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The algorithm applied for the evaluation of the defining function constitutes a crucial factor in the numer-
ical simulation of a large-scale dynamical system. This fundamental tool is essential for the significance of
the obtained results and the overall performance. A novel modus operandi based on well-adapted global
approximations and precomputations of reappearing quantities is proposed. It is demonstrated that this
approach is expedient for a wide range of dynamical systems and permits substantial reductions from poly-
nomial to linear computational complexity. Combining such concepts with state-of-the-art algorithms for
the detection of communities in networks leads to community integration algorithms (CIAs) for dynamical
systems on graphs. Numerical comparisons for relevant test problems with applications in various disci-
plines including higher-order Kuramoto–Daido-type systems arising in the description of synchronisation,
Cucker–Smale systems exhibiting flocking behaviour, and extended systems on real world graphs for animal
networks, confirm the robustness and efficiency of the novel computational approach.

Fascinating phenomena. The collective behaviour of
groups of interacting individuals has inspired generations
of scientists from various disciplines and encouraged them
for thorough investigations. Most of us will remember
impressive visualisations of hundreds of migratory birds
gathering in one place and setting out for their new des-
tination. Likewise, in our everyday life, we have the op-
portunity to observe the flexible movement of flocks of
domestic birds around blocks of buildings.

Numerical simulations. It suggests itself to strive to-
wards a deeper understanding of these kinds of fascinating
phenomena and to use numerical simulations as valuable
means for the study of the decisive underlying mecha-
nisms. The design of appropriate models and efficient
implementation methods are thus fundamental issues in
applied as well as computational mathematics and have
fruitful impacts on findings in other fields.

As established models for flocking behaviour and syn-
chronisation, we highlight Cucker–Smale and Kuramoto–
Daido-type systems, whose applications range from bi-
ology, chemistry, ecology, economy, neuroscience, and
physics to sociology.

Over the last years, an essential part of re-
search interest has focused on large-scale dynami-
cal systems and the incorporation of network the-
ory. [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]

Computational issues. A characteristics of complex
systems describing the dynamics of interacting compo-
nents is that the evolution of a single individual is affected
by the evolution of other individuals. Typically, when pair-
wise interaction mechanisms are taken into account, the
equation for each component of the dynamical system in-
volves a sum over all other components, which results
in quadratic computational complexity with respect to
the total number of components. More generally, multi-
ple sums arising in higher-order dynamical systems imply
polynomial complexity.

These matters of fact lead to exceeding computation
times for single evaluations of the defining functions and
hence considerably limit the total number of components
that can be treated in practice. Further obstacles in con-
nection with large-scale applications on networks are that
convenient representations based on matrices and tensors
instantly rise above usual memory capacities.
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Figure 1: First column: Visualisations of flocks of birds (Kranich17 and Minka2507 at pixabay.com). Second and third
columns: Numerical simulations of Cucker–Smale systems modelling the collective behaviour of groups of individuals
with pairwise interactions. The numbers of individuals and the positions at the initial time are inspired by real world
situations. Varying colors from white to black represent the evolution of the positions and the associated velocities
till the final time.

Results

Novel algorithms. In the present work, we propose
community integration algorithms (CIAs) as fundamental
tools in the numerical simulation of large-scale dynamical
systems on networks. The principal purpose is to ensure
reliable and efficient evaluations of the defining functions.

We primarily attach importance to broad applicability and
robustness with regard to real data sets.[18]

Fundamental ingredients are global approximations to
attain well-adapted representations of the underlying clas-
sical systems that reveal precomputations of reappearing
quantities. Regarding well-established theoretical results
and eminent observations in benchmark tests for classical
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Figure 2: Numerical comparisons for Cucker–Smale systems in two and three space dimensions. First row: The
standard approach for the evaluation of the decisive sums results in quadratic computational complexity, which
is reflected in the computation times. A novel approach based on a global approximation of a part of the defining
function by a Fourier series expansion reveals the precomputation of reappearing quantities and permits the significant
reduction to linear computational complexity. Second row: For systems that involve a number of individuals M that is
beyond the total number of Fourier basis functions, K = 20×20 in two space dimensions and K = 10×10×10 in three
space dimensions, respectively, the effective gains become evident when calculating the ratios of the computation
times. Third and fourth rows: Complementary tests, which confirm that high accuracy is retained during numerical
integration. The differences between the solutions values, computed on the one hand by the standard approach and
on the other hand by the novel approach, are not effected by the sizes of the systems. For explicit Runge–Kutta
methods of orders one and two, respectively, the global errors at final time T = 1 versus the total numbers of time
steps are displayed. In a logarithmic scaling, the slopes of the lines correctly reproduce the consistency orders.

Cucker–Smale systems, we favour approximations based on Fourier series expansions. For classical higher-order
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Figure 3: Numerical simulations of higher-order Kuramoto–Daido-type systems modelling (partial) synchronisation of
the phases of coupled oscillators. First column: For systems of orders one, two, and three involving 1000, 100, and 50
components, respectively, uniformly distributed initial states are considered. For each phase x ∈ [0,2π), a point on the
unit circle represents the associated pair (cos(x),sin(x)). Second column: Standard approaches for the evaluation of
the arising multiple sums result in polynomial computational complexity. This is reflected in the strongly increasing
computation times from about 10 seconds to 11 minutes. Third column: Novel approaches based on equivalent
representations yield coinciding solutions and permit striking reductions of the computation times to fractions of a
second.

Kuramoto–Daido-type systems, we even succeed in de-
ducing equivalent reformulations, which make reductions
from polynomial to linear computational complexity with
respect to the dimensions of the systems evident. [9, 11]

(Figures 1–3, Table 1)
For extended systems on networks, we combine these

concepts with state-of-the-art algorithms for the de-
tection of communities in the underlying graphs. In
case major parts of interactions between components
of the considered systems occur within certain com-
munities, the associated adjacency matrices comprise
relatively dense submatrices along the diagonal and

sparse submatrices otherwise. In such situations, our
novel computational approach effects significant reduc-
tions of the overall costs measured by the total num-
bers of function evaluations and the required memory
capacities.[19, 20, 21, 22, 23, 24, 25, 26, 27] (Figures 4–5)

Perspectives. Altogether, this makes numerical simula-
tions of discrete as well as continuous large-scale dynam-
ical systems on graphs by advanced integration methods
practicable and thus enables realisations of numerically
challenging issues in the context of long-term integration
and optimisation.
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Figure 4: Numerical comparisons for Cucker–Smale and Kuramoto-Daido systems on networks. Left: The consid-
ered adjacency matrices comprise relatively dense submatrices along the diagonal, which reflect numerous pairwise
interactions within four communities of different sizes. Right: Standard approaches for the evaluation of the decisive
sums result in quadratic computational complexity, which is reflected in the computation times. Novel approaches
that observe the community structure and use well-adapted global approximations to identify reappearing quantities
permit reductions to linear complexity.

Computational methods

Unifying formulation of dynamical systems on net-
works. In sight of evident analogies between time-
continuous and time-discrete dynamical systems and due
to the fact that the numerical solution of boundary and
optimisation problems often relies on the numerical in-
tegration of a series of initial value problems, we identify
the initial value problem for a system of coupled nonlinear
autonomous differential equations{

x ′(t ) = H
(
x(t )

)
, t ∈ (0,T ) ,

x(0) given ,
(1a)

as fundamental test problem. Here, we represent by

x = (x1, . . . , xM ) : [0,T ] →X M ,

H = (H1, . . . , HM ) : X M →Y M ,
(1b)

the unknown time-dependent solution and the defining
function. A wide range of relevant dynamical systems on
networks that take into account pairwise interactions of
all components can be cast into the unifying formulation

Hm(x1, . . . , xM ) = fm(xm)+
M∑
`=1

Am` g (xm , x`) ,

m ∈ {1, . . . , M } ,

(1c)

with symmetric adjacency matrix capturing the structure
of the underlying graph

A = (
Am`

)M
m,`=1 , Am` ∈ {0,1} , A`m = Am` ,

`,m ∈ {1, . . . , M } .
(1d)

The incorporation of more general interactions naturally
results in multiple sums

M∑
`1,...,`L=1

A(L)
m`1...`L

g (L)(xm , x`1 , . . . , x`L ) ,

A(L)
m`1...`L

∈ {0,1} , `1, . . . ,`L ,m ∈ {1, . . . , M } .

(2)

Accordingly, we henceforth refer to (1) as a first-order dy-
namical system and to a generalisation comprising a term
of the form (2) as a dynamical system of order L.

Curse of dimensionality. For a large-scale dynamical
system on a network, a crucial factor in the successful
numerical integration of the initial value problem (1) is
the algorithm that is applied for the evaluation of the
defining function. This basic ingredient in the end de-
termines reliability and efficiency, the significance of the
obtained results and the attainable performance.

Indeed, whenever the total number of components is
high, i.e. M >> 1, and the adjacency matrix comprises rel-
atively few zero entries, the issues in the computation of
the decisive sums( M∑

`=1
Am` g (xm , x`)

)M

m=1

become apparent. On the one hand, quadratic computa-
tional complexity with respect to the number of compo-
nents rapidly converts to impractical computation times.
On the other hand, for the purpose of simultaneous func-
tion evaluations, it is convenient to store the values

(xm , x`) , `,m ∈ {1, . . . , M } .
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relatively dense submatrix = full matrix − relatively sparse submatrix
(building block of adjacency matrix) (defines classical subsystem) (summation of few components)

Figure 5: First row: The graph of a real data network (https://networkrepository.com/aves-wildbird-network.php)
is captured by the associated adjacency matrix comprising coefficients equal to one (blue) and zero (white). Left:
Original representation, where the structure of the underlying communities and interactions is not evident. Right: An
equivalent representation obtained by community detection and suitable permutation renders it possible to identify a
block structure with relatively dense and sparse submatrices. Second row: The key idea for the efficient evaluation
of large-scale subsystems defined by relatively dense submatrices is to trace them back to full matrices. These corre-
spond to classical subsystems and are solved in an efficient manner by global approximations and precomputations.
Remaining contributions of relatively sparse submatrices require the summation of relatively few components.

However, regarding the memory capacity of a common
data processor, this procedure severely limits the treat-
able system size. For multiple sums( M∑

`1,...,`L=1
A(L)

m`1...`L
g (L)(xm , x`1 , . . . , x`L

))M

m=1

implying polynomial computational complexity, the nu-
merical challenges become even more striking and relate
to the curse of dimensionality.

Classical dynamical systems. For both reasons, as im-
portant issues on their own and as first steps towards the
numerical simulation of dynamical systems on networks,
it is of major interest to study inherent classical dynam-
ical systems. Formally, they are retained from (1)-(2) for
the particular choices of complete graphs

A(L)
m`1...`L

= 1, `1, . . . ,`L ,m ∈ {1, . . . , M } ,

and hence the decisive sums read as( M∑
`1,...,`L=1

g (L)(xm , x`1 , . . . , x`L

))M

m=1
.

Guideline. In the following, we specify the main items
of community integration algorithms (CIAs) for the si-
multaneous computation of the decisive sums arising in
first-order dynamical systems on networks. Furthermore,
we comment on extensions to higher-order systems.

Two pre-simulation steps (P1) and (P2) are carried
out in advance. From them, two evaluation steps (E1)
and (E2), applied several times in the course of the nu-
merical integration, infer naturally.

(P1) Identification of a well-adapted global approxima-
tion of a part of the function defining the underlying
classical system.

(P2) Application of an effective community detection al-
gorithm and transformation of the adjacency matrix
to block form.

(E1) Treatment of classical subsystems associated with
complete subgraphs by precomputations of reap-
pearing quantities.
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(E2) Treatment of remaining contributions associated
with relatively sparse submatrices by straightforward
summations.

Pre-simulation step (P1). For the decisive sums defin-
ing the underlying classical dynamical system, we calcu-
late a global approximation, e.g. by polynomial interpola-
tion, Taylor series expansion, or Fourier series expansion,
respectively, such that( M∑

`=1
g (xm , x`)

)M

m=1
≈ ∑

j∈J

ψj (x)
(
Ψj (xm)

)M
m=1 .

Computational complexity. We point out that the se-
lected structure of the employed global approximation
permits the precomputation of the reappearing quanti-
ties (ψj (x)) j∈J . As a consequence, quadratic complex-
ity O (M 2) with respect to the total number of compo-
nents is reduced to linear complexity O (M), but with the
addition that the number of elements in the index set J

has an influence on the actual cost. We indicate this with
the symbolic notation O (|J |M). For a particular dynam-
ical system, it is advisable to balance the computational
effort and the requested accuracy, both related to the
choice of J .

Pre-simulation step (P2). Numerous algorithms facil-
itate the detection of communities in networks.1 Accord-
ingly, we transform the adjacency matrix associated with
the underlying graph by means of a permutation matrix
to block structure

PA P T =


A1 A(+)

1
A(−)

2 A2 A(+)
2

...
...

...
A(−)

I−1 AI−1 A(+)
I−1

A(−)
I AI

 ∈RM×M .

For concreteness and in view of visualisations given in
Figure 5, we suppose that the square matrices along the
diagonal

Ai ∈Rdi×di , i ∈ {1, . . . , I } ,
I∑

i=1
di = M ,

are relatively dense and that the remaining matrices to
the right-hand and left-hand sides of the diagonal blocks

A(+)
1 , . . . , A(+)

I−1 , A(−)
2 , . . . , A(−)

I ,

are relatively sparse. The components of the problem
data and the solution to the initial value problem (1) are
reordered correspondingly.

For the sake of simplicity, we employ the same nota-
tion for the original and the transformed system.

Evaluation steps. Based on the two pre-simulation
steps, we trace the evaluation of the full system back
to the evaluation of subsystems and thereby distinguish
two complementary cases.

For the purpose of exposition, we consider the first
block of the system, which comprises a relatively dense
square matrix and a relatively sparse matrix

S(block) =
( M∑
`=1

A
(block)
m`

g (xm , x`)

)d1

m=1
,

A(block) = (
A(dense) A(sparse)) ∈Rd1×M .

The remaining blocks of the form(
A(sparse) A(dense) A(sparse)) ∈Rdi×M , i ∈ {2, . . . , I −1} ,(

A(sparse) A(dense)) ∈RdI ×M ,

are treated in an analogous manner. Our basic concept is
to optimise the required number of functions evaluations
and the memory capacity. That is, in order to acceler-
ate the computation of sums and to avoid the storage of
submatrices, we use the decomposition

S(block) = S(dense)+S(sparse) ,

S(dense) =
( d1∑

`=1

A
(dense)
m`

=1

g (xm , x`)

)d1

m=1
,

S(sparse) =
( d1∑

`=d1+1

A
(sparse)
m`

=1

g (xm , x`)

)d1

m=1
.

Due to the fact that for relatively dense submatrices the
numbers of non-zero coefficients are relatively high, we
store the complementary contributions, i.e., all indices
corresponding to coefficients equal to zero. In contrast,
regarding that for relatively sparse matrices the numbers
of coefficients equal to zero are relatively high, we store
all indices that correspond to non-zero coefficients.

Our key idea for the subsystem that is defined by the
relatively dense submatrix is visualised in Figure 5. The
global approximation provided for the underlying classical
system applies to any reduced number of components. As
a consequence, we obtain the relation

S(dense) ≈ ∑
j∈J

ψj (x1, . . . , xd1 )
(
Ψj (xm)

)d1
m=1

−
( d1∑

`=1

A
(dense)
m`

=0

g (xm , x`)

)d1

m=1
.

1Amongst a variety of choices, we mention the community detection algorithm rber_pots, available through the Python package
cdlib.[26]
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Evaluation step (E1). The reasoning for classical dy-
namical systems conforms to the arising classical subsys-
tems. Again, for sufficiently large communities, it is to the
best advantage to compute reappearing quantities such as
(ψj (x1, . . . , xd1 )) j∈J in advance.

Besides, it is worth mentioning that for dynamical sys-
tems of Kuramoto–Daido-type, e.g., these quantities also
bear further meaning as localisations of order parameters.

Evaluation step (E2). For compensating and remaining
contributions such as(

−
d1∑
`=1

A
(dense)
m`

=0

g (xm , x`)+
d1∑

`=d1+1

A
(sparse)
m`

=1

g (xm , x`)

)d1

m=1
,

we use straightforward summation.

Numerical results

In order to substantiate our basic concepts for the key
item (P1), we next include detailed calculations for clas-
sical Cucker–Smale and Kuramoto–Daido-type systems,
where the defining functions have the form

g (xm , x`) = C
M h(x`−xm) , `,m ∈ {1, . . . , M } , (3)

with constant C > 0.

Cucker–Smale models. Classical Cucker–Smale sys-
tems describe collective motions of groups of individuals
with flocking behaviour. (Figure 1)

In three space dimensions, the positions (ξ1,ξ2,ξ3) and
the associated velocities (ξ4,ξ5,ξ6) are captured by the re-
lations

X =R6 , Y =R6 , ξ= (ξ1, . . . ,ξ6) ∈X ,

fm(ξ) = (ξ4,ξ5,ξ6,0,0,0)T , m ∈ {1, . . . , M } ,

α,β> 0, ϕ(ξ1,ξ2,ξ3) = (
α2 +ξ2

1 +ξ2
2 +ξ2

3

)−β ,

h(ξ) =ϕ(ξ1,ξ2,ξ3) (0,0,0,ξ4,ξ5,ξ6)T .

Regarding (1) and (3), summation applies to

Gi (x) =Gi (x11, . . . , x16, . . . , xM1, . . . , xM6)

=
( M∑
`=1

ϕ(xm1 −x`1, xm2 −x`2, xm3 −x`3) (x`i −xmi )

)M

m=1

for each index i ∈ {4,5,6}. From benchmark tests, we
favour Fourier series expansions of the power function

ϕ(ξ1,ξ2,ξ3) ≈ ∑
k∈K

ϕ(s)
k Fk (ξ1,ξ2,ξ3) , (ξ1,ξ2,ξ3) ∈ D ,

ϕ(s)
k ≈

∫
D
ϕ(ξ1,ξ2,ξ3)F−k (ξ1,ξ2,ξ3) d(ξ1,ξ2,ξ3) , k ∈K .

For suitably chosen cartesian products of intervals and
sufficiently large numbers of basis functions

Fk (ξ1,ξ2,ξ3) = ek Ek (ξ1,ξ2,ξ3) ,

ek =
3∏

i=1

(√
2 ai eiπki

)−1 , Ek (ξ1,ξ2,ξ3) =
3∏

i=1
e iπki ξi /ai ,

k = (k1,k2,k3) ∈K =K1 ×K3 ×K5 ,

(ξ1,ξ2,ξ3) ∈ D = [−a1, a1]× [−a2, a2]× [−a3, a3] ,

highly accurate approximations result. Straightforward
calculations yield the representation

Gi (x) ≈
2∑

κ=1

∑
k∈K

ψ̃(κ)
ki (x)

(
Ψ̃(κ)

ki (xm)
)M

m=1
,

ψ̃(1)
ki (x) =

M∑
`=1

E−k (x`1, x`2, x`3) x`i ,

Ψ̃(1)
ki (xm) =ϕ(s)

k Fk (xm1, xm2, xm3) ,

ψ̃(2)
ki (x) =

M∑
`=1

E−k (x`1, x`2, x`3) ,

Ψ̃(2)
ki (xm) =−ϕ(s)

k Fk (xm1, xm2, xm3) xmi ,

which can be cast into the desired form by systematically
numbering all elements of the index set {1,2}×K .

Simplified relations follow for flocking motions in two
dimensions.

Higher-order Kuramoto–Daido-type models. Classi-
cal Kuramoto–Daido systems describe the phases of sets
of coupled oscillators and reveal synchronisation phenom-
ena. (Figure 3)

The initial first-order formulation accordingly to (1)
and (3) relies on the relations

X =R/(2πZ) , Y =R , ξ ∈X ,

fm(ξ) =ωm ∈R , m ∈ {1, . . . , M } , h(ξ) = sin(ξ) .

An application of the elementary addition theorem for the
sine function yields the equivalent reformulation( M∑

`=1
sin(x`−xm)

)M

m=1
=

2∑
j=1

ψj (x)
(
Ψj (xm)

)M
m=1 ,

ψ1(x) =
M∑
`=1

sin(x`) , Ψ1(xm) = cos(xm) ,

ψ2(x) =−
M∑
`=1

cos(x`) , Ψ2(xm) = sin(xm) ,

which obviously permits the reduction from quadratic to
linear computational complexity.

At first glance, it is unexpected that this procedure
extends to higher-order systems involving terms of the
form ( M∑

`1,...,`L=1
sin(σ1 x`1 +·· ·+σL x`L −xm)

)M

m=1
,

σ1, . . . ,σL ∈ {−1,1} ,
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First-order Cucker–Smale systems Kuramoto–Daido-type systems of order L

Novel approach O (|J |M) O (M)

Standard approach O (M 2) O (M L+1)

Table 1: Computational complexity for the evaluation of the decisive sums arising in classical first-order Cucker–Smale
and higher-order Kuramoto–Daido-type systems. Standard approaches result in polynomial complexity. Well-adapted
global approximations or reformulations, respectively, yield representations that reveal precomputations of reappearing
quantities and permit reductions to linear complexity.

but straightforward calculations confirm the striking re-
ductions from polynomial to linear computational com-
plexity likewise in such cases.

Computational complexity and numerical evidence.
Numerical results for first-order Cucker–Smale and higher-
order Kuramoto–Daido-type systems are given in Fig-
ures 1-4.

When providing simulations for large-scale dynamical
systems, it is reasonable to assume that the impact of
computational side effects is diminished and computation
times become significant quantities. In the provided nu-
merical comparisons of standard and novel approaches,
we thus may consider the ratios of computation times as
reliable indicators for the effective gains.

The numerical results presented in Figures 2 and 3 are
in accordance with the general statements of Table 1. As
confirmed by Figure 4, the conclusions also hold for sys-
tems on networks, where numerous pairwise interactions
take place within communities of larger sizes.

Code and data availability. Matlab scripts to repro-
duce numerical results as well as additional simulations
for Cucker–Smale systems (Figure 1)

Movie_CuckerSmale_Flock1.m4v
Movie_CuckerSmale_Flock2.m4v
Movie_CuckerSmale_Flock3.m4v
Movie_CuckerSmale_Flock4.m4v

and for higher-order Kuramoto–Daido-type systems (Fig-
ure 3)

Movie_KuramotoDaido_Order1.m4v
Movie_KuramotoDaido_Order2.m4v
Movie_KuramotoDaido_Order3.m4v

are found at the provided link.2 A more comprehensive
code for the simulation of various dynamical systems on
networks will be accessible in the near future. Visualisa-
tions of flocks of birds and real data networks are freely
available.3

Discussion

In this work, we have introduced community integration
algorithms (CIAs) for the numerical simulation of large-
scale dynamical systems on networks.

It has been our intention to state on the one hand the
fundamental concepts to such an extent that technical
details are avoided and to demonstrate on the other hand
the capability of our novel modus operandi on the basis
of representative test problems.

As scopes with significant benefits, we have identi-
fied correspondent classical dynamical systems involving
a high number of components with pairwise or higher-
order interactions. Accordingly, when combined with ef-
fective community detection algorithms, the advantages
over standard approaches are transferred to dynamical

systems on networks in case that they have the character-
istics of numerous interactions within large communities.

Evidently, for the numerical simulations of demanding
large-scale applications, it is advisable to optimise free pa-
rameters in the global approximation and to amend CIAs
with state-of-the-art methods ranging from the automatic
recognition of blocks in adjacency matrices to parallelisa-
tion.

Concluding, we hope that this work inspires current re-
search in various fields as it complements the conventional
assessment that numerical simulations of large-scale sys-
tems involving high numbers of interactions are out of
reach. We hope to open up novel perspectives according
to the principle revealing intrinsic structures is our secret
of success.
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