary in horizontal direction much more
than in vertical direction. The Mahalanobis distance between A and B is
smaller than the distance between A and C, which is the opposite measured
in the Euclidean distance.

The tangent space of Σ at [µ]∼ST .
For our medial ball shape space Σ, we compute projections of shapes on the tangent space
at [µ]∼ST . LetM = (x1, . . . , xk−1; r1, . . . , rk) be a ball representation, in normalized form
(5.15), and vec(M) = (xT1 , . . . , x

T
k−1)T ∈ R3k−3. Then the orthogonal projection of M

to the tangent space of Σ at µ is given by

Pµ(M) = (vec(M)− 〈vec(M), vec(µ)〉 vec(µ); r1, . . . , rk) ∈ R3k−3 × (R>0)k (5.18)

Concerning the center points c(M) of M , these are the Procrustes tangent coordinates
as in [40, p.76]. The tangent projection is illustrated in Figure 5.2, left part. Tangent
coordinates represent the linear deviation of M relative to µ and will be used for
statistical analysis in the sequel.

PCA and Mahalanobis distance for ball representations in Σ.
First we recall the concepts of principal component analysis (PCA) and Mahalanobis
distance in Rd. For data points m1, . . . ,mn ∈ Rd, a PCA is given by the normed
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eigenvectors of the covariance matrix

Cov(m1, . . . ,mn) =
1
n

n∑
i=1

(mi −m)(mi −m)T with m =
1
n

n∑
i=1

mi. (5.19)

The eigenvectors e1, . . . , ed are sorted by the size of the corresponding eigenvalues
λ1, . . . , λd and give an orthonormal basis of Rd. This basis represents the main di-
rections of variability of the data vectors m1, . . . ,mn.

A distance which takes into account the variability of the data m1, . . . ,mn is given by
the Mahalanobis distance. This distance is defined by

dRd(m̃1, m̃2) = (m̃1 − m̃2)T (Cov(m1, . . . ,mn))−1(m̃1 − m̃2) (5.20)

for m̃1 and m̃2 ∈ Rd. Compared to the Euclidean distance, the Mahalanobis distance
of two data points is small, if they differ along the main directions of variability (which
are the principal components of m1, . . . ,mk), and it is large, if they differ along other
directions. If d is large it might be appropriate to use a PCA first, and taking only
the d̃ most significant components e1, . . . , ed̃ to eigenvalues λ1, . . . , λd̃. This results in a
simplified Mahalanobis distance

d̃Rd(m̃1, m̃2) = (m̃1 − m̃2)T ŨD̃−1ŨT (m̃1 − m̃2) (5.21)

with Ũ = (e1, . . . , ed̃) and D̃ the diagonal matrix with entries λ1, . . . , λd̃.

Applying these concepts to ball representations, let Pµ(Mi) = (ciµ; riµ) ∈ R3k−3× (R>0)k

be the tangent coordinates of Mi, split into centers ciµ and radii riµ. A PCA of ball rep-
resentations M1, . . . ,Mn, is given by the eigenvectors and eigenvalues of the covariance
matrices

Cov(c1
µ, . . . , c

n
µ) and Cov(r1

µ, . . . , r
n
µ). (5.22)

The Mahalanobis distance dΣ between M and M̃ in Σ is then given by
(with Pµ(M) = (cµ; rµ) and Pµ(M̃) = (c̃µ; r̃µ))

dΣ(M,M̃) = (cµ − c̃µ)T Cov
(
c1
µ, . . . , c

n
µ

)−1 (cµ − c̃µ)

+α (rµ − r̃µ)T Cov
(
r1
µ, . . . , r

n
µ

)−1 (rµ − r̃µ) . (5.23)

In case that the ball representations contain many balls, a PCA is performed first
and a Mahalanobis distance as in (5.21) is computed.
PCA and Mahalanobis distance are illustrated in Figure 5.2, right part.

As a result of this section, a mean shape and distances between shapes have been
defined and this statistics can be used as shape prior in segmentation in the sequel.
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5. SEGMENTATION

In this section we consider object segmentation in 3D voxel data. Thereby we aim for
taking into account shape prior information given in the form that the object to be
recovered belongs to medial ball shape space. The distance on the shape space is given
by the Mahalanobis distance (see Sections 5-5). The medial ball shape space is computed
from boundaries of training objects as discussed in Section 5.

The boundary of a ball representation is defined as the skin surface [41]. Below we
give a definition and some properties of skin surfaces which motivate this choice.

Finally we describe the whole pipeline of the proposed segmentation process.

5.1. Skin Surfaces

In this subsection, we review the definition and basic properties of skin surfaces.
Moreover, we discuss properties of skin surfaces, which predestine them as boundary
surfaces of medial ball representations.

Definition of a skin surface.
Basic building blocks of skin surfaces are weighted points p = (xp, wp) ∈ R3×R. Weighted
points can for instance represent balls with center x and radius r, setting xp = x and
wp = r2, and therefore a ball representation can be regarded as a set of weighted points.
Addition and scalar multiplication of weighted points p, q are defined by

p+ q = (xp + xq, wp + wq + 2〈xp, xq〉), (5.24)

and
sp = (sxp, swp + (s2 − s)||xp||2) for s > 0. (5.25)

Here, 〈·, ·〉 and || · || denote the Euclidean scalar product and its induced norm. As
usual, but with these algebraic operations, the convex hull of a set of weighted points

P = {p1, . . . , pk} is defined by conv(P ) =
{

k∑
i=1

λipi | λi ≥ 0,
k∑
i=1

λi = 1
}

. The shrinkage

ps of a weighted point p = (xp, wp) by a factor s ≥ 0 is defined by ps = (xp, swp).

Assume now we are given a set P of weighted points p = (x,w) with w > 0. Shrinkage
applied to P by s ≥ 0 is defined by P s = {ps | p ∈ P}. Let Bw(x) = {y ∈ R3 | ‖x−y‖ ≤
w} be a ball with radius w and center x. We denote by ∂ denote the boundary of a set
in Euclidean space.

Let s ≥ 0. Then the s-skin of P is defined by

skns(P ) = ∂

 ⋃
q=(xq ,wq)∈(convP )s

B√wq(xq)

 (5.26)

Note that the square root of a negative number is imaginary and a ball with an imaginary
radius is the empty set.
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Figure 5.3: Examples of a skin surface of 15 balls with shrink factor s = 0.1 (left) and
s = 0.9 (right). The dots indicate the centers of the medial balls. Note the
topology changing effect of increasing the shrink factor, which can be utilized
for constructing shapes of different topology.

In the special case s = 0, the skin surface of p1, . . . , pk reduces to the convex hull of
xp1 , . . . , xpk

, and in case s = 1, the skin surface is the boundary of the union of the input
weighted points.

Since weighted points are shrunk by a factor of s ∈ [0, 1] in the construction of the
skin surface, the skin surface of a surface represented by medial balls is smaller than the
original surface. A way to circumvent this problem is by prescaling the input weights
wp1 , . . . , wpk

by 1/s.

Properties of skin surfaces.
We employ the concept of a skin surface later on for definition of a surface from a ball
representation. We believe that skin surfaces are very suitable for this task, since they
have several attractive properties which we discuss in the sequel.

• Information efficiency: A skin surface only requires center points, weights and a
shrinking factor for its complete description. Center points and weights are exactly
the information available to us after (mean) ball representation computation in
sections (5) and (5). The shrinking factor can be used as a tuning parameter
depending on the application. Other popular surface construction methods like
NURBS (or other splines), used for instance in [36], or Gregory patches (see [94,
32]) suffer from the drawback, that an additional grid structure of the control points
is required for surface generation, which is difficult to obtain in an automatic way.

• Computational efficiency: There exists an efficient algorithm for computing skin
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surfaces (see [68]). For k weighted input points, the algorithm produces a triangular
mesh consisting of O(k2) vertices.

• Ball representation fidelity: If M is a ball representation of some surface in R3,
and skn(M) is the skin surface defined by M , then M is contained in the ball
representation of skn(M). This follows easily from the definition of the skin surface
as a convex hull.

• Economy: A small number of input points can generate complicated skin surfaces,
[41].

• Universality: Every orientable closed surface has a skin representation, [41].

An example of a skin surface, meshed with algorithm [68] is given in Figure 5.3.

The implied skin surface of a shape.
For a fixed ball representation µ, and some given similarity transformation (ρ,A, b),
a shape in Σ implies a surface. For its computation, it is necessary to reverse the
transformations in Subsection 5. To give some details, assume that the shape in Σ is
given by its tangent coordinates Pµ = (cµ, rµ). First note that the tangent projection
(5.18) is injective, with inverse

(cµ; rµ) 7→
(

vec−1
(√

1− cTµcµ vec(cµ(µ)) + cµ

)
; rµ
)

(5.27)

mapping tangent coordinates to normalized ball representations. Normalized ball repre-
sentations are then aligned in R3 by applying A−1 and scaling with 1/ρ. When reversing
translation, note that the Helmert matrix H has a right inverse H̃ ∈ R(k−1)×(k−1).

Applying H̃ and translating the result by b, an (aligned) ball representation M con-
sisting of k balls in R3 is obtained, to which the skin surface

γ(M) = γ(Pµ, ρ, A, b) (5.28)

is the implied boundary.

5.2. Region and edge based segmentation

For segmentation of voxel images, there are essentially two types of segmentation meth-
ods. Region based segmentation is applied to images, if the mean intensity of voxels
inside the object to segment differs significantly from the mean intensity outside the
object. If contrasts are low and objects are only separated by curves, gradient based seg-
mentation is used. Here, we briefly discuss both approaches. Let Ω ⊂ R3 be a bounded
domain, and u : Ω→ R an image intensity function.

Region based segmentation.

For a closed surface γ ⊂ Ω, let I(γ) ⊂ Ω be the inner part of γ and O(γ) ⊂ Ω the outer
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part of γ. The mean values of an image intensity function u on I(γ) and O(γ) are then
given by

uI(γ) =
1

|I(γ)|

∫
I(γ)

u dx and uO(γ) =
1

|O(γ)|

∫
O(γ)

u dx (5.29)

A simplified version of the Mumford-Shah model introduced in [27] consists in minimiza-
tion of the functional

ISMS(γ) =
∫
I(γ)

(uI(γ)− u)2 dx+
∫
O(γ)

(uO(γ)− u)2 dx . (5.30)

If we assume that the mean intensity of an object in image u differs significantly from
the mean intensity of the region outside of this object, the functional ISMS is minimized
by a submanifold γ which represents the boundary of the object to segment, and I(γ)
is the object itself.

Edge based segmentation.

In edge based segmentation, an object and its closed boundary surface γ are implied by
high gradients. In this case, it is common to minimize a functional which penalizes small
gradients, as for example the Snakes energy introduced in [60]:

IKWT (γ) = −
∫
γ
|∇f(γ)|dxdy + αArea(γ) (5.31)

Note that edge based energy functionals are usually minimized by active contour meth-
ods. They consist of evolving a small initial contour mesh towards the boundary of
the object, which is a minimizer of the energy functional. An advantage of active con-
tour methods is that the evolution converges to a minimizer close to the initial contour.
However, since the evolution equations only contain local information, but shape prior
is a global information, active contour methods cannot be used efficiently in this case.
In order to retain control over local minimizers of (5.31), we use the term βArea(γ) in
(5.31) instead, thus forcing the contour closer to the initial contour.

In the presence of noisy data that e.g. arises in MRI or ultrasound imaging, minimiza-
tion of both functionals (5.30) and (5.31) over γ is not well-posed. Furthermore, if the
object to segment is partially occluded, minimizers of (5.30) and (5.31) might not only
segment the object, but also parts of the background, and knowledge about the true
shape of the object to segment has to be considered.
Here we use the mean ball representation µ of Equation (5.11) as a priori information
and the Mahalanobis distance dΣ as defined in Subsection 5, formula (5.23) to measure
the distance between two ball representations. We recall that with a given fixed ball
representation µ, an equivalence class [M ]∼ST of ball representations can be uniquely
represented by tangent coordinates Pµ(M) = (cµ(M), rµ(M)), see (5.18). Tangent coor-
dinates and a similarity transformation (ρ,A, b) ∈ R>0×SO(3)+×R3 uniquely determine
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a skin surface γ = γ(Pµ(M), f) as defined in Subsection 5, formula (5.28). We obtain
the following functionals as a regularization of (5.30) resp. (5.31) for some β > 0:

Iβ : Σ× SO(3)× R3 × R≥0 −→ R,

(Pµ, f) 7→ ISMS(γ(Pµ, f)) + βdΣ(0, Pµ) (5.32)

(Pµ, f) 7→ IKWT (γ(Pµ, f)) + βdΣ(0, Pµ) (5.33)

Note that the regularization term actually measures the Mahalanobis distance between
M and µ, since Pµ(µ) = 0.

6. RESULTS

In the following section we outline the results for the application of our algorithm on two
different test images: first, a synthetic dataset of torus voxel images was segmented using
functional (5.32) in Section 5. As a second test case we study prostate segmentation in
MRI datasets. Thereby we use functional (5.32), which is described in Section 5. Both
functionals are minimized using the evolutionary algorithm CMA-ES (see [55, 65]). This
choice is mainly motivated by the fact, that the calculation of the gradient for both func-
tionals is tough, since it requires finding the derivative with respect to the skin surface,
which is given by the coordinates of the medial ball representation. Thus analytical
differentation is numerical differentiation should be used for this purpose. However,
the skin surface meshing process we used for surface construction ([68]) does not guar-
antee that the resulting polyhedra always have the same structure or even the same
number of vertices and faces, as it is the case for example by using spline based inter-
polation surfaces. Those irregularities in the resulting surface meshes complicate the
numerical differentiation process and thus we decided to use gradient-free evolutionary
minimization algorithms. We chose the evolutionary algorithm CMA-ES for the mini-
mization of 5.32, because it has been successfully applied to a similar task in [32], where
its superior behavior over two other common evolutionary minimization techniques was
demonstrated. For more details on the minimization process, especially also concerning
the choice of the minimization parameters, we also refer to [32].

6.1. Synthetic Examples

In this subsection we are concerned with the segmentation of a synthetically created and
corrupted torus voxel image. by this example we demonstrate not only the influence
of the shape prior on the segmentation result but in particular also the capability of
the method to segment surfaces of arbitrary topology, i.elet@tokeneonedota torus in this
case. We generated 15 binary training voxel images containing elliptic tori with differing
radii and positions (see Figure 5.4). Using the software ITK-SNAP [119] we computed
the according input meshes Ω1, . . . ,Ω15 which are the actual input data for the shape
statistics.
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Figure 5.4: 15 different voxel images of tori used as training data

Using the surface meshes Scheme 5.1.1 has been used to compute a shape space and
a Mahalanobis distance in it. This shape information was then used to segment a torus
corrupted by a large black strip as shown in Figure 5.5(a). Because high contrasts occur
in the images, we chose (5.32) as the segmentation functional, which we minimized using
the CMA-ES. The segmentation algorithm was run with k = 15 balls. The shrink factor
s was included in the minimization process. As initial value for s it proved suitable to
take high values if long and thin structures were expected and smaller values in case
of more compact objects. The results of the segmentation process with different values
for the regularization parameter β are shown in Figure 5.5(b)-(d). As expected, small
values of β, i.elet@tokeneonedotsegmentation with low influence of the regularization,
results in improper segmentation results (Figure 5.5(b)-(c)), while the right choice of β
yields a good segmentation, as seen in Figure 5.5(d). Note that the slight inaccuracies in
the segmentation are a consequence of using skin surfaces as surface generation method,
which often results in a surface of ball-like structure by nature.

6.2. Prostate Data

In this example, we are concerned with the segmentation of the prostates in T2-weighted
MRI datasets which have been provided for the MICCAI Segmentation Challenge for
Clinical Applications [1]. The dataset consisted of 15 training MRI images, which were
accompanied by slice-by-slice expert segmentations. Additionally, one dataset was pro-
posed for testing the segmentation algorithm. This dataset is shown in Figure 5.6(a).
As can also be seen there, there are two main challenges for the segmentation algo-
rithm: first, the MRI datasets are very thin, i.elet@tokeneonedotthe number of slices
in z-direction is only 28 with the prostate ranging over only about 10 slices. This low
resolution poses a general problem for 3D-segmentation algorithms due to rounding er-
rors and leads to the fact, that state- of-the-art techniques for prostate segmentation are
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Figure 5.5: Segmentation results for the corrupted torus image for different values of the regu-
larization parameter β. From upper left to lower right: (a) Voxel image of corrupted
torus data. (b) Segmentation result with regularization parameter β = 5 ∗ 10−2 (c)
β = 10−2 (d) β = 10−3.

often based on the combination of slice-by-slice 2D segmentations.
On the other hand the prostate in the MRI test dataset, which can be seen as the gray

colored area in the middle of Figure 5.6(a), has a very low contrast difference to the other
areas of the image. This problem leads to the fact, that a region based functional like
(5.32) is not suitable in this case. Therefore, the edge based segmentation functional
(5.33) was used for the segmentation process. For this purpose, we had to calculate
the absolute gradient of the voxel image. To minimize the effect of noise, we first used
anisotropic filtering to smooth the voxel image (Figure 5.6(b)). Afterwards the absolute
gradient of the image was calculated using the morphological gradient (Figure 5.6(c)).
Like in Subsection 5, we then again created 15 training meshes Ω1, . . . ,Ω15 out of the
expert segmentations, which were used to compute shape space and Mahalanobis dis-
tance using Scheme 5.1.1 and the resulting functional combined with the shape prior
was minimized using the CMA-ES. The result of this segmentation procedure is shown
in Figure 5.7. As expected from the low input resolution and the complex image con-
trast structure, the functional needs a high value for the shape prior to yield a good
segmentation result. Nevertheless the results are promising.

7. CONCLUSION

In this paper we presented a new approach for segmentation of 3D voxel images taking
into account statistical shape information. The algorithm requires minimal user inter-
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Figure 5.6: The figure shows (a) the original MRI test image f on the upper left, (b) the
MRI test image after smoothing using anisotropic filtering fσ on the upper right,
and (c) the absolute value of the morphological gradient of the smoothed image
|∇fσ| on the bottom. All images consist of four different views of the voxel image,
i.elet@tokeneonedotfrom upper left to lower right: transversal, coronal, 3D, sagittal.

105



Figure 5.7: Segmentation result for the prostate in the MRI test image with regularization
parameter β = 0.5. The image shows from upper left to lower right: transversal,
coronal, 3D and sagital view of the original image f and the segmentation result.
The segmentation result in the 2D-views is visualized by the blue contours, while
the resulting mesh surface and its medial ball centers is shown in 3D.
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actions for segmentation which is achieved by implementing a pipeline of algorithms.
The pipeline involves the automatic generation of training shapes represented as medial
ball representations that were automatically generated from a given set of input meshes.
Afterwards the training shapes are labeled, and a shape space based on Procrustes statis-
tics is established. The resulting shape space and the Mahalanobis distance are used as
a prior in region- and edge based segmentation algorithms.

We did a proof-of-concept for our algorithm by first evaluating its performance on a
synthetic dataset of 15 randomly generated torus images. By utilizing a segmentation
energy which includes statistical regularization using the PCA of the training data, we
were able to segment a distorted torus image correctly. Additionally, this example shows
the benefit of using skin surfaces as surface generation method for ball representations,
which enables us to segment images of arbitrary topology (in contrast to for instance
B-splines).

Furthermore, we applied our algorithm to the segmentation of MRI prostate data.
Again, we used a statistically regularized segmentation functional supplied with 15
training shapes represented as medial balls which were automatically generated from
the available expert segmentations. The automatic generation of medial balls from ex-
pert slice-by-slice segmentations is one of the advantages of our algorithm in contrast
to the work of Pizer et allet@tokeneonedot(e.glet@tokeneonedot[91]), where expert seg-
mentations have to be constructed by using a predefined medial ball model itself. The
segmentation result demonstrates that it is in principle possible to automatically re-
construct shapes from MRI images with our method. We want to point out however,
that a rigorous evaluation and comparison of the segmentation results for the prostate in
MRI images or, more generally spoken, application in the field of medical image segmen-
tation, requires specific fine-tuning of our general formulated algorithm to the specific
application field, which is beyond the scope of our paper.

It was shown that the approximation of the medial axis by using only balls with
no structure is sufficient in principle but also poses problems when dealing with com-
plex applications. Thus, a future work will be to investigate ways of approximating
also the structure of the medial surface. As a first idea, spline surface approximation
techniques could be used to approximate the medial surface and interpolate over the
resulting medial balls of the discrete medial axis transform. Furthermore, to obtain a
better segmentation result for complex medical images one could investigate the use
of energy functionals based not only on shape statistics but also image knowledge as
e.glet@tokeneonedotoutlined in [50].
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Appendix

The signed singular value decomposition.
Denote S(i) the i-th row, and S(j) the j-th column of a square matrix S. The signed
singular value decomposition of S,

S = UDV T (5.34)

is obtained from the (usual) singular value decomposition S = UDV T in the following
way

• if det(U) = det(V ) = 1, then do nothing

• if det(U) = −det(V ) = 1, replace the last column V (d) of V by −V (d), and replace
Dd,d by −Dd,d.

• if −det(U) = det(V ) = 1, replace the last column U (d) of U by −U (d), and replace
Dd,d by −Dd,d.

• if −det(U) = −det(V ) = 1, replace the last column U (d) of U by −U (d) and V (d)

by −V (d)

Performing these manipulations, it is guaranteed that det(U) = det(V ) = 1 and
therefore U , V ∈ SO(d).

Formulas for the maximization step in Algorithm (1).
Given P , the M-Step of Algorithm (1) consists in maximizing the functional (5.7),

n∑
i,j=1

Pj,i(log pi + log gi(xj , rj))

with respect to f and p1, . . . , pk, . Since p1, . . . , pk and f occur in different summands,
maximization can be performed independently for each sum.

(1) Maximizing (5.7) over p1, . . . , pk subject to the restriction
k∑
i=1

pi = 1 gives the condi-

tion
k∑
j=1

Pj,i
1
pi

= λ

with a Lagrange multiplier λ ∈ R for all i. Since
∑k

i,j=1 Pj,i = k and
∑k

i=1 pi = 1 it
follows that λ = k and therefore

pi =
1
k

k∑
j=1

Pj,i, i = 1, . . . , k.
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(2) Maximization of (5.7) with respect to ρ > 0, A ∈ SO(3) and b ∈ R3 is equivalent to
minimization of

k∑
i,j=1

Pj,i
(
||xj − ρAyi − b||2 + α(rj − ρsi)2

)
(5.35)

over ρ > 0, A ∈ SO(3) and b ∈ R3.
We first consider the special case α = 0 in (5.35), and then the general case α ≥ 0.

(a) The special case α = 0.

We denote the weighted means of x and y by

x =

k∑
i,j=1

Pj,ixj

k∑
i,j=1

Pj,i

and y =

k∑
i,j=1

Pj,iyi

k∑
i,j=1

Pj,i

.

Moreover, let

Sy,x =
k∑

i,j=1

Pj,i(yi − y)(xj − x)T .

Following the computations for the unweighted case in [81], we compute the signed
singular value decomposition of Sy,x,

Sy,x = UDV T .

Here, U , V ∈ SO(3) and D is diagonal with D1,1 ≥ D2,2 ≥ |D3,3|. Then the solution of
minimization problem (5.35) in case α = 0 is given by

ρ =
Trace(D)

Trace(Sx,x)
(5.36)

A = UV T (5.37)

b = x−Ay (5.38)

(b) The general case α ≥ 0.

Since the additional term in case α ≥ 0 is independent of rotation and scaling, the
formulas (5.37) and (5.38) for optimal translation and rotation remain the same in the
general case. The scaling factor λ, computed by differentiation, computes to

ρ =
Trace(D) + αrTPs

Trace(Sx,x) + αrTPr
(5.39)
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