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Preface

Differential equations are fundamental in the description of dynamical processes. The areas
of applications include the domains of natural science and engineering technology, finance
and medical science.

For instance, hyperbolic partial differential equations such as Schrodinger type equations
used in quantum physical models are presently attracting a lot of interest. Examples for
parabolic equations are reaction-diffusion equations and the incompressible Navier-Stokes
equation which arise in the modelling of air-currents, population models, and circulations.

For the solution of realistic models, due to their complex nature, it is in general indis-
pensable to utilise numerical methods. Though, in particular in connection with computer-
aided simulations over long times, the actual result is adulterated by the influence of the dis-
cretisation, rounding errors, and inaccuracies in the data. Therefore, this raises the question
how to interprete the obtained results and how to draw significant conclusions thereof.

This habilitation thesis comprises contributions to the topic Time Integration of Differential
Equations. Our main objective is the construction and analysis of time integration methods
for stiff differential equations. In particular, our concern is to investigate the error behaviour
and the qualitative properties of certain numerical method classes.

Around 1960, things became completely different and everyone became aware that
the world was full of stiff problems.
GERMUND DAHLQUIST (1925-2005)

Primarily, the scope of applications includes nonlinear initial-boundary value problems of
parabolic type that are often used in the modelling of nonlinear diffusion and heat con-
duction processes. According to the employed analytical framework, it is expedient to dis-
tinguish between semilinear and (fully) nonlinear problems. In this preface, to keep the pre-
sentation simple, we restrict ourselves to one space dimension.

Typically, a semilinear parabolic initial-boundary value problem for a real-valued function
U :[0,1] x [0, T] — R comprises a partial differential equation of the form

0.Ux, )= (x)U(x, 1) +.F(t,x,U(x,1),0,U(x,0)), 0<x<1, >0, (la)

that involves a second-order strongly elliptic differential operator &7 = a0y + B0y + ¥y with
space-dependent coefficients «, 8,7 : [0,1] — R satisfying suitable regularity requirements.
In particular, a has to be positive and bounded away from 0. Likewise, the nonlinearity .# is



supposed to be regular in all variables and to fulfill certain growth conditions. The differen-
tial equation is further subject to certain boundary and initial conditions. For example, we
impose a homogeneous Dirichlet boundary condition and a smooth initial condition

uo,n=0=U0(1,n, U(x,0) = Up(x), O=sx=<l1l, 0=<t=T (1b)

The precise assumptions on the equation as well as various applications from physics, biol-
ogy, and engineering that can be cast into the form (1) are found in HENRY [8].

The following nonlinear parabolic initial-boundary value problem arises in detonation
theory and describes the displacement of a shock

exp(U(x, )0, U(x,0))—-1) 1

0, U(x, 1) 2 @
0,.U0,0)=0=0,U(,1), Ux0)=Uy(x), 0<x<l, 0<t<T,

0:U(x,t)=1n

see LUNARDI [11] and references therein.

In 1971, I read the beautiful paper of Kato and Fujita on the Navier-Stokes equa-
tions and was delighted to find that, properly viewed, it looked like an ordinary
differential equation, and the analysis proceeded in ways familiar for ODES.

DAN HENRYy, 1981

For the theoretical investigation of parabolic initial-boundary value problems such as (1)
and (2), it is useful to consider the partial differential equation as an ordinary differential
equation. Also, this approach is advantageous for the construction and analysis of time in-
tegration methods for parabolic problems. A survey of the abstract framework, which re-
lies on the theory of sectorial operators and analytic semigroups on Banach spaces, is found
in [8, 11].

For instance, in order to formulate (1) as abstract problem on a function space, one defines
alinear operator A: Dc X — X andamap f:[0,T] x V — X through

(Av)) =X v, (ft,v)@=2F(txv®,0vx), veEs 0.
Therewith, one obtains the following initial value problem
W) =Au®+ f(r,u(®), 0<r<T,  u(0) given, 3)

for a function u: [0, T] — X where (u(t))(x) = U(x, t). The boundary condition is reflected in
the domain of the unbounded linear operator A. In the above situation, a proper choice for
the underlying space is the Hilbert space X = I2(0,1). Then, it follows D = H2(0,1) N H& 0,1
and V = H}(0,1).

The results in [8, 11] imply that A is a sectorial operator which generates an analytic semi-
group (e’4) =0 On X. Within the abstract Banach space setting, it is in particular justified to
represent the solution of (3) by the variation-of-constants formula

t
u() = e u(0) +f e P4 f(r,u(m)dr, 0<t<T. (4)
0



A basic tool in order to establish the existence and regularity of a local solution of the integral
equation (4) and (3), respectively, is Banach’s Fixed Point Theorem, see [8, Chapter 3].

In LUNARDI [11], it is demonstrated how the techniques applied in the semilinear case
extend to nonlinear initial values problems

u'(t)=F(t,u(r)), 0<t<T,  u(0) given, (5)

that come from a parabolic initial boundary-value problem such as (2). A basic requirement is
that the derivative of the function F defining the right-hand side of the differential equation
is a sectorial operator. Then, by a modification of the variation-of-constants formula (4), a
local solution of (5) is constructed in a space of weighted Holder-continuous functions.

In many situations, apart from an existence and regularity theory, it is also substantial to
study the qualitative behaviour of an evolution equation, that is, the geometric properties
of the flow. In this respect, we refer to the monographs [8, 11], where such questions are
investigated for semilinear and fully nonlinear parabolic evolution equations.

There are at least two ways to combat stiffness. One is to design a better computer,
the other, to design a better algorithm.
HARVARD LOMAX (1922-1999)

When solving numerically a differential equation, it is desirable that the applied method
possesses a favourable error behaviour and preserves well certain qualitative features of the
original problem. Furthermore, in connection with stiff systems, it is essential that the nu-
merical method has favourable stability properties. For that reason, implicit Runge-Kutta
and linear multistep methods are established schemes for the time integration of partial dif-
ferential equations. In particular, the RadaullA-methods and the backward differentiation
formulas are appropriate integration methods for initial value problems that originate from
the spatial discretsation of a parabolic initial-boundary problem. A thorough treatment of
numerical methods for stiff differential equations is given in HAIRER AND WANNER [6], see
also [1, 5, 7, 10].

Although most of these methods ! appear at the moment to be largely of theoretical
interest ...
BYRON EHLE, 1968

In the past few years, exponential integrators have attracted a lot of research interest. Due
to their excellent stability properties, they are particularly appealing in situations where the
differential equation comes from the spatial discretisation of a partial differential equation.
However, as exponential integration methods require the numerical computation of the ma-
trix exponential and related functions, for many years, they were considered as impracticable

1 The citation originally refers to implicit Runge-Kutta methods.



for problems of large dimension, see MOLER AND VAN LOAN [12]. Recently obtained results
give further insight in subspace methods such as Krylov subspace techniques and make it
feasible to compute, in an efficient manner, matrix-vector products, see [9] and references
therein.

Theory without practice cannot survive and dies as quickly as it lives.

He who loves practice without theory is like the sailor who boards ship without a
rudder and compass and never knows where he may cast.

LEONARDO DA VINCI (1452-1519)

The present thesis is a collection of contributions aiming at a better understanding of time
integration methods for singularly perturbed and abstract parabolic problems. The contri-
butions are unified by the fundamental hypotheses on the problem classes which rely on
an abstract Banach space setting of sectorial operators and further by the employed pertur-
bation techniques. Accordingly to the considered numerical method classes, the thesis is
divided into two chapters. The first chapter is devoted to established schemes such as im-
plicit Runge-Kutta and linear multistep methods, and the second chapter is concerned with
exponential integration methods. In the following, a brief survey of each chapter is given.

The main result in OSTERMANN AND THALHAMMER [13] is a convergence estimate for lin-
early implicit Runge-Kutta time discretisations of semilinear parabolic problems. In this
work, we focus on convergence estimates for equations involving non-smooth initial values.
Such error bounds are essential in view of practical examples and have applications in the
study of the long-term behaviour of time discretisations. The works GONZALEZ, OSTERMANN,
PALENCIA, AND THALHAMMER [2] and OSTERMANN AND THALHAMMER [14] are related to my
doctoral thesis [18] on the time discretisation of nonlinear parabolic problems by implicit
Runge-Kutta methods. In [2, 14], amongst others, the techniques used in [18] are extended to
variable stepsizes. In particular, we exploit two different approaches to obtain finite time
convergence bounds for implicit Runge-Kutta time discretisations with variable stepsizes.
In OSTERMANN, THALHAMMER, AND KIRLINGER [16], we proceed our analysis of nonlinear
parabolic problems. As special cases, the considered numerical method class includes the k-
step backward differentiation formulas. The core of the work is dedicated to the derivation of
stability bounds for variable stepsize linear multistep methods. The work THALHAMMER [19]
is concerned with the derivation of a convergence bound for variable stepsize linear mul-
tistep methods when applied to a singularly perturbed problem. To this aim, perturbation
techniques that have been used in [16] are extended to singularly perturbed systems.

In GONZALEZ, OSTERMANN, AND THALHAMMER (3], we construct a second-order explicit
exponential integration method for nonautonomous linear problems and study its stability
and convergence properties for abstract evolutions equations of parabolic type. This work
together with the note [20] provide the basis for GONZALEZ AND THALHAMMER [4]. There,
we are concerned with the construction and analysis of an explicit exponential integrator for



quasilinear parabolic problems. Such problems are of particular relevance in view of practical
applications. The aim of THALHAMMER [21] is to explain the substantial order reduction that
is in general encountered when a problem of parabolic type is solved numerically by means
of a higher-order commutator-free exponential integrator. In GONZALEZ, OSTERMANN, AND
WRIGHT [17], we consider a numerical method class that combines the benefits of explicit
exponential Runge-Kutta and exponential Adams methods. Within this method class, it is
straightforward to construct high-order schemes that possess favourable stability and con-
vergence properties for parabolic problems.

A recent work which is closely related to the theme of Chapter 2 is included in the appendix.
In OSTERMANN AND THALHAMMER [15], we are concerned with the positivity of exponential
integration methods. Our main result implies that positive exponential integrators of linear
multistep type obey an order two barrier.

... methods? for stiff problems, we are just beginning to explore them ...

LAWRENCE SHAMPINE, 1985

For the near future, a main objective is to understand well the qualitative behaviour of ex-
ponential integration methods for different problem classes including singularly perturbed
systems, differential-algebraic problems, Hamiltonian systems, and generalised wave equa-
tions. Further, it is intended to find efficient linearisation and error control strategies which
help to improve the significance of exponential integrators for practical applications.

2The citation originally refers to Runge-Kutta methods.
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1.1. Non-smooth data error estimates

Non-smooth data error estimates for linearly implicit Runge-Kutta methods
ALEXANDER OSTERMANN AND MECHTHILD THALHAMMER

IMA Journal of Numerical Analysis (2000) 20, 167-184
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Non-smooth data error estimates for linearly implicit Runge—Kutta
methods

ALEXANDER OSTERMANN AND MECHTHILD THALHAMMER

Institut fiir Mathematik und Geometrie, Universitdt Innsbruck,
Technikerstrafie 13, A-6020 Innsbruck, Austria

[Received 14 January 1999 and in revised form 7 May 1999]

Linearly implicit time discretizations of semilinear parabolic equations with non-smooth
initial data are studied. The analysis uses the framework of analytic semigroups which
includes reaction—diffusion equations and the incompressible Navier—Stokes equations.
It is shown that the order of convergence on finite time intervals is essentially one.
Applications to the long-term behaviour of linearly implicit Runge—Kutta methods are
given.

1. Introduction

When analysing discretizations of parabolic initial boundary value problems, it is not
sufficient to consider only smooth initial data. This is partly because such initial data give
solutions that keep their smoothness up to the boundaries. They thus require compatibility
conditions which are often unrealistic in practical applications. Apart from that, non-
smooth data error estimates are an important tool for obtaining long-term error bounds.
This has been emphasized by Larsson (1992) and is also reflected in Assumption 3.2
in Stuart’s survey article (Stuart 1995). The long-term behaviour of numerical solutions
is closely related to the question of whether the continuous dynamics of the problem
is correctly represented in its discretization. Suppose, for example, that the continuous
problem has an asymptotically stable periodic orbit. Does the discrete dynamical system
then possess an asymptotically stable invariant closed curve that lies close to the continuous
orbit? The construction of such discrete invariant objects is usually based on fixed-point
iteration, see e.g. Alouges & Debussche (1993), van Dorsselaer (1998), van Dorsselaer
& Lubich (1999), Lubich & Ostermann (1996). Although the final result itself might be
smooth, the single iterates are, in general, not. The whole construction thus relies on non-
smooth data error estimates.

In spite of their importance, surprisingly few such estimates can be found in the
literature. For time discretizations of linear parabolic problems, non-smooth data error
estimates are first given by Le Roux (1979). But only until recently have these estimates
been extended to more general problem classes. For semilinear parabolic problems, optimal
results for implicit Runge—Kutta methods are given in Lubich & Ostermann (1996); see
also the references therein. The corresponding results for multistep methods can be found
in van Dorsselaer (1998).

In this paper we derive optimal error bounds for linearly implicit Runge—Kutta methods,
applied to semilinear parabolic problems with non-smooth initial values. We work in

© Oxford University Press 2000



168 A. OSTERMANN AND M. THALHAMMER

an abstract Banach space setting of analytic semigroups, given in Henry (1981) and in
Pazy (1983). This framework includes reaction—diffusion equations and the incompressible
Navier—Stokes equations. The method class is formulated in sufficiently general terms
such that it comprises classical Rosenbrock methods as well as extrapolation methods
based on the linearly implicit Euler scheme. The latter have proven successful for the time
integration of parabolic problems, see Bornemann (1990), Lang (1995), and Nowak (1993).

The present paper is structured as follows. In Section 2 we formulate the analytical
framework, and we introduce the numerical method. The main result is stated in Section 3.
There we prove that linearly implicit Runge—Kutta methods, when applied to semilinear
parabolic problems with non-smooth initial data, converge with order one essentially.
Low-order convergence is sufficient for applications to long-term error estimates. We
illustrate this in Section 4 where we show that exponentially stable solutions of parabolic
problems are uniformly approximated by linearly implicit methods over arbitrarily long
time intervals. This result implies stability bounds for certain splitting methods. Under
natural assumptions on the nonlinearity, it is possible to improve the convergence result of
Section 3. This will be elaborated in Section 5. To keep the paper independent from other
work, we have formulated all auxiliary results with an outline of the proofs in Section 6.

Compared to previous work, our convergence proofs are conceptionally simple. We
consider the numerical approximation u, of a linearly implicit Runge—Kutta method to the
exact solution u(#,) as a perturbation of a suitably chosen Runge—Kutta solution ,,. Using
the triangular inequality

e — u(@)ll < llup — ’I/Tn” + ”’/Tn —u(t)ll,

we have to estimate |u,, — i, ||. Together with the bounds for ||z, — u(z,)|| from Lubich
& Ostermann (1996), we get the desired result. For the reader’s convenience, we have
collected all the necessary Runge—Kutta bounds in an appendix.

We finally remark that the above approach is not restricted to non-smooth data error
estimates. It can equally be used, for example, to derive the conditions for high-order
convergence of linearly implicit methods at smooth solutions.

2. Analytical framework and numerical method

In this section we state the assumptions on the evolution equation. Moreover we introduce
the numerical method.

2.1 Evolution equation

We consider a semilinear parabolic equation of the form

u' 4+ Au= f(t,u), 0<t<T (2.1a)
u(0) = uop. (2.1b)

This abstract evolution equation is given on a Banach space (X, | - |). The domain of the
linear operator A on X is denoted by D(A), and the initial value uy € V is chosen in an
interpolation space D(A) C V C X which will be specified below. Our basic assumptions
on the initial value problem (2.1) are that of Henry (1981).
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ASSUMPTION 2.1 Let A: D(A) C X — X be sectorial, i.e. A is a densely defined and
closed linear operator on X satisfying the resolvent condition
|I + A7 < M (2.2)
X<«X |)\ _ C0| '

on the sector {A € C; Jarg(A —w)| <K m —¢p}for M > 1, w e R,and 0 < ¢ < %

Under this hypothesis, the operator —A is the infinitesimal generator of an analytic
semigroup {e~'4} >0 Which renders (2.1) parabolic. In the sequel we set

Ag=A+al for some a > w.

For this operator, the fractional powers are well defined. We choose 0 < @ < 1 and define
V = D(A%) which is a Banach space with norm [Jv|| = |AJv|. Note that this definition
does not depend on a, since different choices of a lead to equivalent norms.

We are now ready to give our hypothesis on the nonlinear function f.

ASSUMPTION 2.2 Let f :[0,T] x V — X be locally Lipschitz-continuous. Thus there
exists a real number L(R, T) such that

[f(t1,v1) = f(t2, v2)| < L(|ty — 2] + [lvr — v2l)) (2.3)
forall#; € [0, T]and ||v;|| < R,i =1, 2.

Reaction—diffusion equations and the incompressible Navier—Stokes equations can
be cast into this abstract framework. This is verified in Section 3 of Henry (1981) and
in Lubich & Ostermann (1996). For a more general class of reaction—diffusion equations
that is included in our framework, we refer to Section 8.4 of Pazy (1983).

We do not distinguish between a norm and its corresponding operator norm. For
elements x = (x1,...,x) in a product space, we set |x| = max(|xq], ..., |xs|) and
lx]| = max(||xq]], ..., [lxs]l), respectively. The norm of linear operators from X°® to V*
is denoted by ||- ||y —x-

2.2 Numerical method

In this paper linearly implicit Runge—Kutta discretizations of parabolic problems are
studied. In the sequel we will review these methods in brief. For detailed descriptions,
refer to the monographs by Deuflhard & Bornemann (1994), Hairer & Wanner (1996), and
Strehmel & Weiner (1992).

A linearly implicit Runge—Kutta method with constant stepsize h > 0, applied to the
initial value problem (2.1), yields an approximation u, to the value of the solution u at
t, = nh and is given by the internal stages

i
Upi + AUni = f (tn + aih, Uni) + hdy Y vijUp; + hyign
=1
- ’ (2.42)
i
Uni:lfin-i-/’lzaijUi/lj, 1<i<s

j=l1
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and the one-step recursion

N
Unp1 =un+h Y bjU;. (2.4b)
j=1

Here J,, and g, are approximations to the derivatives of —Au + f (¢, u) with respect to the
variables u and ¢

Jp~® —A+ D, f(ty, un), &n = Dy f(tn, uy).

The real numbers «;;, ;j, bi, ;, y; are the coefficients of the method. We always assume
that y;; > O for all i.

In contrast to fully implicit Runge—Kutta methods, where the numerical approximation
is given as the solution of nonlinear equations, u,4 is obtained from u, by solving only
linear equations.

In order to write the numerical method more compactly, we introduce the following
matrix and vector notations

I'=ii<ij<s, Q= (aj<ij<s» U= 1,...,HT e R, (2.52)

where a;; = a;j + y;; witha;; = 0fori < j and y;; = 0 fori < j. Further we set

a=(a....a)",  y=01.... 0" (2.5b)
b=(by,..., b7, c=(ci,....,cs)T =Ql. (2.5¢)

The numerical scheme has order p if the error of the method, applied to ordinary
differential equations with sufficiently differentiable right-hand side, fulfils the relation
u, — u(ty) = OhP) for h — 0, uniformly on bounded time intervals.

A linearly implicit Runge—Kutta method is A(?})-stable if the absolute value of the
stability function,

R =1+zb7 U -z, (2.6)

is bounded by one for all z € My = {z € C; |arg(—z)| < ¥}. Note that (I — zQ) is
invertible in My since all y;; are positive. The numerical method is called strongly A(¥)-
stable if in addition the absolute value of R at infinity, R(co) = 1 — pTa-! 11, is strictly
smaller than one.

Two types of linearly implicit Runge—Kutta methods are of particular interest.
Rosenbrock methods satisfy the conditions

i—1 i
W=y a. V=) Vi 2.7)
j=I j=1
and use the exact Jacobians

Jp=—A+ D, f(ty, uyn), &n = Di f(tu, un). (2.3)
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As a prominent example, we mention the fourth-order method RODAS from Hairer &
Wanner (1996). It is strongly A (;r/2)-stable and satisfies R(co) = 0.

A second important class of linearly implicit methods is determined by the
requirements

i—1 i
= Zaij + Z Vijs and Jn=—A, g =0.
Jj=1 Jj=1

In this paper such methods are called W-methods. This differs from the common diction
in the literature where this term is often used as a synonym for linearly implicit Runge—
Kutta methods. The operator A and the nonlinearity f are not determined uniquely, since
bounded parts of A, e.g., can be included into f. Therefore the assumption J, = —A
is not as restrictive as it may seem at first. As an example of W-methods, we mention
the extrapolated linearly implicit Euler method which is described briefly in Section 3 of
Lubich & Ostermann (1995), see also Hairer & Wanner (1996). It is strongly A(¥)-stable
with ¥ & 7 /2 and satisfies R(oc0) = 0.

3. Non-smooth data error estimates

In Theorem 3.1 below we state the main result of this paper. We give a non-smooth data
error estimate for a general class of linearly implicit methods. For smooth initial data, their
convergence is studied in Lubich & Ostermann (1995), Ostermann & Roche (1993), and
Schwitzer (1995).

THEOREM 3.1 Let (2.1) satisfy Assumptions 2.1 and 2.2, and let ug € V be such that
the solution u# remains bounded in V for 0 < r < T. Apply a strongly A(#)-stable linearly
implicit Runge—Kutta method of order at least one with ¥ > ¢ to this initial value problem,
and assume that ||J, + A||lx—v as well as |g,| are uniformly bounded for 0 < ¢, < T.
Then there exist constants i and C such that for all stepsizes 0 < & < hg the numerical
solution u,, satisfies the estimate

ity — u i)l < c(t,;lh +17%h |1ogh|) for0 < 1, < T.

The constants hg and C depend on T and the bound of u«, on the quantities appearing in
Assumptions 2.1 and 2.2, and moreover on the numerical method.

This result can be applied directly to W-methods and Rosenbrock methods. For W-
methods this is obvious since J, = —A and g, = 0. For Rosenbrock methods we have to
suppose that the first derivatives of the nonlinearity f are locally bounded. Then, due to
(2.8), Theorem 3.1 is applicable.

To study the long-term dynamics of the evolution equation (2.1), apart from a non-
smooth data error estimate for finite times, an error estimate for the derivative of the
solution with respect to the initial value is often needed, see Stuart (1995). This derivative,
evaluated at the point ug, is a linear operator on V and is denoted here by v(¢) = Du(¢; ug).
Consequently (u, v) satisfies the system

" A 0\ (u\ ([ ft.uw
() + (5 2 ()=(n/re) G
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with initial value (uq, vo)”, where vy is the identity on V. The derivative of the numerical
solution u, with respect to the initial value is denoted by v, = Du,(ug). It is just the
second component of the linearly implicit Runge—Kutta solution of (3.1) at t,, = nh.

We are now in a position to state the following result.

COROLLARY 3.1 In addition to the assumptions of Theorem 3.1, let the Fréchet
derivative D, f (¢, u) be locally Lipschitz-continuous with respect to the variables ¢ and
u, and bounded as a linear operator from V to X, uniformly in ¢ and u. Then there exist
constants /g and C such that for 0 < & < hg the estimate

lon — vl < C(5"h + 1, %hlloghl),  0<1, <T

is satisfied. Apart from the quantities given in Theorem 3.1, the maximum stepsize h( and
the constant C depend on the Lipschitz constants of D,, f.

Proof of Corollary 3.1. Obviously (3.1) satisfies Assumptions 2.1 and 2.2. In order to apply
Theorem 3.1, it remains to show that v(#) is bounded by a constant, uniformly for 0 < 7 <
T. By means of the variation-of-constants formula, v can be represented as

t
v(t) = e 4 +/ e U"IAD, f(z, u(r)) v(r) dr,
0

see Henry (1981, Lemma 3.3.2). Applying the estimates given in Lemma 6.3 (see later),
the boundeness of v follows from a Gronwall inequality given in Section 1.2.1 of Henry
(1981). ]

Proof of Theorem 3.1. Our basic idea is to compare the numerical solution, obtained with
the linearly implicit method, with the solution of a suitably chosen implicit Runge—Kutta
method.

(a) First we apply a linearly implicit method to (2.1) which gives (2.4). In order to
write (2.4) more compactly, we employ the following vector notation

Unz(Unlw-wUns)T, U;l:(U}{ll”U/ )T

ns

. (3.2)
Fo=(f(n+ath,Un), ..., fltn +ash, Up))" .
Together with (2.5) we get
U+ T Q@ AU,=F,+ (T @hJ)U, +y ® hgy (3.3a)
Up=1Qu,+ ((Q—-T)®hI)U, (3.3b)
Unt1 = up + (BT @ KU, (3.3¢)

Here we have used Kronecker product notation. Thus the (k, m)-th component of B ® A,
where A is a linear operator and B an arbitrary matrix with coefficients b;;, is given
by by, A. For notational simplicity, we write B ® hA instead of B ® (hA). We further
distinguish between the identity matrix Z on R® and the identity operator / on X or V.
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Inserting (3.3b) into (3.3a) and setting D, = J, + A, we get
Uy=Z@I+Q®hA) " (-1® (Auy) + F, + (I' ® hD)U,, + v ® hgy).
Together with (3.3c¢) this yields the recursion

Unp1 = R(—=hA) up + BT QDT QI+ AQhA)~!
(Fo+ (I ®hD)U, +y @ hgy). (3.4)

(b) Next we compare this numerical solution with the following implicit Runge—Kutta
discretization

U +T® AU, = F, (3.52)
Uy =1Q10, +(QhHU, (3.5b)
iy =0 + BT @ DU (3.5¢)

Here we have used the same abbreviations as in (3.2) (replacing U, with ﬁn, etc). In
particular we set

Fo=(fln+cih, Un), ..o, fltn+csh, Ung))” with ¢ =@l
A similar calculation as before yields

lnsl = R(—=hA) i, + BT @ DT QT+ AR hA)'F,. (3.6)

(c) The difference between the linearly implicit solution u,, and the Runge—Kutta solution
U, is denoted by e, = u, — Uy, In accordance with that, E, and E,, are defined by E, =
U, — U, and E|, = U, — U,, respectively. Taking the difference between (3.4) and (3.6)
gives

ent1 =R(=hA)e, + (BT @ DT R T+ QAR hA)™!
(Fy — Fo + (I @ kDU, + v ® hgy).

Solving this recursion yields

enp1 =" @MDY TR I+QA®hA) ™ (Z@R(—hA)"™")
v=0

(Fo = Fo+ (T ®@hDYU, +y @ hg), (3.7

where we have already used the fact that both methods start with the same initial value ug.
Since f is locally Lipschitz-continuous, we have

|Fy — Fal < L(h max fo; —ci| + 1| Eql)

<is

for ||Uy,|l, ||ﬁn|| < R. We suppose for a moment that the radius R can be chosen
independently of n. This will be justified at the end of the proof.
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From the last equation and the uniform boundedness of D, and g, we get

n
lenrill SCRY [T @I+Q@RA (TOR-RA) |, _y
v=0

(IEs| +h UL +R). (3.8)

(d) We now derive several relations that are necessary to bound e, 1. First we consider
hU),. From (3.3b) and (3.5b) we get

(r®hhHU, =1Qe, + (AR hI)E, — E,. (3.9)

In order to eliminate E),, we multiply (3.9) by (Z ® J,,) and insert it into the difference of
(3.3a) and (3.5a). This yields

Z®I+AQhAE, =-1Q (Aey) + 1 ® (Dyey) + Fy — Fy,
+(@Q®hD,)E, — (T ® D)E, +y ® hg,. (3.10)

We multiply this identity by (Z ® I + Q ® hA)~!. The existence of this operator is
guaranteed by Lemma 6.5. Applying (6.2) to the term involving Ae, and (6.3) with p = «
to the remaining expressions gives

hIEy|l < C llenll + Ch' || Eyll + Ch*~®
for h sufficiently small. Together with (3.9) we get
hUj | < C lleall + C | Enll + CR*. (3.1
It remains to express E,, in terms of e,. Regrouping (3.9) we have
E,,:ll®en+(((’2—F)®h1)E;l—(F®h1)ﬁ,’,. (3.12)

In order to estimate AU’

> We use (3.5b) in the form

Q@KU = -1 Qiiy + Uy (3.13)

Each component on the right-hand side of (3.13) can be written as

~ thtcih
u(ty) —up + Upi —u(ty, +cih) + / u'(7) dr. (3.14)
1,

n

Applying the triangular inequality as well as Lemma 6.4 and Lemma A.1 gives
RS C(t,;lh ey |logh|> forn > 1.
Therefore we finally get from (3.12)

IEa| < C llenll + C(tn_lh +17% |1ogh|) forn > 1. (3.15)
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Note that || Eg|| and thus 4| U6|| are bounded by a constant.
(e) Inserting (3.11) and (3.15) into (3.8), we obtain with (6.4) and Lemma 6.1

n—1
leall < CRY 1% eyl + C(r;lh +17%h |10gh|) .
v=1

Applying the discrete Gronwall Lemma 6.2, we get
litn = Gnll = llewll < (5570 + 1,1 l1og (3.16)
due to linearity. The desired estimate
it = @) < Nty = Tl + Wiy = )l < C (55 0+ 1,1 llog )

finally follows with Lemma A.1.

(f) We still have to show that the numerical solution remains in a ball of radius R. Note
that the exact solution as well as the Runge—Kutta solution are bounded on [0, 7']. We take
R sufficiently large and choose a smooth cut-off function

1 if ol < R,
x:V > [0,1  with X(v):{ 1””':>

0 if v = 2R.

Since f (¢, x (u)-u) has a global Lipschitz constant, we infer from (3.16) that the numerical
solution, obtained with this new f, is bounded by R for & sufficiently small. It thus
coincides with the numerical solution, obtained with the original f. This concludes the
proof of Theorem 3.1. O

4. Applications

As already mentioned in the introduction, Theorem 3.1 together with Corollary 3.1 can
be used to study the question of whether the continuous dynamics of a parabolic equation
is correctly represented in its discretization. A result in this direction is given in Lubich
& Ostermann (1996) for Runge—Kutta discretizations of periodic orbits. The proof there
carries over literally to linearly implicit Runge—Kutta methods. Note that the necessary
bounds for smooth initial data are provided by Lubich & Ostermann (1995) and Schwitzer
(1995). We do not give the details here.

Another immediate consequence of our non-smooth data error estimates are long-term
error bounds. As an illustration, we show below that exponentially stable solutions of (2.1a)
are uniformly approximated by linearly implicit Runge—Kutta methods over arbitrarily
long time intervals. Our presentation follows an idea of Larsson (1992). Alternatively one
might use directly the results of Stuart (1995). A close examination of their proofs shows
that they are applicable despite the additional |log /| term in our error estimate.

We recall that a solution u of (2.1a) is exponentially stable if there exist positive
constants 7 and § such that any solution v of (2.1a) with initial value v(tp) € V and
lu(tg) — v(tg)|| < 8 satisfies

lu(t) —v(@®)] < 3lluro) —v(zo)|  fort > o+ 4.1
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This condition holds, for example, in the neighbourhood of an asymptotically stable fixed-
point due to its exponential attractivity.

THEOREM 4.1 In addition to the assumptions of Theorem 3.1, let the solution u be
exponentially stable and globally bounded. Then, for any choice of t* > 0, there are
positive constants C and h¢ such that for all stepsizes 0 < h < ho we have

lun — uty)|| < Chllogh|  fort, € [t*, 00). 4.2)

The constant C depends on #* and on 7, given by (4.1). Moreover it depends on the
quantities appearing in Assumptions 2.1 and 2.2, on the numerical method, and on the
bound for the solution.

It is remarkable that (4.2) holds for quite crude approximations to the Jacobian. For
example, the choice J, = A is possible without any assumption on the growth of the
semigroup, i.e. on the sign of the constant w appearing in (2.2).

Proof. Henceforth, the constants § and 7 have the same meaning as in the definition of
exponentially stable solutions. Since the solution u is globally bounded in V/, it stays in a
ball of radius R /2, say. We may assume that t* < 7 and set T = 27 +¢*. Then Theorem 3.1
shows the existence of a constant C* = C*(R, ¢*, T') with

lun — u(ty)ll < C*h |loghl fort* <1, <Tand0 < h < ho. (4.3a)
After a possible reduction of § and &, we have hg < 7 and
C*hllogh| < §/2 < R/4 for 0 < h < hy. (4.3b)
Assume for a moment that the estimate
llu, — u(ty)]| <2C*h|logh|, 4kt <t <t +k+ Dt

holds for some k > 2, and let m be such that (im — 1)h < t < mh. Further denote by vy, ()
the solution of (2.1a) with initial value v, (#,) = u,. From Theorem 3.1 and the exponential
stability (4.1), we get

ltnm — unpn) | < Nttngm — Va Gl + 100 Gpm) — u@Gnem) |
< C*h [logh| + 3llun — uty)|| < 2C*h [logh| < 8.

The bound (4.2) with C = 2C* thus follows from (4.3) by induction. O

The above result can also be used to obtain stability bounds for splitting methods. As
an example, we consider the linear problem

u' + Au = Bu, u(0) = ug 4.4
and its discretization by the linearly implicit Euler method

uns1 = (I +hA) I + hB)u,.
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Since A and B are treated in a different way, this scheme can be interpreted as a splitting
method.

We assume that the operator A satisfies Assumption 2.1 and that B is bounded as an
operator from V to X. Thus B — A is the infinitesimal generator of an analytic semigroup
on V, see Corollary 1.4.5 of Henry (1981). We further suppose that this semigroup satisfies

e A B < ce™  fort>0 4.5)
with some « > 0. We then have the following result.

COROLLARY 4.1 Under the above assumptions, for any ¥ < «, there are positive
constants C and A such that for 0 < & < hy

[((1+rA)UI +0B)"| < Ce™ ™ forn>1.

The constant C depends on « and k, on the quantities appearing in Assumption 2.1, and on
1Bllx<v-

This proves the stability of the above splitting scheme for sufficiently small stepsizes.
We are not aware of any other proof for this result, apart from the case « = 0 where B has
to be bounded on X.

Proof. For given «, we choose 0 < k¥ < u < « and consider the equation
w +Aw=Bw  with B=ul+(+hpB.

For h sufficiently small, the solutions of this problem are exponentially stable, since there
exists some ¢ > 0 such that

He*’(A*E) || < Ce™ ¥ fort > 0.

This follows from Theorem 3.2.1 of Pazy (1983). Note that Bhasa Lipschitz constant that
depends on w, hg, || B||x v, but not on A. Due to linearity, we obtain from Theorem 3.1
and Theorem 4.1 the estimate

(7 +r0)a+0B)' | <C  forn>1.

The desired bound finally follows from I + hB = (1 4+ hw)(I +hB). a

5. Refined error estimate

Theorem 3.1 essentially yields convergence of order one. In this section we show that we
can raise the order of convergence under slightly stronger assumptions on the data. To be
more specific, we require that f satisfies the following property.

ASSUMPTION 5.1 Let f: [0, T] x V — X be locally Lipschitz-continuous with respect
to the norms ||A;ﬂ - || and |A;’3 | forsome 0 < B8 <1—a,ie.

AP (ft,v) — f(2, v)| S L (I =l + AP (1 — v)l) (5.1)

forallt; € [0, T] and v; € V with ||v;|| < R, i = 1, 2. Further suppose that the first- and
second-order derivatives of f are locally Lipschitz bounded with respect to these norms
also.
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Let X* = D(AL) for p > 0, and let X~ denote the completion of X with respect to
the norm |A, ” - |. We require that the approximations D,, to the Jacobian D, f (t,, u,) are
uniformly bounded as mappings from X*~# to X7#, i.e.

1A# DA Ix v <C for0O<is, <T, (5-2)

with the same S as above.
For the convenience of the reader, we recall that the coefficients of a Rosenbrock
method of order p = 2 satisfy

p'I=1 and b'Al=b"c=1, (5.3a)

whereas general linearly implicit Runge—Kutta methods of order two further fulfil the order
conditions

bla=1, Ty =0, pTri=0. (5.3b)
We are now in a position to state the refined error estimate.

THEOREM 5.1 In addition to the assumptions of Theorem 3.1, let Assumption 5.1
and (5.2) hold. Further, suppose that the method (2.4) has order p > 2. Then there exist
constants i and C such that for all stepsizes 0 < h < hg the numerical solution u,
satisfies the estimate

lun —ut)| < Ct; PR for0 <1, <T.

The constants iy and C depend on the constants appearing in Assumption 5.1 and in (5.2),
as well as on the quantities specified in Theorem 3.1.

Proof. This proof is an extension of the proof of Theorem 3.1. We thus concentrate on
those aspects that go beyond that proof.

(a) We have to estimate the difference F,, — Fn in (3.7) more carefully. Taylor series
expansion gives

Fy— Fy = (& —¢) @ hDy f(tn, ty) + (T ® Dy f (tn, tn)) En + A (5.4)
We note for later use that the remainder A, is bounded by
(Z® AP) An] < Cllenll + Ctf HITE. (5.5)
This follows from Assumption 5.1, the preliminary bound |e, || < C, and

h[(@®a?) Byl < (W llenl + 110 7)
(5.6)
(@@ A7) Uyl + (T @ 4;7) Ea| < C(llenll + £ 'h)..

The boundedness of e, is an immediate consequence of Theorem 3.1, whereas (5.6) is
obtained in a similar way to the bound for £ || E}, ||. Using (5.1) and (5.2), we get from (3.10)

M@ @ ATE N < C (W lleall + I ® AZPVEnll + B3 |4 Pg, 1)
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and since o + B < 1, this implies
M@ @ ATE < C (WP lenll + WIET @ ATHESN +1P). (57)
Further, a direct estimate of (3.12) gives
1T ® A EN < C(lleall +HIET & A7E, N +HIET & AT, 1)

‘We thus have to bound 4 (Z ® A;ﬂ)ﬁ,’,. Using Lemma 6.4 and (A.4), we obtain from (3.13)
hIZ @ A;PYUL| < Ctf~h.

Reinserting this bound into the above estimates together with (3.9) finally gives (5.6).

(b) We first give the proof for Rosenbrock methods. Recall that in this case, the identities
D, = D, f(t,,u,) and g, = D, f(t,,u,) as well as « + y = ¢ hold. The latter follows
from (2.7) and (2.5). From (5.4) we obtain with (3.9)

Fy— Fo+ (I @ hD)U) +y @ hgy = 1 ® (Dyen) + (A @ hDy)E), + Ap. (5.8)

We now insert this relation into (3.7) and start to estimate the recursion more carefully.
For this we denote the left-hand side of (5.8) by x and the operator on the right-hand side
of (3.7) by B. Using

|AZBx| < |ASPB| 1A Px|

together with (5.5), (5.6) and Lemma 6.5, we obtain
n—1
leall < Ch Y 1,4 Plleyll + Ctf~n1*P. (5.9)
v=1

The discrete Gronwall Lemma 6.2 and the corresponding bound (A.3) for Runge—Kutta
methods finally yield the desired result.

(c) For general linearly implicit Runge—Kutta methods, the identities D,, = D, f (t, u,)
and g, = Dy f(ty, un) are not necessarily valid. Instead, we have to use the additional
order conditions (5.3), combined with an elimination process. We illustrate this with the
term (@ — ¢) @ hD; f(t,, u,) from (5.4). Inserted in (3.7), it gives

n
BT RN T RI+AQhA) (TR R(—hAY"™") (@ —c) @ hD; f(ty, uy) (5.10)
v=0
where a direct estimate would only give order one. We first split
R(—hA)" =r" 4+ (R(=hA)" — ") with r = R(00).

The term with " can be estimated as in the proof of Theorem 3.1. Since |r| < 1, we get
an additional factor 2! ~® and hence the desired factor ~#. For the second term, we use the
identity

GBrTINTRI+AhA) '=bT @I —BTARRAT I+ AR hA)!
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together with the order conditions (5.3). This yields

“ (bT RNIRI+AR hA)_l((a —0)® (R(—hA)" _ rn))||v<_x
< Chﬁ|(bT0 ® (hAa)l_ﬁ)(I® I1+Aa® hA)_1| . |AZ+I3 (R(—hA)" . rn)|
An application of Lemma 6.5 thus shows that (5.10) gives a contribution of order hitB

The other terms in (3.7) are treated similarly and we again obtain (5.9). This concludes the
proof. O

6. Lemmas for Section 3 and Section 5

In this section we collect several results that we have used in the proofs of Theorem 3.1,
Corollary 3.1, and Theorem 5.1. We start with a discrete convolution of weakly singular
functions.

LEMMA 6.1 Forn € Nand h > 0, let t, = nh. Then the following relation holds for
0<p<l

- ctl=r for0 <o < 1,
hY 6,007 < 3Ct " llogh|  foro =1,
v=1

|
Ct, "7n°! foro > 1.

Proof. We interpret the left-hand side as a Riemann-sum and estimate it by the
corresponding integral. O

An integrable function ¢ : [0, T] — R with the property
t
Ogs(t)gaf(t—r)_pe(t)dr—l-bt_" for0< p,0 <1
0

fulfils the estimate 0 < e(r) < Ct~?, see Section 1.2.1 of Henry (1981). We next formulate
a discrete version of this Gronwall lemma.

LEMMA 6.2 Forh > Qand T > 0,let 0 < 1, = nh < T. Further assume that the
sequence of non-negative numbers ¢, satisfies the inequality

n—1
&n <athn__puev+bt;"

v=1

for0 < p < 1 and @, b > 0. Then the following estimate holds

Cht,° for0 <o <1,

&n < _
" Ch(t + 4, [loghl)  foro =1,

where the constant C depends on p, o, a,and on 7.
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Proof. This can be shown by using similar arguments as in the proof of Theorem 1.5.5 in
Brunner & van der Houwen (1986). We omit the details. a

For the remainder of this section, we suppose that the assumptions of Theorem 3.1 are
fulfiled. In particular we have 0 < @ < 1.

LEMMA 6.3 The analytic semigroup e /4 satisfies the bound

|A{‘l’e_m| < Ce =P fort > 0and p > 0.

Proof. This is Theorem 1.4.3 of Henry (1981). |

LEMMA 6.4 Letu denote the solution of (2.1) with initial value ug € V,and let0 <p < 1.
Then the derivative of u with respect to ¢ satisfies the estimate

IA;Pu' (1)) < CtP~' for0 <t < T.

Proof. For « — p > 0 this bound is given in Theorem 3.5.2 of Henry (1981). In the
remaining case, it follows from the identity

t
AP () = — Ay e Alug — f AlFe=Pe==D4 £ (¢ y(r)) dr
0
+ AP f(t u())
and Lemma 6.3. O

‘We close this section with some estimates for the numerical discretization.

LEMMA 6.5 Under the assumptions of Theorem 3.1, the following bounds hold for 0 <
p<land0<nh T

|AL(R(—hA)" — R(c0)")| < Ct,,”, (6.1)
H(I@hA)(I@HO@hA)—l’ <C, 6.2)
‘(I@Af;)(1®1+a®hA)*“ < Ch*, 6.3)

‘(I ® AT ® I +A®hA) " (T®R(—hAY")| < Cr7P. (6.4)

Proof. These estimates are standard. They follow from the resolvent condition (2.2) and
the interpolation result (see Theorem 1.4.4 in Henry 1981)

P 1-

‘Ag(u + A)_l‘ <C ‘A(M + A)_l‘ : ‘(u + A)_l‘

together with the Cauchy integral formula. Similar bounds are given in Lemma 2.3 of
Lubich & Ostermann (1993), and in Section 3 of Nakaguchi & Yagi (1997). Note that (6.1)
can also be derived from the proof of Theorem 3.5 in Lubich & Nevanlinna (1991). |
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Appendix A: Error estimates for Runge-Kutta methods

The present analysis relies strongly on non-smooth data error estimates for Runge—Kutta
methods. For the convenience of the reader, we recall the convergence results from Lubich
& Ostermann (1996).

For a given linearly implicit Runge—Kutta method of order p, we consider the
corresponding Runge—Kutta discretization of (2.1)

U + AUy = f(ta + cih, Un)
s N
o . o _ (A1)
Uni =iln+h Y aijUyj. s =T +h Yy b0,
j=1 J=l1

with the coefficients a;;, b;, ¢; as in (2.5). This diagonally implicit Runge—Kutta method
enjoys the following properties: It has order p, since the order conditions for Runge—Kutta
methods form a subset of those for linearly implicit methods. Due to ¢ = @]1l, its stage
order q is at least one. Moreover it has the same stability function and thus the same linear
stability properties as the underlying linearly implicit method. The existence of the Runge—
Kutta solution for A (¢})-stable methods follows from Theorem 2.1 in Lubich & Ostermann
(1996).
In Section 3 we have used the subsequent convergence result.

LEMMA A.1 Under the assumptions of Theorem 3.1, the following estimate holds for
O<h<hpandO <1, <T

it = (@)l + 100 = uta + i) < € (17 0+ 1;“h log ).

For n = 0 the same bound holds as for n = 1. The constants C and h¢ depend on the
quantities specified in Theorem 3.1.

Proof. This result is a sharper version of Theorem 2.1 in Lubich & Ostermann (1996). It
follows from (4.15) of loc. cit. with r = min(p, g 4+ 1) > 1. Note that the first iterate of
the fixed-point iteration is not given correctly there. In the fourth line above formula (4.15)
of loc. cit., it should read

n
U = Xpi + Yoi +dyi with — dy=hY_ Waoo(RUP) = G).
v=0

Using the Lipschitz condition for f, the bound then follows from Lemmas 4.2 and 4.3
of loc. cit. O
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Under the assumptions of Theorem 5.1, a refinement of Lemma A.1 is possible. For this
we note that the function g(¢) = f (¢, u(¢)) satisfies

APg I < KPP 0<1<T. (A2)

This follows from Assumption 5.1 and Lemma 6.4. We are now in a position to state this
refinement.

LEMMA A.2 Under the assumptions of Theorem 5.1, the following estimates hold for
O<h<hpandO <1, <T

it = )|+ 100 = ults + )| < € (5202 45,2 Fn1F), (a3)

1A% (5 — u@)) | + |AZ2 (Ui — uty +cim)|| < CtE7 h. (A4)

For n = 0 the same bounds hold as for n = 1. The constants C and h¢ depend on the
quantities specified in Theorem 5.1.

Proof. This lemma is a sharper version of Theorem 2.3 of Lubich & Ostermann (1996).
The bound (A.3) follows essentially from Lemma 4.4 of loc. cit. There, a similar result
is proved under an additional assumption on g”(¢) which enters the estimate of Ejgs(t).
Since we use here only information on g’(), we have to estimate this term differently. We
proceed as in the proof of Lemma 4.3 of loc. cit. and split the integral

t t/2
/O |Enl(t — 7)g5(r)| dr g/o IEn1t — )| yo_y-s]A2P85(0)| dT

t
+ [ IEe =0l g @)
t/2

The desired result
I Engs(tn)ll < Ct,y @ PR'+h

then follows from (A.2) and the bounds
|0l xex < Cmin (171782, 1'~)
|0l oy < C min (7172 Fp2, p1=a=F)

for0 <t < T. Since r = min(p, g + 1) > 2, we obtain (A.3) as in Lubich & Ostermann
(1996).
In order to verify (A.4), we consider the Runge—Kutta discretization of

.x/ + Ax = 07 X(O) = ugp.
The proof of Theorem 1.2 in Le Roux (1979) shows that
A2 Fn — x) | + | AP (Xni — x (0 + cil)) | < C 17202,

where x; denotes the Runge—Kutta approximation to x(#,) and X ni the corresponding stage
values. With this bound at hand, the desired result then follows as in Lemma A.1. (Il
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OF FULLY NONLINEAR PARABOLIC PROBLEMS
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ABSTRACT. This paper is concerned with the time discretization of nonlinear
evolution equations. We work in an abstract Banach space setting of ana-
lytic semigroups that covers fully nonlinear parabolic initial-boundary value
problems with smooth coefficients. We prove convergence of variable stepsize
backward Euler discretizations under various smoothness assumptions on the
exact solution. We further show that the geometric properties near a hyper-
bolic equilibrium are well captured by the discretization. A numerical example
is given.

1. INTRODUCTION

Within the past several years, nonlinear evolution equations of parabolic type
have attracted a lot of interest, both in theory and applications. This is due to
the fact that such equations are increasingly used for the description of processes
involving nonlinear diffusion or heat conduction. As examples we mention reaction-
diffusion equations that arise in combustion modeling, the Bellman equations from
stochastic control and the nonlinear Cahn-Hilliard equation from pattern forma-
tion in phase transitions. Further examples are semilinear problems with moving
boundaries, such as the Stefan problem that describes the melting of ice.

The knowledge about stability and convergence for time discretizations of non-
linear parabolic problems has also increased considerably. For Runge-Kutta dis-
cretizations of semilinear problems, asymptotically sharp error bounds are given in
[9]. Optimal convergence results for quasilinear problems in Hilbert spaces can be
found in [10], whereas the papers [5] and [13] deal with stability and convergence
of quasilinear problems in Banach spaces. Convergence of linearly implicit Runge-
Kutta methods for nonlinear parabolic problems is studied in [11]; corresponding
results for multistep discretizations can be found in [1] and [8]. For the fully non-
linear situation, however, not that much is known. A reason for this might be that
the analytical frameworks for fully nonlinear equations are often quite involved.

The present paper is based on a new and simple framework, given in [12], that
extends ideas from the semilinear case to the fully nonlinear one. This is done as
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follows. Consider a parabolic evolution equation
(1.1) u' =F(u), t>0, u(0) given,

on a Banach space X. The nonlinearity F' is defined on an open subset D of a
second Banach space D C X and takes values in X. By linearizing F' around a
state u* € D, equation (1.1) takes the form of a semilinear problem

u = Au+ f(u), t>0, u(0) € D,

where A is a bounded operator from D to X. Under the assumption that A gener-
ates an analytic semigroup, we have a (formal) representation of the solution u by
the variation-of-constants formula

t
(1.2) u(t) = e'u(0) —|—/ =4 f(u(r)) dr, 0<t<T.
0
Since f(u(t)) is only defined for u(t) € D, we have to consider the semiflow in D.
But as the analytic semigroup e/ : X — D behaves like Ct~!, the integral on the
right-hand side might not exist in D. Consequently (1.2) cannot be used directly.
This is quite different to the semilinear case where intermediate spaces V' between
X and D are considered. There, under the assumption that the function f is locally
Lipschitz continuous from V to X, a unique local solution can be constructed by a
fixed-point iteration relying on formula (1.2) (see [7] and [15]).
It turns out that the following slight modification of the variation-of-constants
formula

(13)  u) = u)+ [ VA - fa®) dr+ [ ar )

0 0
is the basic tool for the analysis of fully nonlinear equations. Within the space of
a-Holder continuous functions this relation has a precise meaning and is used to
prove existence and uniqueness of a local solution (see [12, Section 8]).

The aim of the present paper is to derive existence and convergence results for
time discretizations of (1.1). To keep this exposition in a reasonable length and
to avoid technical details, we restrict our attention to the backward Euler method,
but we allow variable stepsizes. The extension to strongly A(¢)-stable Runge-Kutta
methods with constant stepsizes will be given in [17]. To our knowledge, this is the
first paper that provides rigorous error bounds for variable stepsize discretizations
of nonlinear parabolic problems. The proofs are based on a global representation of
the numerical method by means of a discrete variation-of-constants formula similar
to (1.3).

In Section 2 we give the precise assumptions on the initial value problem (1.1)
and we present two examples of nonlinear parabolic initial-boundary value problems
that fit into this analytical framework. Besides, we introduce spaces of a-Hélder
continuous sequences on which our discrete framework is based.

Section 3 deals with the existence and uniqueness of the numerical solution,
and with convergence. More precisely, we prove in Theorem 3.3 the expected con-
vergence of order one for constant stepsize discretizations of sufficiently smooth
solutions. For variable stepsizes and/or less regular solutions, we show convergence
of reduced order.

In Section 4 we study the question whether the dynamics of the analytical prob-
lem is well captured by the discretization. As an illustration, we consider expo-
nentially stable equilibria and show that the numerical solution locally exists for
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all positive times and decays exponentially towards the equilibrium. A numerical
experiment that is in line with our theoretical result is presented.
The auxiliary results for Sections 3 and 4 are finally given in Section 5.

2. ANALYTICAL FRAMEWORK AND EXAMPLES

In this section we give the precise hypotheses for (1.1) and further introduce
some notation that will be used throughout the paper.

We work in the analytical framework given by [12]. Let (X, ||-||) and (D, |-||p)
be two Banach spaces with D densely embedded in X, and denote by D an open
subset of D. We consider the abstract initial value problem

(2.1) W(t) = F(u(t)), t>0,  u(0)€D.

Derivatives with respect to the argument of a function are henceforth denoted by
a prime. Our assumptions on the nonlinearity F' are the following.

Assumption 2.1. We assume that the function F' : D — X is Fréchet differen-
tiable and that its derivative F' : D — L(D, X) has the following properties.

(i) F’ is locally Lipschitz continuous; i.e., for each u* € D there exist R > 0 and
L > 0 such that

(2.2) |F'(v) = F'(w < L|jv—w|p,

)||D~>X

for all v, w € D with ||[v — v*||p < R and ||lw — u*||p < R.

(ii) For every u* € D the operator F'(u*) is sectorial; i.e., there exist 6§ € (0,7/2),
wo € R and M > 0 such that if z € C and |arg(z — wo)| < 7 — 6, then z — F'(u*)
has a bounded inverse in X and

23) = P <

z—wo|
(iii) For every u* € D the graph-norm of F”(u*) is equivalent to the norm of D.

Under these assumptions, it is known that (2.1) has a locally unique solution
(see [12, Theorem 8.1.1]). This solution u € C([0,6], D) N C*([0,6], X) has the
regularity property u € C2((0, 6], D) for arbitrary 0 < oo < 1. For the convenience
of the reader we recall the definition of the space C¢. For a Banach space (B, ||| ),
C&((0, 4], B) is the space of all bounded functions v : (0, ] — B such that ¢ — t*v(t)

0 \% _
—
/

FIGURE 1. Condition (2.3) holds for all z outside the shaded cone.
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is a-Hélder continuous in (0, §]. This space is endowed with the norm

[v(®) —v(s)llB W
0l e = sup |v(f)|lp+ sup —F—————s".
llvllca 0,60, B) i v (@) 0cacics  (E—5)*

We next give two nonlinear initial-boundary value problems that fit into our
framework. More examples can be found in [12].

Example 2.2 (Combustion of a solid fuel, [3, Section 6.7]). Let U(¢, z) denote the
temperature of a combusting solid fuel at position z € [0, 1] and time ¢ > 0. A model
for the evolution of U is given by the nonlinear initial-boundary value problem

(2.4) Ut z) =0, (k(@wU(t, x))awU(m)) +o(U(ta), 0<z<1, t>0,

with homogeneous Neumann boundary conditions 9,U(¢,0) = 0,U (¢, 1) = 0 for all
t > 0 and initial condition U(0,z) = Uy(z) for 0 < z < 1. We assume that the
diffusion coefficient k is twice differentiable, with bounded second derivative, and
that it satisfies the uniform ellipticity condition

(2.5) k(y)+yk'(y) > k>0  forally e R.

We further suppose that ¢ has a locally Lipschitz continuous derivative and that the
initial value Uy is twice continuously differentiable and satisfies the compatibility
conditions U§(0) = Uj(1) = 0.

Choosing X = C([0,1]) and D = {v € C?([0,1]) : v/(0) = v/(1) = 0} allows us
to write (2.4) in the abstract form (2.1) with u(¢t) = U(¢,-) and

F(v) = (k")) + ¢(v).

The smoothness assumptions on k and ¢ immediately imply condition (i) of As-
sumption 2.1, and the ellipticity condition (2.5) implies (ii) and (iii) there.

Equally, it can be shown that our assumptions are satisfied for the Banach spaces
X = L?(0,1) and D = {v € H?(0,1) : v'(0) = v'(1) = 0}. This follows from the
well-known embedding H'(0,1) c C([0, 1]).

Example 2.3 (Semilinear problem with moving boundary). We consider the semi-
linear parabolic problem

(26a) AV (ty) =0y V(ty) +o(V(Ly), 0,V (ty), 0<y<dt), t>0,

with homogeneous Dirichlet boundary conditions V' (¢,0) = V(¢,b(t)) =0 for t > 0
and initial condition V(0,y) = Vy(y) for 0 < y < b(t). Here the position of the
right boundary b(t) is determined by the ordinary differential equation

(2.6b) 9b(t) =¥ (b(t), V(t,b(t)), 0,V (t,b(t)), t>0,  b0)=1.

We assume that ¢ and 1 have locally Lipschitz continuous derivatives and that Vj
is twice continuously differentiable with V4 (0) = V5(1) = 0.

The famous Stefan problem that models the melting of ice is of this form by
taking ¢ = 0 and ¥(p, q¢,r) = —Br with a positive constant 3 (see [16, Section 15.4]).
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Changing the variables U(t,z) = V(¢,b(t)x) transforms problem (2.6) to the
interval 0 < x < 1, and we obtain the nonlinear system

0.2V (¢, 2)

B 0. U(t, ) x 0:b(t)
| owten) = S (v, 2500 ) + 2500 0,0,
@7) 0,U(t,1)
atb(t):w<b(t)7U(t,1),W> y << 1, t>0,

with boundary conditions U(t,0) = U(t,1) = 0 for ¢ > 0 and initial conditions
U(0,z) = Vp(z) for 0 < z < 1 and b(0) = 1.

We choose X = C([0,1])xRand D = {v € C%([0,1]) : v(0) = v(1) = 0} xR, and
since the projection P : C([0,1]) — R : v — wv(1) is continuous, the conditions (i),
(ii), and (iii) of Assumption 2.1 are again easily verified.

We finish this section by introducing some notation. The aim of the paper is
the analysis of backward Euler discretizations of (2.1) which are given as sequences
Ug, U1, ... ,un in D, corresponding to a grid 0 =ty < t1 < --- < ty < T. This
motivates the consideration of the following discrete norms and seminorms in X*V:

u)= swp loal e = sup AT Ule
(2.8a) 1<n<N 1<k<n<nN (tn —tg)®

Ivlla = 1(v) + Aa(v),
for v = (v,)Y_; € XV and 0 < a < 1. Analogously, we denote

Un — VE|ID
up@) = sup foallps  Apa(v)= sup M= Ulp e

(2.8b) 1<n<N 1<k<n<N  (tn — tg)*
IVllp,a = 1o (V) + Ap,a(V),

for v.€ DV. Further we define pug for 0 < 3<1and v € Xév through
(2.9) pp(v) = sup |lvn| -
1<n<N

Here (X3, ||-||g) denotes the real interpolation space (X, D)g oo between X and D
(see [12, Section 1.2.1]). Note that ||| - |||« and ||| - ||| p,« are discrete versions of the

norms |- || ca((o,5),x) and [|-[|ca((0,5,0), respectively.

3. CONVERGENCE ANALYSIS OF THE BACKWARD EULER SOLUTION

In this section we study the backward Euler method for discretizing (2.1) in
time. We show that a unique numerical solution exists for finite times, provided
that the maximal stepsize is chosen sufficiently small. We further derive convergence
estimates under various smoothness assumptions on the exact solution.

We first consider a local situation for which more precise estimates can be ob-
tained. For this, it is convenient to linearize (2.1) around the initial value u(0).
This gives the (formally) semilinear problem

(3.1) w = Au+ f(u), t>0, u(0) € D,

where A = F'(u(0)) and f(u) = F(u) — Au for u € D. In view of (2.2), there exist
R >0 and L > 0 such that

(3.2) 1f(v) = f(w)]| < Le|lv—wlp,
for all ||[v — u(0)||p < ¢ < R and |Jw — u(0)||p < 0 < R (see proof of Lemma 5.2).
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Since the backward Euler method is invariant under linearization, the numerical
approximation u, to u(t,) is given by the recursion

Up — U
b,

with ¢, = t,_1 + h, for 1 <n < N and tg = 0. Here h,, > 0 denotes the stepsize
which is chosen according to accuracy requirements. The starting value ug € D is
allowed to be different from w/(0).

We remark that, due to (2.3) with ©* = u(0) and (3.2), the nonlinear equation
(3.3) has a unique solution wu,, € D for stepsizes h, satisfying h,wo < 1, as long as
[ltun—1 — u(0)||p < o for a certain ¢ > 0. In fact, (3.3) can be solved by standard
fixed-point iteration (see Lemma 5.2). Let us point out, however, that already after
one single step we can only expect

lur = u(0)][p < Co,

(3-3) = Aup + f(un), 1<n<N,

where C' > 1. Thus, after a finite number of steps, independently of the stepsizes,
the validity of (3.2) is no longer guaranteed. Therefore, this step-by-step approach
is not suited to construct the numerical solution on a finite time interval [0, T].

In order to overcome this difficulty, we adopt a global approach relying on the
discrete variation-of-constants formula

(3.4) Un = 1(tn, 0)up + Z i r(tns ti—1) f(uk),
k=1

where the discrete transition operator r(t,,t) is defined by

(3.5) P(tn,tk) = (1 — hy A)7H oo (1= hgy 1 A)7L 0<k<n<N\,
and r(tg,tr) = 1. Note that this operator is well defined for
(3.6) max hy <h, if hwy< 1.

1<k<N

The numerical solution of (3.1) can be constructed by fixed-point iteration in (3.4).
This is based on the fact that the nonlinear operator

(3.7a) ®:Bc DY — DV :vi— d(v) =rug + K(f(v)),

with r = (r(tn,0))3_1, f(v) = (f(vn))hoy for v = (v,)3; € DV, and

(3.7b) K(w) = (i hkr(tn,tk_l)wk>N | forw = (w))ly € XV,
k=1 n=

is a contraction for a suitably chosen subset B. Unfortunately, it turns out that
the interval of existence is limited by the fact that ||®(ug) — ugl/|p,« has to be
sufficiently small, for ug = (ug, ... ,u)". Thus, nothing can be said about the size
of tx in this approach. This kind of difficulty also appears when constructing the
continuous solution (see [12, Theorem 8.1.1]).

However, the global approach based on the convolution operator in (3.7b) turns
out to be useful in order to derive preliminary convergence estimates. Eventually,
these estimates can be used to establish the existence of the numerical solution for
finite times.

Assume for a moment that the backward Euler approximations ug, u1, ..., un
to the solution exist. We set %, = u(t,) and denote the errors by e, = Uy — Un.
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Inserting the exact solution into the numerical scheme defines the defects d,, by

wz/mﬁf(ﬂn)wm 1<n<N.
Subtracting (3.3) from this identity gives the error recursion
(3.8) e =reg + K(f(0) — f(u)) + £(d),
where e = (e1,e,... ,en)T € DV, etc.

Let C3 and R be the constants provided by Lemma 5.3 for u* = u(0). We will
show below that after a possible reduction of T, we may assume that there exists
0 < 0 < R such that

ND(ﬁ_u(O)) < 0, ND(U-_U(O)) < o,

(3:9) C5C5(20 + Apa (W) < 7 < 1,

where 0 < a < 1 is chosen and Cj is the constant appearing in Lemma 5.5. Taking
norms in (3.8) and using Lemmas 5.3, 5.4 and 5.5 yields

1
(3.10) llello. < 7= (Clleollo + IK(@)llp.a )

Depending on our requirements on the analytical solution, we obtain different
bounds for |||K(d)|||p,« and consequently different error estimates (see Theorems 3.1
and 3.2 below). We finally point out that because of

lenllp < [lle[l|p,a
these theorems also provide error estimates in D.

Theorem 3.1. Let u : [0,T] — D be a solution of (2.1) with " € C$((0,T],X)
and assume that

(3.11) Cs5C5 (QHU —u(0)]| Lo ([0,77,0) + HUHcg((o,T],D)) <1,

where C3 and Cs are the constants provided by Lemmas 5.3 and 5.5 for u* = u(0).
Suppose that either

(a) the stepsizes hn, = h are constant, or

(b) the stepsizes verify hy, > chp—1, 2 <n < N, for some d > 0.

Then there exist constants h* > 0, oo > 0 and C > 0 such that the backward
Euler solution u.,, exists for stepsizes satisfying 0 < h, < h* and for initial values
ug with ||ug — w(0)||p < 0o, as long as t, < T. Further, we have the error bounds

(3.12) llelllp.o < C (lleolln + A llu"[lce((0,17.x))

for constant stepsizes, and

11—« l—a 11—«
(313)  lella < C(lleollo +_max (17 + h) Mo + Bl Mo )

with
[[u” () —u"(s)ll
Ma =l sty M= sup T e s

for variable stepsizes, respectively. The constant C' depends on o, T and on C5 of
Lemma 5.5. For variable stepsizes, it further depends on o.
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Proof. Set 01 = |lu — u(0)|| o= (j0,7],p) and choose g1 < ¢ < R such that

C5Cs5 (20 + l|ull ca((o,11,0)) < 1.

In the first part of the proof we show the validity of the error estimates (3.12)
and (3.13) under the assumptions that the numerical solution (u,)Y_; is defined as
long as ty < T and that

(3.14) |lurn —u(0)]|p < o, n < N.

In the second part we justify these assumptions.
(i) In view of (3.10) and Lemma 5.5, we have to estimate |||d||o. Taylor series
expansion shows that the defects are given by

1
d, = hn/ Tu" (ty — Thy) dT.
0

ThlS lmmedlal ely ylelds
L C I < 2 max IM .
( ) —_ / 1<n<N hn n

For estimating Ap (d) we first write for m < n

1
dp — dpm = hm/ (W (tn — Thyn) — " (tm — Thy)) dT
(3.15) 0

1
+ (hn — hm)/ Tu” (tp, — Thy) dr.
0

For constant stepsizes the second term in (3. 15) drops and the estimate

m an
Id. = ”t;_han/ “ar < 2y,
(tn_tm)a 11—«

proves the first part of the theorem.
For variable stepsizes, one has

— « 1 «
ldn, — ’"”t‘;‘n_h an(n tm+hm) /T< tim )dr
(tn — tm)® tn — tm o \tpm —Thy,

1 = ol o M
(ty —tm)> ™ 27

Due to our assumptions on the stepsize sequence, we have
t, —t h o 1\«
( n m + 'ﬂl) S (1 + _)
tn —tm o

[ = ] o
(tn - tm)a m o
The remaining term in (3.16) is bounded as follows:

1 1 l—apa
tm a hm o h,—T
hm/ (o) d‘h”l”_aTa/ ( ) dr=tpe
0 tm — Thim 0 tm — Thm l—«

Inserting these bounds into (3.16) gives the required bound for A, (d).

(i) It remains to show that the backward Euler solution exists and that (3.14)
holds. The idea of the proof is simple and standard for nonlinear equations: as
long as u,_1 remains sufficiently close to u,_1, (3.3) can be solved for u,, and the
above error estimate ensures that u, is close enough to u, as well. Repeating this

(3.16)

and

< (me+ hl °)re.
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process proves the desired result. However, we have to pay some attention to the
parameters involved.

For simplicity, we give the proof for constant stepsizes only. Set 0o = 0— 01, and
let 0 < g < 0* < g2 and h* < h denote the thresholds provided by Lemma 5.2,
applied to g2 and u*, where u* varies in the compact set formed by the values u(t),
0 <t <T. After a possible reduction of h*, we can choose gy > 0 such that

C(QO + h*”uNHCf;((O,T},X)) < 04/2,

where C is the constant from (3.12). Since u is uniformly continuous, we can further
assume that [|u(t,) — u(tn—1)||p < 0+/2 for h < h*.

Suppose by induction that u,, exists and that (3.14) is satisfied for n < m. Then,
due to (3.12) and the above choice of parameters, the bound

lemllp < C(lleollp + R l[u"|caqo,m,x)) < 0s/2  for h<h”
implies
||um - am+1||D S ||emHD + ||ﬂm - a1’n+1||D S Ox-
An application of Lemma 5.2 with ©u* = U, 11 and w = u,, shows that u,,,1 exists
and |lem+1||p < 0*. Consequently, the estimate
[umi1 = w(0)[[p < lemtallp + [umsr — u(0)[p < 02+ (0 —02) = 0

follows. This yields (3.14) and concludes the proof. O

In practice it might be difficult to know whether u” belongs to C((0,7], X).
This limitation is overcome in the next theorem where we impose the natural con-
dition
(3.17) Au(0) + f(u(0)) € Xg,

for some o < B < 1. Note that, in actual applications, Xz is often a Sobolev space
that does not depend on the boundary conditions for § sufficiently small. Hence, if
the initial value is sufficiently smooth, this condition is easily seen to be satisfied.
It is also known that under (3.17) the exact solution of (2.1) has the additional
regularity properties u’ € L>([0,T], Xg) N C?([0,T], X) (see [12, Theorem 8.1.3]).

Theorem 3.2. Letwu : [0,T] — D be a solution of (2.1) such that (3.11) is satisfied
and assume that (3.17) holds for some 0 < a < B < 1.

Then there exist constants h* > 0, go > 0 and C > 0 such that, for arbitrary
stepsizes 0 < hy, < h* and for initial values ug with |[uo—u(0)||p < 0o, the backward
Euler solution u,, is defined as long as t, <T and we have

(3.18) llellp.o < C(lleollo + mas hi=o1/%.13=/9)
1<n<N
with
In = Wl oottt xs) s 0= MMl yinx) -
The constant C' depends on o, 3, T and on Cg of Lemma 5.6.

Proof. We follow the arguments of the proof of Theorem 3.1. Therefore, it is suf-
ficient to establish the validity of (3.18) under the assumptions that the numerical
solution (u,)N_, exists as long as ty < T and that (3.9) holds for some o < R.
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In view of (3.10) and Lemma 5.6, we have to estimate p,(d). For the defects d,,
we use the representation

1
d, = / (u'(tn — Thy) — W' (tn)) d7
0
to obtain the estimates
n
1+p

By a standard interpolation argument

Idulla < Il "2 [1dall5?,

|dy| < Jo <hBJ, and |d.|s < 21,.

we get

< B—aga/B jl-a/B
ta(d) <2 | ax, hZ=* I P T, ,
which yields the desired result. O

The previous theorems are local in nature. By applying them recursively, we
obtain pointwise convergence estimates in D for finite times. In the following
theorem, the number « has the same meaning as in the local results before.

Theorem 3.3. Letu : [0,T] — D be a solution of (2.1) andlet0 < a < 1. Assume
that either

(a) u” € CY((0,T],X) and the stepsizes h, = h are constant, or
(b) u” €C2((0,T],X) and hy, > chp—1, 2<n <N, for some o >0, or
(¢) Au(0)+ f(u(0)) € Xg for some 0 < a< <1

Then there exist constants h* > 0, § > 0 and C > 0 such that the backward Euler
solution u,, exists for stepsizes satisfying 0 < h,, < h* and for initial values ug with
[luo — u(0)||p <9, as long as t, <T. For 0 <n < N, we have the error bounds

(@ lellp < C(lleolln + R llu" loz(oan.:)) o

®) Neallo < C(lleollp+_max (A= + Al My + by “ Mo ) ). or

(©) leallp < C(lleollp + max  hire/?a5o07),
1<m<N

respectively.

Proof. We only give the proof of the first result. The remaining statements follow
in a similar way.

Since u is continuous, there are constants R > 0 and L > 0 such that (2.2) is
uniformly satisfied for u* varying in the set formed by the values u(t), 0 <t < T.
Moreover, by Lemma 5.8, there exists a partition 0 =Ty < Ty < --- < Ty =T of
[0, T] such that

C3Cs (2||UTj = uw(Tj—1)|l Lo 0,1, 0) + ”uTjHCg((O,Hj],D)) <1, 1<j<J,

with Hy = T; —Tj_1 and ur,(t) = u(Tj—1 +t), 0 <t < H;. Here C3 and Cj are
the constants provided by Lemmas 5.3 and 5.5 for u* = u(T};) and R. Notice that
these constants only depend on R and L.
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Therefore, we deduce from Theorem 3.1, applied piece-by-piece, that there exist
positive constants Ah* and C, such that for 0 < h < h*

leallp < Clleollp + Chllw"lloaqo.m)x), 0=t <Tj.

After a possible reduction of 0 and h*, this estimate shows that ||e,||p < 0o, with
0o given by Theorem 3.1. Notice that J is independent of 0 < h < h*. The desired
error estimate thus follows by recursion. Il

4. BEHAVIOUR NEAR AN ASYMPTOTICALLY STABLE EQUILIBRIUM

In this section we study the long-term behaviour of time discretizations of (2.1).
To keep our exposition in a reasonable length, we restrict our attention to hyperbolic
equilibria. For these the principle of linearized stability holds, which means that
the dynamical behaviour near such an equilibrium w is fully determined by the
linearized equation

v =F'(u)(v—"1)

(see [12, Section 9.1]). We show that a similar property holds for the backward
Euler discretization of (2.1). Further, numerical simulations that illustrate our
theoretical result are given.

For notational simplicity, we concentrate on the asymptotically stable case. Let
u € D be an equilibrium of (2.1), i.e.,, F(u) = 0, and assume that the sectorial
operator

(4.1) A= F'(u) is asymptotically stable, i.e., wg < 0.

The number wy is defined in (2.3) (see also Figure 1). In this situation, it is well
known that w is asymptotically stable and attracts all solutions in a sufficiently
small neighbourhood of w with exponential speed. More precisely, it is shown
in [12, Theorem 9.1.2] that for each w < |wp| there are constants dp > 0 and C' > 0
such that the solution of (2.1) exists for all positive times and satisfies

(4.2) lu(t) —alp < C-e “u(0) -7l p, for all t > 0,

whenever the initial value satisfies ||u(0) — u||p < do.

The following theorem gives the corresponding result for the backward Euler
discretization. Note that any equilibrium of (2.1) is also an equilibrium of the
backward Euler discretization.

Theorem 4.1. Letu be an equilibrium of (2.1) and assume that (4.1) holds. Then,
for any choice of w < |wo|, there are positive constants h, § and C such that the
following holds. The backward Euler solution (un)2; of (2.1) exists for all stepsize
sequences satisfying 0 < h,, < h and for all initial values uo with ||ug —u|p < 6,
and we have

(4.3) |, —l|p < C-e “in

Note that the constant C' depends on w, but not on the particular choice of the
stepsize sequence.

ug — | p, for all m > 0.

Demanding that the numerical solution decays towards the equilibrium nearly
as fast as the exact solution imposes a severe restriction on the maximal stepsize.
This restriction is overcome in the following theorem, where exponentially fast
convergence is obtained, if the stepsizes remain bounded.
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Theorem 4.2. Letw be an equilibrium of (2.1) and assume that (4.1) holds. Then,
for any h > 0, there are constants 0 < w < |wo|, 6 > 0 and C' > 0 such that the
backward Euler solution (u,)22, of (2.1) exists for all stepsize sequences satisfying
0 < hyp, < h and for all initial values uy with ||ug —a|p < 8, and (4.3) holds.

Proof of Theorem 4.1. We linearize (2.1) around the equilibrium @ and construct
the backward Euler solution by fixed-point iteration. In order to capture the de-
caying behaviour of the solution we use exponentially weighted norms. For w > 0
and sequences v = (v,)22; in D, we modify (2.8b) in the following way:

wtn wiy V0 = VkllD 4

ppw(v) = sup ellon[p,  Apaw(v)= sup e otk
1<n<oo 1<k<n<oo (tn - tk)
[IVllD,aw = kDw(V) + ADaw(V),

as well as the corresponding norm ||| - |||lo, based on ||-]|. A crucial observation is
that Lemmas 5.3, 5.4 and 5.5 have an extension to these exponentially weighted
norms for 0 < w < |w1| < |wo| with wy as in Lemma 5.1. The gap w — |w1]| is needed
to bound the powers of t,, that are encountered.

With these preparations, we are ready to give the proof. Let B denote the ball

B={veD>:||v-1ullpaw < 0}
We define @ as in (3.7a) with N = oco. Using the above-mentioned extensions of
Lemmas 5.3 and 5.5 with v* = u proves
l[®(v) = 2(W)llp,a.w < 30CsCs[v = wli[p,a.w

for v,w € B. This shows that ® is a contraction on B with contraction factor 1/2
for o sufficiently small.

It remains to show that ® maps B onto B if ug lies sufficiently close to w. Since
o(u) =ruo+ (1 —r)u,
we have for all v € B
Ie(v) —tllpaw < [®(V)—2@]D.aw+ 2T —Tlp,0.w
< 1/2|lv =lllp.aw + lllr(uo = @)D

The last term is estimated by the first part of Lemma 5.4:
lllr(uo = W)l Do < Calluo — Ul

For ¢ satisfying 26Cy < p, we thus have ®(B) C B.
This proves the existence of a unique fixed-point u, which is the searched back-
ward Euler solution. Using further

1®(a) — || p,aw < 1/2[|@(0) —Wll|p,aw + [[r(wo — )| D,aw
yields
e =1lllp,a.w < 2Calluo — 7l p.
In particular, we get

sup e“’t"||un —1llp < 2C4||up — Tl p,
1<n<oo

which proves the assertion of the theorem. O

Proof of Theorem 4.2. The proof is very similar to the preceding one and therefore
omitted. It relies on the stability bounds given in Lemma 5.1, part (b). O
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TABLE 1. Numerically observed contraction factors

h | 1.0000 | 0.5000 | 0.2500 | 0.1250 | 0.0625 | 0.03125
wp, | 0.4055 | 0.4463 | 0.4711 | 0.4849 | 0.4922 | 0.4960

We close this section with a numerical example that illustrates Theorem 4.1.

Example 4.3 (Combustion of a solid fuel). We take up Example 2.2 and specify
the functions k, ¢ and Uy as follows:

ky) =y’ +1,  oy)=-yly-1/2)y~-1), Uolz) =1/2+22(1~x)"
Note that the initial condition Uy is compatible with the boundary conditions and
that k satisfies the ellipticity condition (2.5) with x = 1. The problem has three
equlibriaw =1, w = 0, and w = 1/2. The first two are asymptotically stable with
wo = —1/2. Due to our choice of Uy, we expect convergence to u = 1.

The partial differential equation (2.4) is discretized in space by standard fi-
nite differences on an equidistant grid with meshwidth 1/200 and in time by the
backward Euler method with constant stepsize h. For different values of h, the
integration is performed up to ¢ = 40. The numerical approximations wy, to w are
displayed in Table 1. The results are in complete agreement with Theorem 4.1.

5. LEMMAS

In this section we collect the auxiliary results that are needed in the proofs of
the previous theorems. Throughout the section we set

(5.1) f(u) = F(u) — Au, where A = F'(u*)

for some u* € D and denote by wy € R the constant from (2.3) that corresponds
to u*. We fix k > wp and h > 0 such that hwy < 1 and consider arbitrary grid
points 0 = tg < t; < --- < ty that satisfy h, = t, — t,—1 < h. There is no
restriction on the maximal stepsize for wy < 0.

For the discrete transition operators (3.5), we have the following stability bounds.

Lemma 5.1. (a) For any wi > wq there exist constants h* > 0 and C; > 0 such
that for 0 <v <1

ewl (tn—tk)

: —A)"r(tn, <00

0<Ek<n,

whenever the stepsizes are bounded by h*.
(b) Let wp < 0 and h* > 0. Then there exist constants wy < w1 < 0 and C; >0
such that (5.2) holds, whenever the stepsizes are bounded by h*.

Similar bounds are given in [2, 4, 14]. We note for later use that (5.2) also holds
forl<v<2ifk<n-—1.

Proof. The estimate (5.2) is a consequence of the stability bounds
c
e x~x < Cet, [Ae 4| x—x < ?ewot, t>0,

for the analytic semigroup. Using the representation

o0 oo
7(tn, tr) = / .. / e Skt1— =80 o(Skr1hppittsnhn)A dsprr -+ dsn
0 0
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shows

n

||T(tn7tk)||X—>X <C H (1 - hjwo)_17

j=k+1
wo n
AF(tn, ) [ xox < c/ I (1= hje) e
T j=k+1
For w < wy <0, we have
(53) 1-— h]‘w > (1 — hjwo)(l + Chj(wo — w))

with ¢ =1 — h*wg. Arguing as in [4] shows

1—h'wy 19 _
|Ar(tn, ti) | x—x < thto H (1 — hjwo) L
" j=k+1

For wy > 0 we use an idea from [6] and eliminate the small steps by
(1—hjw)(l—=hgw) > 1= (hj + hi)w,

until (5.3) is again satisfied. Part (a) of the lemma then follows from standard
estimates and interpolation.
In order to verify (b) we note that the function

_log(1 — Huwo)
H

is monotonically increasing for wy < 0 with w1(0) = wp and wq(c0) = 0. Hence,

(54) w1 = wl(H) =

(1 — thO)il S ewlhj
with wq given by (5.4) for H = max h; < h*. O

We note for later use that the identity

Pt tr) —1 = Z hi Ar(tn, ti_1)
I=k+1

together with Lemma 5.1 implies for 0 < k <n < N and 0 < v < 1 the bound
cioo+

5.5 tn,te) — 1) (k — A)7Y < == ewr =) (g — )V

655 ottt -1 (=7 < e (10— 10)

with w]” = max(wy,0). For simplicity, we make no notational difference between
the constants in (5.2) and (5.5).

Lemma 5.2. Let u* € D and Ry > 0. Then there exist 0 < p. < 0* < Ry and
h* > 0 such that, for w € D with ||w—u*||p < g« and for 0 < h < h*, the equation

v —w

(5.6)

= Av+ f(v)

possesses a unique solution v € D with ||v — u*||p < o*. Moreover, the quantities

0+, 0° and h* can be chosen uniformly for u* belonging to a relatively compact
subset of D.
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Proof. We first note that, due to (2.2), there exist R > 0 and L > 0 such that
(5.7) 1) = f' (W)l p—x < Lllv—wllp,

for all v,w € D with |lv —v*||p < R and ||w — v*||p < R. Therefore, since
f'(u*) =0, we also have

(5.8) £ ()l p—x < Lo,
for all v € D such that ||v — u*||p < ¢ < R. This implies that
(5.9) [f(v) = f(w)|| < Lellv—w|p,

for all v,w € D with |Jv —u*||p < 9o < Rand ||lw—u*||p <o <R.
Equation (5.6) is equivalent to v = g(v), where g is defined by

g(w) = (1 —hA) " w+h(l - hA) T f(v).

We solve (5.6) by fixed-point iteration in the set B = {v € D : ||v — u*||p < 0*}.
For this, we have to show that g is contractive and maps B onto B, for g, and p*
sufficiently small.

By the equivalence of || - || p with the graph-norm of A, there exists M such that

|h(1 —hA) Y x—p < M, |1 —hA) Y pop<M for 0<h<h.
On the one hand, we have
lg(v) = 9(@)|lp < M Lo*||v— 7| p,

for h < h and v, ¥ € D with |Jv —u*||p < o* and || — u*||p < ¢*. On the other
hand, it holds

g(v) —u* = (1—hA) " (w—u*)+ k(1 — hA) " (Au* + f(u"))
+h(1L—=hA) T (f(v) = f(u?)),
so that
lg(v) = u*llp < Mlw —u*|[p + (1 = hA) " (Au* + f(u"))|| + MLo"||v — u*||p.

In view of these bounds, if we choose g. and ¢* such that Mo, < ¢*/3 and M Lo* <
1/3, then g is a contraction on B. Moreover, since h(1 —hA)~! — 0 strongly as an
operator from X to D, we can select h* < h such that, for 0 < h < h*,

IA(L = hA)™H(Au™ + f(w))lp < 0" /3.

Thus, g maps B into B, and the fixed-point theorem provides the existence of a
unique solution v of (5.6).

Since F’ is locally Lipschitz continuous, Ry and L can be taken uniformly for v*
in a compact set. Moreover, the equivalence of ||-|| p with the graph-norm of F’(u*)
is also uniform on the compact set. With this, the statement of the lemma follows
easily. O

Lemma 5.3. For 0 < a < 1 there exist constants C3 > 0 and R > 0 such that
(5.10) [1f(v) = f(w)lla < Cs (2Q + /\D,a(W)> v —wllp,a

for all v and w in the set V = {v € DV : up(v —u*) < o0} whenever 0 < o < R.
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Proof. Choose R as in (2.2) and let v, w € V for some 0 < ¢ < R. In view of (5.9),
we have

(5.11) u(f(v) = f(w)) < Lopp(v —w),

and thus it remains to bound A, (f(v) — f(w)). We set G, = f/(ov, + (1 — 0)wy,),
0 <o <1, and write for m < n

(F0n) = Fwn) = (F(om) — Fwm)) = / (G (00 — ) — G (0 — W) o

-/ G ((on — ) — (v — ) do / (Go = o) (0 — ) do

Using (5.8), we can estimate the first term on the right-hand side by

/0 ||Gn ((vn —wy) — (v — wm))H do < LoAp.o(v —w)(tn — tm) %

Due to (5.7), the remaining term can be bounded as follows:

1
/0 H(Gn - Gm) (Um - wm)” do

IN

1
L / (ln = wnllp + 7l (0 = wa) = (On = w15 )do [om = Wl
0

IN

L(AD.a(W) + 1/2 Ap.a(v = W) (v = W) (b = ) t,".
The above estimates readily give
AalF(v) = F(w)) < L(20 A0,V = W) + Ap.a(W)in (v = W),
and this inequality combined with (5.11) proves (5.10). O

In Lemmas 5.4, 5.5 and 5.6 below we establish certain estimates involving |||-||| p,a-
As ||-]|p is equivalent to the graph-norm of A, the norm

Ivlle + llAvila, v e DY,

is equivalent to ||| - ||| p,« as well, for all 0 < o < 1. Since the required estimates for
Il llle are usually obtained more easily (and in a similar way) than the corresponding
estimates for ||| A+, we give for simplicity the proofs only for |||A+|||o. Henceforth,
C denotes a generic constant that possibly depends on C7 and on constants that
arise from changing between equivalent norms.

Lemma 5.4. Let 0 < o < 1.
(a) There exists a constant Cy > 0 such that for every v € D

llrvflfp,a < Callv]p-

The constant Cy depends on ty, but it is otherwise independent of the grid. If wy
is nonnegative, then Cy is bounded for finite times. If wy is negative, then Cy can
be chosen independently of ty.

(b) For x € X we have

Jim [} = 1)l =0.

The convergence is uniform on relatively compact subsets of X.
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Proof. In order to prove the first statement of the lemma, we have to estimate
A(r(tn,0) — r(tm,0)) v. Using the identity

r(tna 0) - T(tmv 0) = (T(tn7 tm) - 1) T(tﬂw 0)
we obtain

[A(r(tn, 0) = r(tm, 0))vl] < C[(r(tn, tm) — 1)(5 — A) |l x—x

XI5 = A) 7 (tm, 0) [ x—x|v]l p-

With the help of (5.2) and (5.5) the right-hand side can be bounded by
C L+
_ aWi IN t'n _ tm Ott—()z’
% T ol bt — 1)t

which proves the first result.
To show the second statement of the lemma we choose € D. From the identity

r(tk,0) — r(tk—1,0) = hy Ar(ty,0)
we get

10t 0) = r(tms ) 2l < 37 hoc (AT (80, 0) (2 = &) | + Ilr(ta,0) AT
k=m+1

n n
SOt Y bt e lz = F| +C Y e |F]

k=m+1 k=m+1
<Ol =7+t 7)™ (b= tm) 155
Since D is dense in X, the second statement of the lemma follows. O

Lemma 5.5. For 0 < a < 1 there exists a constant Cs > 0 such that if ||| v]||a < oo
we have

IEM)ID,0 < Csll[vla-

The constant C5 depends on ty, but it is otherwise independent of the grid. If wy
is nonnegative, then Cs is bounded for finite times. If wg is negative, then Cs can
be chosen independently of ty.

Proof. Analogously to the modified variation-of-constants formula (1.3) and with
the help of

(5.12) hiAr(tn,te—1) = r(tn, tk—1) — r(tn, tr),
we split KC(v) such that AK(v) = a+ b where

p = Z I Ar(tn, tk—1) (v — vn),
=1

b, = Z hkAT‘(tn,tk—l) Up = (T(tn,()) - 1)1}”'
k=1

According to this we have to estimate the four terms p(a), Ao (a), u(b), and A, (b).
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(i) Using (5.2) we get

< C h ewl (t7w,7tk—1)
llanl] 1 Z kT o t —tk 1)t

< CB(a,1 —a) Wi tN Aa(V),

where B denotes the beta function. The last bound follows from comparing with
the integral in a similar way as in Lemma 5.7.
(ii) In order to estimate A\, (a) we use the identity

Up = am = Pk Ar(tn,te1) (0k —vn) + Y b Ar(tn, te1) (Um — vn)
k=m+1 k=1

3 A(r (b ti1) = Pl 1)) (v = o)
k=1

=51+ 5+ 5s.
We take norms and use again (5.2) and (5.5). This gives
| S1]] < Cp et Tty Ao k_ZH n —tk 1)1 ate
<a T CL e I ALV (tn — tm) ¥ £20,
and, together with (5.12),
182l < {7 (tn, tm) (r(tm: 0) = 1) (vm — va) |
<O (1+ Cp) e I8 Ao (V) (tn — tm)* 2
With the help of Lemma 5.7 we get

n

||S3H < th Z hl HA r tl,tk 1) (vk—vm)H

k=1 l=m+1
tm —tk)
< Cr h hy @t (i —te-1) (b =)
4C4

ewm Aa(V) (tn — t)* 52

= a(l — )

which proves the estimate for A, (a).
(iii) The stability bound (5.2) for the transition operator immediately gives

u(b) < (1 +C e“’rtN) w(v).
(iv) For the estimate of A, (b) we write
by — by = (r(tn,O) — 1) Uy, — (r(tm, 0) — 1) U
= (r(tn, tm) — 1) (k — A)"*(k — A)* r(tm, 0) vy
+ (r(tm,0) = 1) (v, — V) -
A further application of (5.2) and (5.5) yields

2
[ (% T u(v) + (14 Crest™) A, (v)> (b — o)t
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This finally concludes the proof of the lemma. |

The following lemma is used in the proof of Theorem 3.2. For the definition of
the norm g, we refer to (2.9).
Lemma 5.6. For 0 < a < 1 there exists a constant Cg > 0 such that
KD < Coalv)  for ve DV,
The constant Cg depends on ty, but it is otherwise independent of the grid.

Proof. Using (5.2) we have for w = K(v)

lwallp < €Y7 b ||(5 = A)' (s tie) ||y (6 = A) o
k=1

< C et fa (V) Z
k=1

hi
(tn - tkfl)l_a

and further, by comparing the sum with the corresponding integral,

(e}

Ct +
Hp(w) < — 2 e i (v).

In order to estimate Ap (W), we split A(w, — wy,) = S1 + Sz where

Sl = Z hk A'r(tn,tk_l)vk
k=m+1
and, due to r(t;, tx—1) — r(ti—1,tk—1) = hiAr(t;, tr), we get
SQ = Z h}C A(T(tn,tkfl) - T(tm,tkfl)) Vi = Z hk Z hl AQT(tl,tkfl) V-
k=1 k=1 l=m+1

As before, we premultiply v with (k — A)* and use (5.2) and the corresponding
integrals to estimate S7 and S2 by

e}

Ct + _
51 < TN TN 10 (V) (tn = tm) 0,

Ct} + _
s e Y (9) (b = )5

This concludes the proof of the lemma. (N

152l <

Lemma 5.7. The inequality

m n (tm _ tk)a 4 -
Z hk Z hl 2 o S (tn - tm)atma
k=1 l=m+1 (tl - tk*l) tk Oé(]_ — O[)

holds for 1 <m <n < N.

Proof. By comparing with the corresponding integral, we get

n
Z hu 5 < by —tm for1<k<m.
el (tr — tg—1) (b — th—1)(tn — tp—1)

We thus have to estimate

(tn — tm) i P .

=1 (tm - tkfl)l_a t? (tn - tkfl)
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For this we consider the function
1
G(s) = ,
() (tm — )17 28 (¢, — 9)
Let t* be the point where G attains its minimum, and let 1 < p < m be the index
such that t,_q < t* <t,. We split the sum into three parts (from 1 to p — 1, the
term with k& = p, and from p to m) and compare each part with a corresponding
integral. By means of the variable change ot,, = s, we get

0<s<ty.

% hi /1 do
tn —tm <90 )
( )kz=:1 (tm — th—1 )17t (tn — tr—1) 0 l=—o)l=2g*(0+1-o0)
where 0 = (t,, — ty,)/tm. The elementary estimates

/1/2 do 20 1 20~
¢ < <
o I—=o)t-2gx(f4+1—-0) " 20+11—-a " 1l—-«

and

9/1 do <2a9a/°° dr <aj+ 20~
12(l=0o)720*(0+1-0) ~ o A+7)rt-@ = a  1-a’

where we used 1 — ¢ = 07, finally prove the lemma. O

Lemma 5.8. Let u : [0,T] — D be a solution of (2.1). Then, for every o > 0,
there exists a partition 0 =Ty < Ty--- <Tj =T such that

(5.13)  2ljur; — u(Tj-1)llLe=((0,8,),0) + lluz; |l coo,m,),0) < 0 1<j<,
where Hy = T; — Ty and ur,(t) = u(Tj—1 +1), 0 <t < Hj.

Proof. Choose R > 0 and L > 0 as in (2.2) for v* = u(0). From the proof of

Theorem 8.1.1 in [12], it follows that there exist constants C' > 0 and 0 < H; < T
such that

2[|u = w(0)||Lo<([0,£1,),0) + llullca(0, 1), D)
< O (e = 1) (Au(0) + £ ()| g 0,111,

The constant C' depends on L and the bound is valid as long as ||u(t) —u(0)||p < R
for 0 <t < H;y. The right-hand side of (5.14) tends to 0 as H; goes to 0. Thus,
after a possible reduction of Hy, we get (5.13) with j = 1. We go on with this
construction, and since the constants L and R can be taken uniformly, the final
time T is reached after a finite number of steps. O

(5.14)
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Abstract

In this paper, we study time discretizations of fully nonlinear parabolic differential equations. Our analysis
uses the fact that the linearization along the exact solution is a uniformly sectorial operator. We derive smooth
and nonsmooth-data error estimates for the backward Euler method, and we prove convergence forsttongly
stable Runge—Kutta methods. For the latter, the order of convergence for smooth solutions is essentially determinec
by the stage order of the method. Numerical examples illustrating the convergence estimates are pnededited.
IMACS. Published by Elsevier Science B.V. All rights reserved.

Keywords:Fully nonlinear parabolic problems; Time discretization; Backward Euler method; Runge—Kutta methods;
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1. Introduction

The aim of the present paper is to derive existence and convergence results for Runge—Kutta time
discretizations of the abstract differential equation

u'(t) = f(t,u(), u(0)=uo. 1)

The precise assumptions on the nonlinearityare given in Section 2 below. Our interest in this
abstract initial value problem stems from the fact that fully nonlinear parabolic initial-boundary value
problems can be cast in this form. Such problems arise in various fields of applications as for example in
combustion theory, differential geometry, and stochastic control theory. Moreover, semilinear problems
with free boundaries may be reduced to this form.
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The existence and regularity theory for fully nonlinear parabolic problems has been developed
in recent years and is summarized in the monograph [12]. Whereas the literature on numerical
discretizations of semilinear and quasilinear parabolic problems is quite rich, see, e.g., [1,8,10,11,14],
not that much is known for the fully nonlinear case. We are aware of the following two references
only: In [3] the convergence of a full discretization, based on the forward Euler method and standard
finite differences is studied. Due to the stiffness of the problem, this involves a severe restriction on
the admissible stepsizes. The second reference is our recent paper [6], where we took up the analytica
framework of [12] to obtain convergence results for variable stepsize backward Euler discretizations
of (1).

In the present paper, we consider a slightly different approach that avoids the complicated weighted
Hdélder norms encountered in [12,6]. The main idea is to linearize the problem along the exact solution
u(t) to get

u'(t) = A(u(@) + g(t,u@®), u(0) = uo. 2

Note that Runge—Kutta methods are invariant under this linearization. Since the Fréchet derivative of
with respect to the second variable vanishes along the exact solution, techniques from the semilinear cas
like the variation-of-constants formula can be used. Consequently, stability bounds for discretizations of
the nonautonomous problem

w' (1) = A(DHw(t) (3

are indispensable. For Runge—Kutta methods with constant stepsizes, such results have been provide
recently by [5].

The paper is organized as follows: In Section 2 we give the precise assumptions that render the
initial value problem (1) parabolic. We also present an example from detonation theory that fits into
this analytical framework.

Section 3 is devoted to the existence and convergence of backward Euler approximations. We show
that the expected order 1 is attained for smooth solutions on bounded time intervals. For nonsmooth initial
data, the order of convergence is still one on compact time intervals that are bounded away=ftom
However, an order reduction takes place for 0, see Theorem 5 below. For the convenience of the
reader and for the sake of completeness, we have also included a new and short proof of the above
mentioned stability result.

In Section 4, we prove the convergence of strorg)ly?)-stable Runge—Kutta discretizations under the
assumption that the exact solution is sufficiently smooth. The attained order of convergence turns out to
be min(p, ¢ + 1), wherep andq denote the order and the stage order of the method, respectively. This
order reduction is expected, since it appears already for semilinear problems, see [10].

In Section 5, we explain how our results carry over to variable stepsizes.

A numerical experiment is finally presented in Section 6. We illustrate therein our convergence results
for the backward Euler method with constant stepsizes at the aforementioned detonation problem. We
have also performed more realistic calculations using the 3-stage Radau A method. This was partly
done to obtain a good approximation to the exact solution in the above experiment. We used the variable
stepsize implementatioRADAUS by Hairer and Wanner [7] that gave very reliable results in all tests.
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2. Praoblem class and example

In our subsequent analysis of time discretizations of (1), we use a simplified version of the analytical
framework given in [12]. For the convenience of the reader, we resume the precise hypotheses for (1) in
this section. More details are found in Lunardi’s monograph [12].

Let(X,|-|)and(D, | - |) be two Banach spaces wiih densely embedded iKi, and denote b an
open subset ob. We consider the abstract initial value problem

W)= f(t.u®), t>0,  u@=ugeD, @)
where the right-hand side satisfies the following assumption.
Assumption 1. The function f:[0, T] x D — X is twice continuously Fréchet differentiable and its

Fréchet derivativeD, f (¢, v) with respect to the second variable is sectoriaKinMoreover, the graph-
norm of D, f (¢, v) is equivalent to the norm ab for all 0 < ¢ < T and for allv € D.

We further impose the following condition on the initial value. For a definition of the real interpolation
space(X, D), ~, we refer to [12, Section 1.2] and [16].

Assumption 2. The initial valueu € D satisfiesf (0, up) € (X, D)y, fOr some O< o < 1.

Under these assumptions, the existence of a locally unique solution of (4) can be shown. Since the
regularity properties of this solution are essential for our analysis, we collect them in the following
lemma.

Lemma 3. Under the above assumptions and after a possible reductidh pfoblem(4) has a unique
solutionu which is twice differentiable o0, 7] and satisfies

ueC“([0,T1, D) NC*([0, T, X),
t**uw' € B([0,T],D), and " “u" e B([0,T], X).
We note that the size @f in general depends oiy.
As usual,C*([0, T], D) denotes the Banach space eHolder continuous functions of0, '] with

values inD, and B([O, T'], D) denotes the corresponding space of bounded functions. Both spaces are
endowed with the usual norms.

Proof of Lemma 3. The existence and-Hoélder continuity ofu and its derivative is proved in [12,
Theorem 8.1.3]. The boundednessbfu’(¢) in D is a consequence of [13, Theorem 2.2], and that of
114" (¢) in X finally follows from the identity

u"(t) = D1f (t,u()) + Dof (t,u())u’'(t), 0<t<T,
together withD, f(¢t,u(t)) € C([0,T], L(D, X)). O

We close this section with an example of a nonlinear initial-boundary value problem from detonation
theory. More examples that fit into our framework can be found in [6,12] and references therein.
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Example 4 Displacement of a shock, s¢4,12]. The following fully nonlinear problem arises in
detonation theory and describes the displacement of a shock

exp(aU (t, x)0,, U(t, -1 1
Pal . )0 U 0) = 1) Ly 2
ady U(t, x) 2
o, U(t,00=0,U({, 1) =0, U@O,x)=Upx), O<x<1, t>0.
Herea denotes a positive constant.

ChoosingX = C([0,1]) and D = {v € C?([0, 1]): v'(0) = v/(1) = O} allows us to write (5) in the
abstract form (4) withe(z) = U (¢, -) and
explavv”) — 1 1,,
f(t, U) = IOQ(T) — E(U )2.

Note that the right-hand side of (6) is analytic, if we restrict the domain to the set
D:{veD: v(x) >0forO<x <1}.

It is verified in [12, Section 8.5.1] that problem (5) enters our frameworltpe D.
We finally remark that in the present example

Cc>([0,1]), «<3, -

c2(10,1]), o> 3,

U, x)= Iog(
(5)

(6)

(X, D)a,oo — {

where
Co™7 (10, 2]) = {v e C¥7([0, 1]): v'(0) = v'(1) =0}

for y > 0. This follows from [12, Theorem 3.1.30 and Proposition 2.2.2]. For a smooth functién in
that does not necessarily satisfy unnatural boundary conditions, we can thus takemaalfer than 12.

3. Backward Euler discretization

In this section we give two convergence results for the backward Euler discretization of the initial
value problem (4). We decided to treat the backward Euler method separately from general Runge—
Kutta methods for the following two reasons: Firstly, this method is of great importance in applications
and secondly, the proofs are much less involved than for general Runge—Kutta methods. Therefore, the
underlying ideas can be perceived more easily.

Let 2 > O denote the stepsize. The backward Euler approximatjon to the exact solutiom of (4)
atz, 1 = (n+ 1)h is given by the recursion

un-‘rlh—u” = f(tn-i—l’ un-i—l)’ n=>0. (8)
Our first convergence result can be seen as an error bound in terms of the data. Note that the imposec
assumptions can easily be checked in applications.

Theorem 5 Error estimate in terms of the datdnder Assumption and 2, and forT as in Lemm&B,
there existdd > 0 such that for all stepsizes< i < H the following holds. The backward Euler solution
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of (4) is well-defined in a neighbourhood of the exact solution, and the difference between numerical and
exact solution is bounded by

|un —ut)| < Ct&*h(1+ |loghl), O<nh<T. 9)
The constant in general depends ofi, but is independent aof and 4.

In situations where it is known in advance that the exact solution has more smoothness, the above bounc
can be sharpened. We have the following result.

Theorem 6 Error estimate in terms of the solutiobet Assumptiorl hold, and assume that the exact
solutionu of (4) satisfiesu € C#([0, T, D) for someg > 0, andu” € B([0, T], X). Then, there exists

H > 0 such that for all stepsize® < h < H the following holds. The backward Euler solution(dj is
well-defined in a neighbourhood of the exact solution, and the difference between numerical and exact
solution is bounded by

|un —u@)|| < Ch(1+|loghl), 0<nh<T. (10)

The constant in general depends ofi, but is independent of and /.

Our main technique for proving both theorems is to linearize (4) along the exact solution. Setting

A@t)=Dof (t,u(r)) and g, v) = f(r,v) — A(t)v, (11a)
we arrive at the formally semilinear problem
W' (1) = A(Du(r) + g(t, u(@)), t>0. (11b)
Due to our assumptions and Lemma 3, we know that
Aec*([0,T], L(D, X)). (12)

Since the backward Euler method is invariant under the above linearization, we obtain from (8) the
following representation of the numerical solution

Up+1 — Uy
+T = A(tn+l)un+l + g(tn-ﬁ—l’ un—i—l)a nz 0. (13)

In order to analyze this recursion, stability bounds are all-important. Henceforth, weAyriteA(t,,)
for short, and we use the following notation for the discrete evolution operators

R(ty, 1) =(I —hA) (I =hAj0) 7", 0<j<n,

with R(z,,t,) = I. Due to Assumption 1, these operators are well-defined and boundedcdfiiciently
small. Moreover, we have the following stability estimates.

Lemma 7. Under condition(12), there existdd > 0 such that for all stepsize€s< h < H we have
|RGu. 1), <C(1,2;+loghle=}), O<t; <1, <T. (14)

The constanC in general depends ofi, but is independent aof and /.
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A slightly stronger estimate that avoids theg#| term follows from [5, Theorem 1.1]. In order to keep
this section self-contained, and since our proof of (14) is very short, we decided to give it at the end of
this section. We remark that under the condition

| A§(A 11 — A Ay | < Cty,, for somes > O,
the|logh| term does not appear in our proof. This condition is often satisfied in applications.
We are now in the position to prove the two theorems.
Proof of Theorem 5. Inserting the exact solutiof, = u(z,) into the numerical scheme (13) gives

ﬁn—&-l - ﬁn
h
This recursion differs from (13) by the defects

= An-i—lﬁn-i-l + g(tn+1a ﬁn-{-l) + 8n+1' (15)

1
3n+l = /(u/(tn + Th) - u/(tn+l)) dr.
0
As a direct consequence of Lemma 3, the defects are bounded by

181 < Ch® and [8,1| < Cht*™Y, n>1, (16)

where the constants depend on the first and second derivatives of
The backward Euler solution of (4) is constructed by fixed-point iteration. N.édbe defined by
Nh<T < (N +1)h,and let

D), = {v = ()N, €D sup v, —ut)| < coh”} (17a)
1<n<N

with suitably chosen constants > 0 and 1— « < y < 1. Forh sufficiently small, this is a closed subset
of the spaceD”, endowed with the weighted norm

1- N
Vo= sup z, “llvall, veD™. (17b)
1<n<N

We consider the mapping : D, — D", defined by
n—1
(@), = R(ta. Qo+ > R(ts.1))8(tj11,vj11).
j=0
Our aim is to show tha# is a contraction orD,,. By construction, the fixed-point @b is the searched

backward Euler solution.
From the definition ok, we deduce

1
g(tj, Uj) —g(tj, wj) = /(sz(lj, TV; + (1— 'r)wj) — AJ) dr - (Uj - wj)7
0

which implies the bound
g(tj, v;) — g(tj, w))| < coLh? ™ Hv; — wj]. (18)
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Note that the Lipschitz constaiitof D, f can be chosen here independentlyj ofWe next make use of
the relations

n—1 a—1
1 Ct**|logn|, B =0,
-1 a-1 n
h Ztn—j S {C atp-1 0 (19)
-1 Iy , < B <1,

that are obtained in a standard way by comparing the sum with the corresponding integral. Together
with (14) and (18), we get

n—1

(@), — (®w)), | <h ZHR(% D pex |8 viv1) — g1, wiga)]
j=0

< cocr Lt¢ (L + [loghl)h? T v — w |,

wherec; is a constant that depends on the stability constant of Lemma 7, afid Binis proves thatd
is contractive

@) — 2w, <kllv—wllw

with ani-independent factar < 1 for 4 sufficiently small.
In order to verify that® mapsD,, ontoD,,, we exploit

|e@) -l <«lv-i],+]i-e@)], <wccoh” + i - o(a)

It thus remains to show that
u— @(ﬁ) o S (L —K)coh”. (20)
With the help of (14), (16), and (19), we obtain
n—1
e i, — @ (a), | =B D R(tn,1))8;41| < Ch(1+ |loghl). (21)
j=0

The desired bound (20) can thus be achieved/fer1l.
Since® is a contraction orD,, the numerical solution* = (u,)"_; exists as the unique fixed-point
of @. Moreover, we have the preliminary convergence result

H”n — u(tn)H < cot,‘j"lhy, O<nh<T.
In order to show the convergence estimate (9), we use again (21)
w S|e()—o(@)]+ |- ()
i|u* — i+ Ch(1+|loghl).
Sincex < 1, this implies (9) and concludes our proof

l-«o ~ * ~
by un = | < Ju” = |
<

Proof of Theorem 6. This proof is very similar to the preceding one. It is essentially obtained by setting
a = 1 there. We omit the details.O

Proof of Lemma 7. Since we are working on an equidistant grid, it is sufficient to consider the case
j = 0. The idea of the proof consists in comparing the time-dependent op&@to0) with the frozen
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operator(l —hAp)™". For the latter, stability estimates are well-established, see [9, Estimate (3.31)]. We
will use below that

|Ao(I — hAg)~ <Ct7', 0<nh<T, (22)
holds with a constant that depends off, but not onn or 4. Let

A;=Ao(R(ty, ta—j) —(I —hA9)™7), 1< j<n.
ExpandingA, into a telescopic sum and using the resolvent identity

(I—hAj ) = —hA) ' =h(I —hA; ;1) (Aj11 — Ag)(I — hAg) ™
gives the recursion

"
XX

n—1
Ap =N ARty 1))(Aj11— A (I —hAg) /™
j=0
n—1
=hY A j(Aj1—A)Ag" Aol —hAg) /™
j=0
n—1
+h Y Aol —hA)) ™ (Aj11— Ag)Ag* - Ao(I —hAg) /. (23)
j=0
Taking norms in (23), and using (22) and (19), we arrive at
n—1
1A lxex S Ch Y 15 A llxex + Cte (14 |loghl).
j=0

Solving this Gronwall-type inequality and using once more (22) proves the desired result.

4. Runge-Kutta discretizations

In this section we generalize the convergence result of Theorem 6 to general Runge—Kutta methods.
We show below that, under certain smoothness assumptions on the exact solution and stability
requirements on the method, the convergence behaviour on finite time intervals is essentially governed
by the stage order of the numerical method.

An s-stageRunge—Kutta methoapplied to (4) with stepsize > 0, is given by the scheme

S
U,=ft,+cih,Uy), Uy=u,+h ZaijU,;j» 1<i<s,
j=1
5 (24)
un+1:un+hzbiUéi7 n>07
i=1
wherea;;, b;, c¢; € R are the coefficients of the method.

In the sequel we introduce the basic notions of order and stability. For details we refer to the
monograph [7]. Recall that the Runge—Kutta method (24)dwder p if the error fulfills the relation
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u, —u(t,) = O(h?) for h — 0, uniformly on bounded time intervals, whenever the method is applied to
an ordinary differential equation with sufficiently smooth right-hand side; the methost&ge ordery
whenever the internal stages satisfy — u(c;h) = O(h?) ash — 0 for all 1< i < 5. We always assume
p=1l

For specifying the stability requirements on the numerical method, it is useful to introduce the matrix
and vector notation

Q= (a;;)! 1=1...,)TeR,  b=(by,....,b)".

i,j=1°
Then thestability functionof (24) is defined through
R()=1+2zb"(I —zQ) 1.

The Runge—Kutta method i()-stableif 7 — zQ is invertible on the sectally = {z € C: |arg(—z)| <
¢} and if [R(z)| < 1 holds for allz € M, ; the method is calledtrongly A (¢#)-stableif additionally Q is
invertible and the module at at infinity, R(co) = 1 — bTAQ ™11, is strictly smaller than one.

Our analysis is in the lines of Section 3 and uses the fact that the derivative- D, f (¢, u(t)) along
the exact solution is uniformly sectorial ¢, T']. This follows from the Holder continuity af. Thus
there are constant® > 0,a € R and O< ¢ < /2 such that the resolvent estimate

- M
0= A0) oy < g ol —af < (29)

uniformly holds for 0< ¢t < T.
Now we are ready to state the convergence result for Runge—Kutta methods.

Theorem 8 Error estimate in terms of the solutiobet Assumptiorl hold and apply a Runge—Kutta
method of orderp and stage ordeg to (4). Assume further that the exact solution has the regularity
propertiesu™ e B([0, T], D) and u" ™Y e B([0, T], X) with » = min(p, g + 1), and that the method

is strongly A(¥)-stable with® > ¢, whereg is given by(25). Then there exist$/ > 0 such that for

0 < h < H the numerical solutiom, and the internal stage§,,; of the Runge—Kutta method exist for all
n with 0 < nh < T and satisfy

lun — ut)|| + max||U,; — u(t, +c;h)| < Ch"(1+]loghl), 0<nh<T.
1<i<s
The constant C in general depends®nbut not onn or h.

Although the requirement of strong stability excludes the Gauss—Legendre methods, the assumptions of
Theorem 8 are still satisfied by many interesting classes of Runge—Kutta methodsstalge Radau I1A
methods satisfy the assumptions wjth=2s — 1 andg = s, the s-stage Lobatto 11IC methods with
p =2s —2 andg = s — 1. Both classes are stronghy(;r /2)-stable withR (co) = 0, see [7, Chapter IV.5].

Proof of Theorem 8. For simplicity, we give the proof only for the case whé&éo) = 0 and henceforth
suppose; € [0, 1] for all 1 <i < 's. For a more general proof, we refer to [15].
In order to write the Runge—Kutta scheme more compactly, it is useful to introduce some notation

U= U, ..., Uns)T’ fn+1(Un) = (f(tn +cih, Uni))j:]_’ etc
With the help of these abbreviations, (24) takes the form
U = f:1(Uy), U,=1u, +hQU!,  u,1=u,+hb'U,. (26)
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Here, the matriXQ is considered as a linear operator ¥hand theith component o€2U, is thus given

by Zj-:la,-j U’/’J
Our analysis follows the ideas of Section 3 and relies on the consideration of the formally semilinear
equation (11). Let

Ay =diag(At, + c1h), ..., Aty + ch)).
Due to the resolvent condition (25) and thé9)-stability of the method, the operators
Joy1 =T —hQA, )™ and K,p1=I —hA, Q7!

are well-defined and bounded foarsufficiently small.
In this notation, the stages are given by

Up = Juy1lu, +hJy1Qgni1(Uy), (27a)
and the Runge—Kautta solution has the representation

Uni1= R(hAs0)tty + b Kpi18041(Uy), 120,
with the stability function

R(hAy 1) =1+hb"Apr(I — hQA, 1) 1.

Solving this recursion fon, yields furthermore

n—1
n = R(ty, Ouo+h Y Rty 174" K j41812(U)), n>0, (27b)
j=0

where
R(ty,tj)) = R(hA,)---R(hA;y1), 0<j<n, R(ty, 1) =1

denote the discrete transition operators. Due to the validity of (12), they satisfy the stability estimate
HR(tn,tj)HDgxgcgfj, O<t; <, <T, (28)

for sufficiently small stepsizes @ h < H, see [5, Theorem 1.1]. The constahdepends orf’, but not
onh orn. R

Inserting the exact solutiofa, = u(z,) andU, = (u(t, + c;h)){_, into the Runge—Kutta scheme (26)
yields

U = fu1(U,), Uy =10, +hQU, + Ay, i1 =1ty +hb"U, + 8,1, (29)

where the defects are given by

! 1 k-1 s
8,1 = WL / % ((1 —uV @, +th) —k ijc’;u(kﬂ)(rnj)) dr,
0

j=1

1
(1-7)? * ZS r—1,()
Ani =h" —( 1)' (1 — 'L')C;l/t 4 ('L'm') — (l" — 1) (l,'jCj u'" (Tnj) d'L',
r—1)!:
j=1



A. Ostermann, M. Thalhammer / Applied Numerical Mathematics 42 (2002) 367-380 377

with k =r — 1 ork =r andrt,; =, + tc;h. Consequently we have
Bupal SCH™, [18,qal SCR, AL < CH (30)

with constants depending on the method and the derivativebbrderr andr + 1.
For the construction of the internal stages we use a fixed-point iterétibased on (27). It maps a
sequence’ = (V,)Y_, in D to another sequenck(V) with components

(W(V))n = n+11R(tns Ouo + hjn+1agn+l(vn)
n—1

+h Z Jus1LR (ty, t;11)b K 118741(V)). (31)
=0

For somerg > 0 and O< y < 1 we choose the set
Dy ={V =)o e DV |V — U] <coh”}
as domain ot and endow it with the norm

[Vilo= sup [[V.ll, where|V,[ = max |Vl
0<n<N I<iss

Here,N is defined throughtN + 1)h < T < (N + 2)h.
We will show next that? is contractive with contraction factar < 1 for sufficiently small stepsizes.
For this, we use the corresponding estimate to (18)

|gi+1(V)) — g(tjp1, W))| < coLh” ||V, — W (32)
With the help of the stability result (28) and (32), we thus receive
(W), = (W), | <cocrL(1+1loghl)h |V = Wlloo,

with ¢; depending on the quantity from (28). This proves the contractivity @f for sufficiently smalla.
From formula (29) and the definition @f we further get

n—1

1T, = (#(0)), | <D [ Is12R . tjs0)| 18541l + 1 usall pepll Anll
j=0
n—1
+h Z” Ju11R (2, tj+l)bTKj+lHD(_X|Aj+lAj|~
j=0
Applying the bounds (28) and (30) yields
|U-w(0)|, <Ch (1+|loghl). (33)

An argument similar to that in the proof of Theorem 5 thus shew®,,) C D,,.
The convergence estimate for the internal steps now follows directly from the contractivity of
and (33)

~ ~ 1 -~ ~
U, —U,| <|U-U|_ < EHU — v (U)| < Ch"(1+ [loghl). (34)

e

In order to estimate the error between the numerical and the exact solution, we use the relation
Upt1 — i\ln+1 = (1 — bTO_l]l) (un - ﬁn) + bTO_l(Un - ﬁn + Al’l) — 8n+l-

Due to our assumptioR (co) = 0, the desired result follows at once from (30) and (34}
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5. Variable stepsizes

In order to keep the presentation as simple as possible, we have focused our attention in the previous
sections to constant stepsizes. This limitation, however, is not necessary and the results there hold for
variable stepsize sequences as well. The reason for this is quite simple: the techniques employed in oul
proofs are either based on fixed-point iteration or rely on the comparison of Riemann-sums with their
corresponding integrals. Obviously, their use is not limited to constant stepsizes.

Although the generalization to variable stepsizes is straightforward, we briefly describe how the
variable stepsize version of our stability lemma comes about. For this, we need some additional notation.
Letro=0<1 < --- <ty be the given grid and denote by

hy=t,—t,_1, 1<n<N,
the corresponding stepsizes. As in Section 3, we define the discrete evolution operators
Rty t)) = = hyAp) ™t (I —hj1A )Y 0<j<n<N,
as well as their counterparts with frozen arguments
Ftpt)) = —h, Ao (I —h; A7, 0<j<n<N.
Further, let
ANuj=A;(R(ty, 1;) —r(ty,1;)), 0<j<n<N.

The main idea is again to compare the time-dependent opatétor ;) with the frozen operator(z,, ¢;).
For the latter, we have the stability estimate [6, Lemma 5.1]

|Ajr @, <Clty—1)™, 0<j<n<N,

where the constar@ depends omy, but not ornw and ;. In the same way as in the proof of Lemma 7, by
using the telescopic identity and the estimate

tj)HX<—X

n—1
D hialts — 1) Mt — 1) < Clty — 1) H(1+ | log R
k=j
we arrive at
n—1
1Aullxx C Y hialtiys — 1) Aumlx o x + Clty —1)* (L + | logh]).
k=j

Applying a discrete Gronwall lemma thus gives the desired result. For a similar Gronwall-type inequality,
we refer to [2, Lemma 4.4].

We finally remark that our variable stepsize estimates are valid without any additional condition on
the stepsize sequence.

6. Numerical examples

The numerical examples given below illustrate our convergence results for the backward Euler method.
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We consider again the nonlinear initial-boundary value problem (5). It is noteworthy that it has an
unstable equilibriuml/ = 1 which is hyperbolic under the generic condition?n? # 2 for all n € N.
In the following we chooser = 1 and consider various initial values that satisfy the requirements of
Theorems 5 and 6.

Example 9. The smooth and positive function
3 X2

Uo(x)=%—5+1, 0<x <1,

satisfies the Neumann boundary conditions and thus lieB.irSince the compositiory (0, Up) is
analytic, it further fulfills £ (0, Up) € (X, D)q. fOr every O< o < 1/2, see (7). Therefore, Theorem 5 is
applicable.

Example 10. The polynomial
Uo(x) = —20x" 4+ 70x% — 84x° + 35¢% + 1

is positive for allx € [0, 1]. Moreover, the derivatives dfy up to order 3 vanish at the boundary, which
impliesUp € D and f (0, Up) € D. Therefore, Theorem 8.1.1 of [12] applied to

u"=Dif(t,u) + Dof (t,uw)u’, u'(0) = f(0, Uo)

guarantees that/’ € C([0,T], D) and in particularu” € B([0, T], X). Thus the requirements of
Theorem 6 hold.

Example 11. For a constant initial value, the solutidn(z, x) depends om only. Along such a solution,
problem (5) reduces to the simple ordinary differential equation

w =logw, w(0)= Uy,

and we getlU (1, x) = w(t). In our experiment, we integrated the original problem with= 5.

We discretized problem (5) in space by standard finite differences on an equidistant grid with meshwidth
Ax = 1074, and in time by the backward Euler method, respectively. For the different initial values, the
integration was performed up t6 = 1 with stepsizesi = H/2/ where H = 0.2 and 0< j < 7. We
emphasize that the implementation of the right-hand side (6) as well as the approximation to its Jacobian
requires some care.

In order to determine the errors, we compared the results with more precise approximations that have
been obtained with the codeapAus. This code is a variable stepsize implementation of the 3-stage

Table 1
Numerically observed orders of convergenc& at 1
Stepsizer 1/5 /10 1/20 1/40 1/80 1/160 1/320

Example 9 1.167 1.074 1.036 1.018 1.009 1.005 1.002
Example 10 1.238 1.203 1.180 1.151 1.114 1.076 1.045
Example 11 1.008 1.004 1.002 1.001 1.001 1.000 1.000
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Radau IIA method, see [7]. From the quotients of the errors, the numerical orders of convergence were
computed in a standard way. The results are given in Table 1. As expected, the numbers approach one
ash decreases.
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Abstract

In the present paper, stability and convergence properties of linear multistep methods are investigated. The
attention is focused on parabolic problems and variable stepsizes. Under weak assumptions on the method anc
the stepsize sequence an asymptotic stability result is shown. Further, stability bounds for linear nonautonomous
parabolic problems with Hélder continuous operator are given. With the help of these results, convergence estimates
for semilinear and fully nonlinear parabolic problems are derived.
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1. Introduction

In this paper, we study the stability and convergence properties of linear multistep methods applied
to nonlinear parabolic problems. Our analysis admits variable stepsizes and is based on an abstrac
framework of sectorial operators and analytic semigroups in Banach spaces.

Stability results for variable stepsize multistep discretizations generally require that the ratios of two
subsequent steps are bounded from below and above$hes i,/ h,_1 < £2, with appropriates2;
and £2,. For ordinary differential equations, two conceptually different types of stability estimates are
found in literature, see [9, Section III.5].
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The first approach ensures stabilitglependentlyf the chosen stepsize sequence. To our knowledge,
Grigorieff [8] was the first who analyzed BDF discretizations of ordinary differential equations in this
way. Recently, stability bounds that depend only weakly on the stepsize sequence have been derivec
for BDF discretizations of parabolic problems in a Hilbert space setting by Becker [2], Calvo and
Grigorieff [3], and Emmrich [5]. Notwithstanding the merits of this approach, it has its shortcomings as
well, since it gives, in general, quite disappointing values?erands2,. For BDF5, e.g., one obtains the
stringent condition ®97< h,,/ h,_1 < 1.003 in order to ensure zero-stability without further restrictions
on the stepsize sequence.

The second approach allows the stability factordependon the stepsize sequence. To obtain
(practical) stability, however, it must be guaranteed that this factor remains bounded by a (reasonable)
constant. For ordinary differential equations, this approach was used by Gear and Tu [6]. Under the
assumption that the stepsize sequence depends smoothly on the local errors, they obtained favourabl
convergence results. More recently, this direction has been further exploited for linear parabolic problems
in a series of papers by Palencia [14,15] and Palencia and Garcia-Archilla [16]. The results of Palencia,
however, are not sufficient to obtain convergence for nonlinear problems. Our motivation for the present
paper was to derive the missing stability estimates and to develop a convergence theory of multistep
methods for nonlinear parabolic problems.

The present paper is structured as follows: In Section 2, we first introduce the analytical framework,
based on the theory of sectorial operators in Banach spaces, and we specify the requirements or
the numerical method. We then derive our main stability results for asymptotically stable analytic
semigroups. This is the key for proving asymptotic stability of multistep discretizations. In Section 3,
we extend the stability results of Section 2 to arbitrary sectorial operators, and then in Section 4 to
linear nonautonomous parabolic problems with Hoélder continuous operator. In Section 5, we apply
the stability results to semilinear parabolic problems, and we derive a convergence result for finite
times. In Section 6, we give applications to fully nonlinear parabolic problems. We study the long-
term behaviour of multistep discretizations nearby an asymptotically stable equilibrium, and we state
a convergence result for smooth solutions on compact time intervals. Corresponding results for Runge—
Kutta methods are found in our papers [7,13,18].

Throughout this paper, we employ the following notation. For normed spacasd Z, the space
L(Y, Z) comprises all linear operators frointo Z. It is endowed with the usual operator norm de-
noted by|-|,. y. For an integerk > 1, the norm on the product spade is defined by| y|y« =
max{||yilly: 1 <i <k} fory=(y1,..., )" €Yk In order to simplify the notation, we usually dismiss
the dimensions in the operator norm and wiijtg| ,._, instead of|| - || ,«._y« for short. We recall that
for an arbitrary matrixB with coefficientsb;; and a linear operatoA, the (i, j)th component of the
Kronecker productB ® A equalsh;; A. We further distinguish between the identity operatand the
identity matrixZ on R,

Henceforth,C denotes a generic constant with possibly different values at different occurrences.

2. Asymptotic stability for time-independent operators

In this section, we derive fundamental stability estimates for linear multistep methods with variable
stepsizes. Our results substantially rely on the papers [15] and [16].
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We study the abstract initial value problem on a Banach sp¥cg- || y)
u'(t) =Au(t), t>0, u(0) given, Q)

whereA is a densely defined and closed linear operatoXoithe domainD of A is endowed with the
graph norm| - || ,. Our main assumption oA is the following, cf. [12] or [10].

HA1. We suppose that € L(D, X) is sectorial onX, i.e., for some constanise R, M > 1 andg €
(0, 7 /2), the resolvent oft fulfills the condition

|1 — A)~ reC\ S,(a), 2)

1
HX<—X N |)\_a|’

on the complement of the sectfy(a) = {1 € C: |argla — 1)| < ¢} U {a}.

Let (k,).>0 denote the sequence of positive time steps with corresponding égtiest,, / h,_1,n > 1,
and setw, = (w,, ..., w,11_2). The associated grid points are denotedtoy ho + h1 + -+ + h,_1.
Throughout the paper, we use the following assumption on the stepsize sequence.

HS1. We assume that there exisks>1 such that the stepsize ratios satisty* < w, < £2 for all n > 1.

We first draw some conclusions from this hypothesis that are all-important for our stability results.
Let (h,),>0 be a stepsize sequence satisfying HS1. For the subseqbiencé, ..., i, j—» of length
Jj, consider the associated sequence of ordered stefisiges: i, < - -- < hy(;) and set

T}Ej)zhn(l)+---+hn(x) for 0<%<] (3a)
From the identity
task1=Hnsk—2+ -+ hj 1+ ha(y + -+ ey + T + i1,

with the help of HS1 and the obvious estimakes;_1 < 2h,(;) andh, 11 < 27, we get the useful
relation

k-1 — o1 < CR*T) for 1< x<j < n. (3b)
We further note for later use that

Ctysi—1 <typyk—1—tk—1 S thgh—1, n =1,

3c
bpyk—1— 1 < C2"hy 1. (3)

The numerical approximation, . to the solution of (1) at time,,, by a linear multistep method is
given recursively by

k k
Y nittsi =hase 1A ) Buittnyi, n>0. (4)
=0 i=0

This relation involves the coefficients; andg,;, 0 < i < k, that may depend o, 1, and on the starting
valuesug, u1, ..., u;_1. For more information on variable stepsize linear multistep methods, we refer to
the monograph [9].

In order to write the numerical scheme (4) in compact vector form, we denote

T
UI’L - (urH un+la ey un+k—l) )
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for n > 0. Further, we introduce the functions
Jn+1(z) - (ank - ,Bnkz)_la
Sn—i—l,i(z) = - n+1(Z) : (ani - ,Bniz), 0 < i < k—1.

Here, the first index indicates the dependenceavpn,. Then, the companion matrix of the method is
given by

(5)

0 1 o ... 0
: 0 1 :
rny1(2) = : : 0
0 0 ... O 1
Sn41,0(2)  Sur11(2) -0 oo Spp1x-1(2)

For constant time steps, we denote the companion matriX4yfor short.
The above notation allows us to rewrite (4) as

U, = H"j (hjyx—2A)Ug, n=0. (6)
i=1

We note that the factors arising in the product do not commute, in general.
Throughout the paper, we require the following stability assumption for constant stepsizes.

HM 1. We assume that the linear multistep metkdds A(¢)-stable and strictly stable & and infinity.
Thus,. = 1 is the only eigenvalue of the companion matrixOatvith modulus one, and the spectral
radius of the companion matrix at infinity,= o(r(00)), is less than one.

The following hypothesis is needed for variable stepsizes.

HM 2. We assume that the coefficiets and g,; in (4) are bounded for all stepsize sequences satis-
fying HS1 We further require that the rational functiong (z) ands,;(z) in (5) remain bounded for
7€ 5,(0).
If the k-step method is consistent of orderthe principal eigenvalug; (z) of r(z) fulfills
M) =€+ (’)(Zp+l), z— 0,
see [11]. Note that this relation implies
rM(z) =@ with n(z) = O(ZPH) for z — 0O,

which is important for the results we have in mind.
HM 3. We assume that the linear multistep meti)xhas orderp > 1.

Example. The k-step BDF methods, for ¥ k£ < 6, satisfy HM1-2 withp = 0 for any 2 > O,
and HM3 withp = k, see [9].
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Now we are ready to state the stability result. The corresponding results for Runge—Kutta methods are
given in [1]. In order to simplify the notation we introduce the abbreviation
n+k—2 ‘o
c2,=C [] 1+ Alw, - 1)? < ceATim o, )

j=1

Theorem 1. Consider the linear multistep discretizatiéfh) of Eq.(1), and assume thaiAl witha < 0,
HS1, andHM1-3 hold. If u > 1 satisfieso2* < 1, then the following bound is valid for atl > 1

- Com
jl:[l’”/ (hjyx—2A) o < T+,
If in addition 1« > 2, we have foralk > 1
- h A - < Con
jl:[lrj( j+k—2A) jl:[lrJ(OO) . St

Recall that under hypothesis HA1 with< 0, the semigroup’é decays exponentially fast to 0, since
foranya > a

A A .
”d HD<—D —|—tHe‘ HD<_X <Cce'’, r>0.
Let the stepsize sequence be such that oo for n — oo. If the quotient
CA
—2 0, forn— oo, @®
1+t

then the numerical method is asymptotically stable. practical purposes, however, it is essential that
the quotient in (8) remains bounded byemsonableconstant for alk. This is achieved, for example, in
the following situation.

Example. Suppose that the size of the gridpoints grows exponentiallyzfastCqg” with some 1<
g < £2 and that for somer > 2

1+ AR —-1)°<g* and " <1. 9)

Then, the numerical method is asymptotically stable, and the constant in (8) is reasorjabitg,isf not
too small. Note that (9) holds fqr sufficiently large, ifo = 0.

Proof of Theorem 1. Our proof is strongly based on the work of Palencia. An application of a matrix
version of [15, Lemma 1 and Theorem 2] to the shifted operateral shows that the following bound
holds
Ny.a(g)
|8 < Cligllp.a + Cligly.a Iog*(”;?),
@,a

for any holomorphic mapping defined on some neighbourhood $f(a) taking values in the space of
complexk x k matrices. We here denote

lgllp.a =supl|g)|: * € S,(@},

Noa(@) = |g@ | + g + Zs.a(@) (o),
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with

Zpa(®) =sup{| (A — )T} (g(W) —g@)]: 1 € Sy(@)},
I,.(g) = sup [ —a)(g) — g(o)|: 1€ Se(a)}.
The first part of the theorem follows by applying this bound to the function

n

g0y =[]ri(hjse—2n), (10)

j=1

and Lemma 4 below. More precisely, we use the inequalibg™ (y/x) <log*(y/b) + b/e which holds
for y > 0 andx, b > 0. We recall here that logx = max(0, logx). Settingx = [|glly.a, ¥ = Ny..(g) and

(i 2
]_[ (1+ Alw; —1])°,

j=1

1+%%1

then yields the first estimate of the theorem with the additional facterldg® ,.._,. This factor,
however, can be omitted by slightly increasing The second part of the theorem follows in the same
way by using the function

GO = x(]‘[r,- (hji2h) — ]'[r,(oo)>, (11)

j=1 j=1
and Lemma 5. O
The auxiliary results that are needed in the above proof are collected in the remainder of this section.

First, we study the behaviour of the companion matrix for constant time steps. We remarkzbhat
satisfies an estimate of the form

Y1), z1,22€ S,(0).

The following lemma is an extension of [16, Theorem A.1]. For a related decomposition of the companion
matrix, see [4].

|r(z0) — r(z2)|| < Cmin(lz1 — zal, |27t — 25

Lemma 1. Let r(z) be the companion matrix of a linear multistep method satisfiiMiL and HM3.
Then there exists a map defined onS, (0) with values in the space of complex & matrices with the
following properties: For any0 < o < § < 1, there exist a neighbourhooB = {7z € C: |z| < o} of the
origin and a constan < ¢ < 1 such that the following estimates hold

IT@r@T@) Y <eR=,  ze Zo=BNS,0),

12
|IT@r@TE <8, 2€ T = 5,(0)\ Zo. (123)
Furthermore, we have for all, z1, z2 € S, (0)
-1
IT@|<c. [T <c (125

1T (z0) — T(z2) | < Cmin(|z

i —5)
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Proof. The lemma is a consequence of [16, Theorem A.1]. In order to show the additional esti-
mates (12a), we choose a Lipschitz-continuous maghat coincides with the exponentigl(z) = &=

near the origin and satisfieg(z) = § in a neighborhood ofo in such a way thap(x/f(z)‘lr(z)) <1

holds onS,(0) \ {O}. Then, the result follows from an application of Theorem A.lomicit. O

In order to study the produgt(}) it is useful to introduce the map

gRez if 7 e X,
8 if ze X,

which essentially captures the behaviour @), see (12a).

CDZSw(O)—>(C:z+—>CD(z):{

Lemma 2. Under the assumptions of Lemrhand HM2, it holds

n

l_[ ri(hjir—2))

j=1

<Co, - [T2Mn. reS, .
j=1

Proof. The proof is very close to that of [16, Lemma 3.2]. Replacing relation (3®)a€it. with (12a)
and tracing its effects, yields the result. In particular, the very fornCQL in (7) as a product is
obtained. O

Lemma 3. Let the stepsize sequence satldfyl, and lety > 0 andx > 0 be such thay 2* < 1. Then,
for ¢ > 0, there exists a constaidt such that

G C .
yt e T forall 0<m < j<n
+ tn+k—1

with 7’ given by(3a)

Proof. From (3) we obtain," ,_,y" ™" < C(y 2y )+, and the assertion follows at once from the
uniform boundedness of'e  for positives. 0O

We are now ready to derive the desired estimates for the fungtion defined in (10).

Lemma 4. Under the assumptions of the theorem, it holds

CA

su M —25—,
AGS«JE)Hg( )< 1+

sup |(x —a) Hg) — g(@)| < _Con fk—1
reSy(@) Sl T

co. 1

sup || —a)(g(r) — g(00)) | € ——=—1,7 5.

L€ESy(a) +1 i1

Proof. Itis convenient to employ the following abbreviations

ri=rj(hj—2A), 0 =r1;(00). 13)
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We choosep < § < 1 such thas2* < 1. Letx denote the number of indicégs— 1 <m <n — 1 such
that|h,,A| < o. From Lemma 2 and (3b), we get

ls] < c2,8m e Re

Since Re. < a < 0, the first assertion of the lemma follows at once from (3) and Lemma 3. For the
second bound, we use the telescopic identity

n n j-1
gl) —ga) = Z l_[ ri(hyyk—2a) (i’j —r;j (hj+kfza)) 1_[7’[,
i=1

j=1ll=j+1
and the estimat@r; — r;(hjix—2a)|l < Chjir_2|A —al|. This yields

[0 = (g0 — @) < €2, 3 a1 e,
j=1

with 0 < x; <n —1, and the same arguments as before yield the desired bound. The last estimate follows
in a similar way from

g(k)—g(oo)—z H oi(r; — Q,>]_[r,

j=1l=j+1
For fixedj > 2, letx = x(j) denote the number of indicégs— 1 <m < j + k — 3 such thath,,A| <o.
Using [(A —a)(r; — o))l < Chﬁk , for x(j) =0 and|x — a|t, €™ Rel L C for x(j) > 1 yields the
desired result. O

We next study the behaviour 6f()), defined in (11).

Lemma 5. Under the assumptions of the theorem, it holds

CA
sup GOV | € —25—14 4,
reSy(a) k1
CA
sup (A —a) NG — G@) | < —5— A+ tyri—),
eSy(a) 1+

A

Cw n _2
sup [0 — @) (G(1) = G(o0) | € 25— 17y,
reSy(a) b1

Proof. SinceG(A) =A(g(L) — g(o0)), the first estimate follows in the same way as that in the previous
lemma. For the second estimate, we use the identity

G —G@=0—-a)(g) —g@) +a(g) — ga)),

and the previous lemma. In order to show the last relation, we define with (13) the analytic function
V(L) = A(rj — 0;) which is bounded at infinity bght i+x—2- Using

G(o00) = Z 1'[ sz](oo)l'[g,,

j=li=j+1
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and the telescopic identity, we get

G() — G(o0)
—Z H 01(¥; () — ¥(00)) ]"[QI+Z H oi(r; — Q,)A(l"[r, 1‘[9,)
j=li=j+1 j=ll=j+1

Expanding the last term again with the telescopic identity, the desired bound now follows as in the
previous lemma. O

3. Stability on compact timeintervals

In this section, we derive stability estimates for (4) on compact time intef0als]. We first give an
extension of Theorem 1 to nonnegativeWe make use of the following hypothesis which is familiar
from the convergence analysis of linear multistep methods for ODESs, see [9, Theorem I11.5.7].

HS2. We assume that the stability factcﬁ‘%‘ﬂ in (7) are uniformly bounded by a constant for all> 0.

We emphasize that the size of the constant in HS2 may depend on the length of the considered time
interval.

Theorem 2. Consider the linear multistep discretizati¢h) of Eq.(1) on the interval[0, 7], and assume
that HA1, HS1-2 HM1-3 hold and thatp£2? < 1. Then, there exist positive constarfisand C such
that forO < &; < H the following bounds are valid for all > 1 withz, <T

n

l_[ ri(hjix—2A)

j=1

n n

[[7ijsi—ad) = ]ri(c0)

j=1 j=1

C

<C, )
Intk—1

D<D

The constanC depends on the constants that appear in our assumptions afid lout it is independent
of n.

<
DX

Proof. Our proof relies on a smart idea of Palencia [14, Section 3]. Since our assumptions on the stepsize
sequence here are different, we shortly comment on the necessary modificatiohs> ok 0, let
fi=QQ+ Alw; —1))~? and

Fi=f; rj(hjs—2(A—=bD) and 7;=f;-rj(hj—2A).
Note that the(k, m)-entry of7; —7; is given by

jsk—2bf; - (Bj—1x0j—1m — oj—1xBj—1.m) Jj (M jsk—2A)Jj(hjsk—2(A — BD)). (14)
Therefore, there exists a constahsuch that

Hrj ”J” C-hjiio.

The first assertion of the theorem now follows at once from the telescopic identity

l_lrf > 16 le"[m

j=ll=j+1 i=1
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and a discrete Gronwall lemma. To obtain the second bound, we write

n n n n j—1 j-1
<1 i=1 =1

j=1ll=j+1
n n j—1
+@eM Y [] 7t -i) 7
j=li=j+1 i=1
To bound the inhomogeneity, we use again (14). Due to
z C
IR (A-bD"[]# - (ZT® J1(hi-a(A—bD))) <o, 0<0<1,

j=2 Xex  ntk-l

which follows from Theorem 1 by interpolation, the inhomogeneity is seen to be bounded by

n
—_1/2 ,—1/2
Zhj+k—2 (tagk—1 — Tj4k—2) / tj+,f_2 <C.
j=1

The desired result now follows again with a discrete Gronwall lemnta.

The following lemma is a discrete version of the well-known identity

t
A/e’Adrze’A —1.
0
We denote again; =r;(h2+A), J; = J;j(hji2—A), and further
e=(0,...,0,)"T and 1=(1,...,1)" eR*. (15)
Recall that a linear multistep method is consistent of orderdgift- - - - + «; x—1 = 0 for all j.

Lemma 6. Assume thatA1, HS1, HM1-2 hold, and that the multistep method is consistent of ofler
We then have

hjti—1(Bjo+ -+ Bjr-1(ex @ AJjy1) = (rj41 — D1,
and in particular

n

Z h_i+k—2< H i’z) (ex @ (Bj—1.0+ -+ + Bj-14k-1AJ})
=1

I=j+1

I
/e
.
'l‘ |:
3
|
~
SNS—
=

The proof is straightforward and therefore omitted.

4. Stability for time-dependent operators

In this section, we consider the time-dependent problem
uW(@®)=AMu@), 0<t<T, u(0) given (16)
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whereA: [0, T] — L(D, X) for someT > 0. Our basic assumptions on the operator) rely on [12].

HA2. We assume that the operatdrr) satisfiesHAL uniformly in t. In particular, A(¢) is supposed to
have a fixed domai.

The following assumption concerning the Hdolder continuity Aofis motivated by the framework
considered in [13].

HA3. We suppose that € C*([0, T'], L(D, X)) for some0 < « < 1, i.e., there exists a constait> 0
such that

|A@®) — Ay, <LGt—s)* forall0<s<r<T.

A linear k-step method, applied to (16) takes the form

k k
Zaniun—i-i = hl‘H—k—l Z /SniA(tn—H)un—H > n > 0. (17)
i=0 i=0
Again, it is convenient to work witll/, = (u,, tn11, ..., unsx—1)". FOr this purpose, we denote
Sut1i (2o W) = — (@ — Buk2)H(otni — Buiw),

and we define the companion matrix of the method through

0 1 o ... 0
. 0 L .
Fnt1(20, 215« o5 2k) = : : 0
0 0 ... 0O 1
Sn41,0(Zks 20)  Snr11(Zk> 20 ooe ooe Spyra-1(Zks 2k-1)
Further, we set
$2i(2) = $ni(z,2) and r,(z) =ru(z,...,2), n=1,

which makes our new notation compatible with that of the previous sections. Besides, for integers
we setA; = A(t;), and we write for short

Ripy=rpa(hpx1Ans oo hyi1Angr), n=0.
This allows us to rewrite the numerical method (17) as

U,=R,R,_1--RUy, n>0. (18)
We are now in a position to give the stability result for (17). Henceforth, we dengig= max{h;:

Theorem 3. Consider the linear multistep discretizatiofi7) of Eq. (16) on the interval [0, T,
and assume thatlA2—3, HS1-2 HM1-3 hold and thatp$2? < 1. Then, there exist positive constants
H and C such that for0 < #; < H the following bounds are valid for all > 1 withz, <T
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[]& + ([ 1% <C, (19a)
Jj=1 X<X Jj=1 D<D

z 1 logh

[[R - (Z® hhi-1AD) < c( 4! f_am"“' ) (19b)
Jj=2 DX Intk—1 Tk-1

The constanC depends on the constants that appear in our assumptions afid lout it is independent
of n.

Proof. The main idea for proving the theorem is to compdtg with the frozen operator, =
ro(h,ir—2A). To show the first estimate in the norm bf we chooseA = A, ;1 and use the telescopic
identity and the bounds of Theorem 2 to get

n
[1%
j=1

Due to HA3, we have

j—1

I1x

i=1

+C.
D<«D

n
1
< CZ(fn+k—1 —tiyk—2) IR —rjllx<p
D<D j=1

IR, —rjllxep < C-hjsx—2(thsr—1—tj+i—2)",

and the application of a discrete Gronwall lemma vyields the desired result. The corresponding estimate
in the norm ofX is obtained in a similar way from

n n n j—1 n
[T1r =] R@®i—=rp[[ri+[]r;. 1<m<n,
j=m i=m j=m

j=ml=j+1

by choosingA = A,, .x_1. A preliminary estimate for (19b) is obtained with the same choica &bm
the identity

n n n n n j—1
1_[ Rj— 1_[ r; = Z ( 1_[ Rl_ 1_[ rl)(Rj_rj) l_[ ri

j=m+1 Jj=m+1 j=m+1 \l=j+1 I=j+1 i=m+1
n n j—1
+ > [ n@®i=rp [T -
j=m+1li=j+1 i=m+1

Multiplying this relation from the right wittf ® J,, (h,,1x_24,+x—1) Shows that the inhomogeneity, as
an operator fronX to D, is bounded by

n
1 -1
Z Rjsk—2 (k-1 — tjk—2) " (k-2 — tngr—2)® < C - (14 109 hyix—2l).
j=m+1

With the help of a discrete Gronwall lemma, we thus get a preliminary bound for (19b) with lpg
in place of log:mayx. In a similar way, we get a bound with lag_; instead.



A. Ostermann et al. / Applied Numerical Mathematics 48 (2004) 389407 401

It remains to show the sharper estimate withAggy. For this, letk — 1 <m <n + k — 2 be an index
with &, = hmax Depending on the size of,, we distinguish two cases. 1#2> 1,1 — t_1, we write
with J1=J1(hi_1A)

[[R-@Ton

j=2

<Ry Rustllpp|Ru- - REZ @ V)|,
D<X

and use (19a) and the preliminary bound from above to obtain the desired estimates f,2,_1 — 11,
we use the identity

[[R-@®n
j=2

<R Rusa @@ I,y
D<X

X |(Z ® (@m-1k — Bu—1khmit—2Amsk—1)) R+ Ro(Z @ J1) || 4 _4-

ExpressingR,,--- Ro — 0, - -- 02 through the telescopic identity then yields as before the desired
result. O

5. Applicationsto semilinear parabolic problems

As a first application of our stability results, we study the behaviour of time discretizations for
semilinear parabolic problems by linear multistep methods with variable stepsizes. In the following,
we briefly sketch a convergence result for finite times.

For our purposes, it is useful to employ an abstract formulation of the parabolic initial-boundary value
problem as an initial value problem on a Banach sgace| - | )

u'(t) = Au(t) + f(u(®), >0, u(0) given (20)

Here, the linear operatot: D — X is assumed to be sectorial. We further suppose that thefmépc
Xy — X:v f(v) defined on some open subset of an interpolation space [X, D]y, 0<6 <1,
is Fréchet differentiable and that its Fréchet derivatlY¢(v) satisfies a local Lipschitz condition.
Reaction—diffusion equations and the incompressible Navier—Stokes equations fit into this analytical
framework, see [10,12,17].

As linear multistep methods are invariant under linearization, we may assume without loss of
generality that Eqg. (20) is already linearized aroutid). Consequentlyy satisfies

|f) = fw)], <Lellv—wlx, (21)
for all v, w € Xy with |[v —u(0)||x, <o and|jw —u(0)|x, < o.
Applying a lineark-step method (4) of order to Eqg. (20) yields
Un+l = rn—i—lUn + hn+k—1(:Z X Jn-l—l)f(Un—i-l)y n > 0. (22)

Here, we make use of the notation introduced in Section 2. In particular, we have (u,,, u, 1,
s lngk—1) "y Tugr = Tug1(Bpgr—1A) and Jo1 = (i — hpgr—1BucA)~L. Furthermore, withe, =
(0,...,0,1)" € R*, we denote

k
fWUni) =) Buiek ® f (nsi).

i=0
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Solving (22), we receive the discrete variation-of-constants formula

U;1:Hl"jU0+th+k72 l_[ rj(Z® Jm)f(Um), 7’120 (23)

j=1 m=1 Jj=m+1

We now carry out a fixed point iteration based on this relation. That is, for finite sequéneed/,)"_,
belonging to a ball around the constant sequdin¢@ with componentd/(0) = 1 ® u(0)

V={V=0le |V -UO], o= max e (v, v )], <o,

we define a magr : V — V through

n

(V) =[]riVo+D hmuiez [[ r/@®I)F(Vi), n=0.
j=1 m=1 j=m+1

We remark that under the requirements of Theorem 2 the estimate

n

[

j=1

n

[] rice

j=m+1

+ (task-1 — tmri2)’ <C, (24)

Xo<—Xo

Xo<X

follows easily by interpolation. Using moreover (21), it is straightforward to showthiata contraction
with contraction factok < 1 for stepsizes sufficiently small and expongnt O large enough, since

n

k =CLp max hypsk—2 ,
OSn<N = (thsk—1 — tmsr—2)?

eV Untk—1—lm k1)

with the constantC from (24). Moreover® maps) to V if Uy lies sufficiently close td/(0). Hence,

an application of Banach’s fixed point theorem proves the existence of the numerical solution. Besides,
the vectorﬁn = ({iy, lhps1, .-, Hesk—1)| cOmprising the exact solution, = u(z,) satisfies (23) with
additional defectd,,

n n

U\n:Hrjl/]\O—}_thqufZ 1_[ rj(I®Jm)(f(l7m)+Dm)’ n=0.

j=1 m=1 j=m+1
Provided that the(p + 1)st order derivative ofx remains bounded, we haveD,,|x < Ch,’jl+k_2.
Therefore, due to the fact that

1
1—«

hmtik—2

N
<C|Uo—Toly, +C) 1Dyl x,
m=1

(tn+k—1 - tm+k—2)0

the desired convergence estimate follows.

Theorem 4. In the above situation, apply a linearstep method4) of order p to Eq. (20). Assume
further that the requirements of Theore?rare satisfied and that the derivativeé?*V (¢) of the true
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solution remains bounded IX for ¢t € [0, T']. Then, for initial valuesig, u1, ..., ui_1 € Xy that lie
sufficiently close ta:(0) and for stepsize sequencés;);>o With 0 < h; < hmax SMall enough, the
associated numerical solution fulfills the relation

n p+1
Hun —ult) HX" S C0<rp<%c)£1”ui —ult) ”X9 + C,,; (t, —mt;l_l)e’

as long as0 < ¢, < T. The constanC depends on the constants that appear in our assumptions and
onT, but itis independent of.

6. Applicationsto fully nonlinear parabolic problems

In this section, we study variable stepsize linear multistep time discretizations of fully nonlinear
parabolic problems. As in the preceding section, we employ an abstract formulation of the partial
differential equation and we work within the setting of sectorial operators. Our assumptions on the
equation

u'(t)y=F(t,u@®)), t>0, u(0) given (25)

are mainly that of [12]. For nonlinear initial-boundary value problems that can be cast in this analytical
framework, see also [7] and [13].

In the following, we specify two illustrations. First, we give a result on the dynamical behaviour nearby
a stable equilibrium of the equation, and secondly, a convergence result for finite time intervals.

6.1. Asymptotically stable stationary solutions

We consider an autonomous equation on a Banach spade || y)
u'(t)=F(u@)), >0, (26)

with right side F: D ¢ D — X defined on some open subgetof another densely embedded Banach
spaceD C X. Our assumptions on (26) are that of [12], see also [7]. Thus, the Fréchet derivative
DF:D — L(D, X) satisfies a local Lipschitz condition. Further, for amye D, the linear opera-
tor D F(v) is sectorial and its graph norm is equivalent to the ndrrih, in D. We suppose that € D
is an asymptotically stable equilibrium point of Eq. (26), thatAsi) = 0, and the sectorial operator
A = DF (u) fulfills the resolvent estimate (2) with < O.

Linearizing the right side of (26) around the equilibrium paintields a formally semilinear problem

u'(t) = Au(t) + G(u(r)), >0, (27)

with map G defined throughG(v) = F(v) — Av for v € D. For a lineark-step method (4) applied
to (27), in accordance with the notation of Sections 2 and 5, we thus receive the following relation with
Gj = G(uj)

k
Uni1=1n41U, +hyjp—1e @ <Jn+1 Z Bhi Gn+i> , n=0.
i=0
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We represent the numerical solution by means of a discrete version of a modification of the variation-of-
constants formula

k
U, = Hrj Up+ th% 2 l_[ riex @ (Jm Z,Bml,iGn+kl>
i=0

j=m+1

+ th+k 2 1_[ rieg @ <Jm Z,Bm—l,i(Gm—l—i—l - Gn+k—1))- (28)

j=m+1 i=0

This relation remains well-defined in a space of weighteHdlder continuous sequences for some
0<a <1, thatis, the set

Ca(D) ={V = (V)uz0 Va € DX, VIl =SUPIV,llp+ SUP 15ty = 1) IVa = Varllp < o0},
n=>0 O<m<n
endowed with the nornjil-|| . With the help of Lemma 6, we are able to bound the second term on the
right side of formula (28).
For our situation, it is known that if the initial value lies close to the equilibrium p@jithen the true
solution decays againgtexponentially fast. Permitting increasing stepsizes, a similar result holds true
for linear multistep methods if stability estimates of the form

n

C
M| <o
j=1 D<D + n+k—1
(29)
- C
jzlll ! by Itk = Imgko2 F (ngpko1 = fngr-2)"

with exponent; > 0 hold forn > 1, see Theorem 1 and the subsequent discussion.

Theorem 5. Under the above requirements @n let # be an asymptotically stable equilibrium point
of (26). Apply a lineark-step method with stepsizés;) ;>0 such that(29)is valid. Then, fol0 < v < n,
there exist constantd > 0 and C > 0 such that for all initial valuesug, u1, ..., u;_1 € D with
lu; —u|lp <8,0<i<k—1, the numerical solutioru,),> satisfies the estimate

Tr ol — o, n>0

”un - ﬁ”D X
Proof. We shortly indicate the proof of Theorem 5. For a precise explanation of the employed techniques,
we refer to [7] and [18]. For constructing the numerical solution, we use the ideas of the preceding
section. We carry out a fixed point iteration relying on (28) in a subsél’oD). In order to capture
the decaying behaviour of the numerical solution, we introduce appropriate weights. More precisely, for
0 < v < n, we define the norm

1Vl = SUR|(L+25)Val - SUP 500 = ™ | (L2 Va = (153 Va

O<m<n
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and set ={V = (V,),>0: IV — Ull,.p < o} whereU denotes the constant sequence with components
equal tol ® u. Then the iteration based on (28) turns out to be a contraction movided that and$
are chosen sufficiently small.C

6.2. Convergence for finite times

Another approach that avoids the technicalities which arise in connection with the modified variation-
of-constants formula and the consideration of the sequence §fjabg is based on a slightly stronger
setting. This framework is presented in [13].

We consider an initial value problem of the form

W' (1) =F(t,u®)), t>0, u(0) given (30)

where the right-hand side functiafi: [0, 7] x D — X : (t,v) — F(t,v) is defined on an open subset
D c D of a densely embedded Banach sp&re X. We suppose that is twice continuously Fréchet
differentiable and that its Fréchet derivatii® F (¢, v) with respect to the second variable is a sectorial
operator inX. Moreover, we assume that the graph-normDef (¢, v) is equivalent to the norm ab
forall 0 <t < T and for allv € D. In view of our convergence result, we further suppose that the true
solution of (30) is differentiable. As a consequence, the hypotheses HA2-3 are satisfied=witlon

[0, T']. Linearizing around:(z) leads to the equation

u'(t) = A(u®) + G(t,u()), >0,

involving the time-dependent sectorial operadar) = D, F (¢, u(t)). Here, the nonlinearity; is defined

by G(t,v) = F(t,v) — A(t)v for (t,v) € [0, T] x D. In the present situation, the discrete variation-
of-constants formula is still meaningful. For a linear multistep method (17), we receive the following
relation

Ur=[]RiUo+ Y hwu— [ RI(T® Jn)GUy). n=0. (31)

j:l m=1 j:m+1
Here, we use the abbreviations introduced in Section 4. In particular, wa,let A(t,), R,.1 =
Fat1(Pk—1An, -« o Bygi—1Ansr) @and 1 = (@ — hyk—1BucAnti) ~*. Besides, we set

k

GUns1) = Bui €k ® Glltnyis nyi)-
i=0

Following [13], we employ as in Section 5 a fixed point iteration based on (31). We define the fixed point
operator on a tube around the true solutioh = (u(t,), ..., u(typi—1))"

v={V=0ole |V =0l = max |V, = O], <ohti3}.

By means of the stability estimates from Theorem 3 it follows thas a contraction and mapséto V if
foralln <N

) hm—l hm—l| |Oghmax|
C h?!2 1,
e :k(tn —tp-1 + (tn - tmfl)l_a =
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with a constantC depending on the stability constant, the Lipschitz constant ofhe bound on the
(p + D)st-order derivative of the true solution, on the coefficients of the method, apdlarparticular,
this bound is satisfied if

(1+ [10ghminl) REZ < v, (32)

with y sufficiently small. We remark that this is essentially a condition on the maximal stdpsize
We are now prepared to state the convergence result for finite time intervals.

Theorem 6. In the above situation and under the assumptions of The®@eapply a linear k-step
method(17) of order p to Eq. (30). Suppose further that the derivativé?*(¢) of the true solution
remains bounded iX for ¢ € [0, T]. Then, provided that the stepsize sequeficg;>o satisfies(32)

with y sufficiently small, the following bound is valid. For initial values, uq, ..., u;_1 in D with

lu; — u(t;)| p sufficiently small, the associated numerical solution fulfills the relation

n hrt hP L 1109 Amay
Hun — u(t,) ”D < COSrlngak)ilHui —ul@) HD - Cy;((tn —Im-1 * (tn — tm—l)l_a )’

for all 0<t, < T. The constanC depends on the constants that appear in our assumptions afg on
but it is independent of.
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Abstract.

In this note, we investigate the convergence behaviour of linear multistep discretiza-
tions for singularly perturbed systems, emphasising the features of variable stepsizes.
We derive a convergence result for A(p)-stable linear multistep methods and specify
a refined error estimate for backward differentiation formulas. Important ingredients
in our convergence analysis are stability bounds for non-autonomous linear problems
that are obtained by perturbation techniques.
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Key words: singular perturbation problems, linear multistep methods, backward
differentiation formulas, variable stepsizes, stability, convergence.

1 Introduction.

In this paper, we analyse the convergence and stability behaviour of vari-
able stepsize linear multistep methods applied to singularly perturbed systems.
Singular perturbation problems arise in various applications such as chemical
kinetics and fluid mechanics, see for example [7, 8, 5] and references therein.
Another illustration modelling oscillations in electric circuits is the well-known
unforced Van der Pol equation [12, 13]

1)+ p(2P(r) = 1)2(r) + 2(1) =0, p>1.

By rescaling the independent variable 7 = ut and introducing a new function y,
this nonlinear differential equation takes the usual form of a first order system

y'(t) = —=(t), 1
where € = — < 1.
1

/(1) = y(t) + 2(1) - 32°(0),

* Received July 2003. Accepted March 2004. Communicated by Timo Eirola.
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In this note, more generally, we consider a singularly perturbed system of non-
linear differential equations involving a small parameter 0 < € < g

A basic assumption is that the solutions y and z are bounded and have bounded
derivatives with bounds independent of the parameter e for € € (0,e0]. This
requirement can be achieved by choosing the initial values on the existent in-
variant manifold, e.g. In this situation, it is shown by Lubich [6, Theorem 3] that
a strongly stable linear k-step method of order p, applied with constant time step
h > 0 sufficiently small, satisfies the following error estimate on bounded time
intervals t, =nh <T forsome 0 <y < 1ifh>¢

[y — y(En)ll + [lzn — 2(tn)|

< - . n - .
<€ max [y —y(t)l +C(h+7") max llz—=(t)ll +

tn
+Chp/ ||y(P+1)(7-)Hd7'+5C’hP max HZ(erl)(T)H
0

0<7<tn

In consideration of practical implementations, our objective is to extend this
convergence estimate to variable stepsizes. In this regard, main techniques are
a linearization of the right-hand side of the singularly perturbed equation along
the exact solution and a fixed-point iteration based on a discrete variation-of-
constants formula. Thereto, essential tools are stability bounds for non-auto-
nomous linear problems. For proving the needed stability estimates, we employ
perturbation techniques related to [9] where variable stepsize linear multistep
discretizations of parabolic equations are analysed. As in [9], following an ap-
proach used by [3] and later by [10], our stability estimates involve a stability
factor which depends on the stepsize sequence. As a consequence, stability is
obtained under the requirement that the considered stepsize sequence varies
smoothly. Moreover, an essential ingredient is a decomposition of the companion
matrix of a variable stepsize linear multistep method specified in [10] and further
investigated in [9].

The contents of the present paper are as follows. In Section 2, we first introduce
the problem and numerical method classes and give the precise assumptions on
the singularly perturbed system, the linear multistep method, and the stepsize
sequence. Besides, we collect some useful relations for the solution and the right-
hand side of the singular perturbation problem. Section 3 is devoted to the
derivation of the necessary stability results stated in Theorem 3.3. The main idea
is to relate the original equation to a less involved problem. The desired bounds
then follow from a telescopic identity and a Gronwall lemma. In Section 4, we
finally prove the analogue of Lubich’s convergence estimate for variable stepsizes.
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2 Problem and numerical discretization.

In this section, we introduce the problem and numerical method class under
consideration. We specify the general scheme of a variable stepsize linear multi-
step method for a singular perturbation problem and further state the precise
hypotheses on the problem, the method, and the stepsize sequence. For our
purposes, it is useful to write the differential equation and its discretization in
compact vector notation. Auxiliary results for the solution and the right-hand
side of the differential equation are given in Sections 2.3 and 2.4.

2.1 Singular perturbation problem.

We consider a singularly perturbed system of ordinary differential equations
involving a small parameter 0 < € < gg

{y’m = F(y(0).2(1)).  y(0) given,
e/(t) = g(y(t). 2(1)). =(0) given,

with solution (y(t),z(t))T € R™ = R™ x R™2 defined on some finite time
interval [0,T]. For notational simplicity, the dependence of y and z on ¢ is
omitted.

In many cases, it is convenient to employ a compact vector notation of (2.1).
For that reason, we set u = (y,2)T and denote the function defining the right-
hand side of the differential equation by F = (Fy, F2)T = (f,g)". Therewith,
the above initial value problem writes as

(2.1)

(2.2) I (t) = F(u(t)), u(0) given.

Here, I. denotes a diagonal matrix of dimension mj; + msy with entries 1 or ¢,
respectively. The minimum regularity assumption on the function F' is as follows.

HP 1. Assume that F is differentiable and that its first derivative DF is
locally Lipschitz-continuous.

A basic concept for our proof of the convergence estimate stated in Theo-
rem 4.1 is a linearization of the right-hand side of (2.2) along the exact solution.
This yields the equation

(2.3) LU/ (t) = F(u(t)) = A(t)u(t) + G(t,u(t)), wu(0) given,

with time-dependent matrix A = (A4;j)1<i j<2 where A;;(t) = D;F;(u(t)). For
some v = (v1,v2)T € R™ x R™2 the nonlinear function G = (G1,G2)" is given
by G(t,v) = F(v) — A(t)v, that is, G;(t,v) = F;(v) — A;1(t)v1 — Az (t)va.

Clearly, A(t) is uniformly bounded for 0 < t < T'. The following assumption on
the diagonal element Ass is essential for our stability and convergence analysis
in Sections 3 and 4.

HP 2. Suppose that for every 0 < t < T all eigenvalues \(t) of A2a(t) have
negative real parts R(A(t)) < aze < 0.
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By multiplying Equation (2.3) with the inverse of I., we alternatively obtain
(2.4) u'(t) = F (ut)) = o (t)u(t) + 9 (t,u(t)), u(0) given,
where .7 (v) = I-1F(v), &/ (t) = I7YA(t) and 9(t,v) = I71G(t,v).

2.2 Variable stepsize linear multistep method.

In this section, we specify our hypotheses on the linear multistep method
applied to the initial value problem (2.4).

Let (hj)j>0 be a sequence of positive time steps with ratios w; = h;/h;_1,
Jj > 1, and associated grid points t; = hg + hy + --- + hj_1, 7 > 0. For given
starting values ug, u1, ..., ug—1, the numerical approximation u,1x to the value
of the exact solution at time ¢,45, n > 0, is determined by a linear k-step
method, that is, u,4x is given recursively by a relation of the form

k k
(2.5) Z ApiUntq = hn—i—k—l Z ﬁnzy(un+z)
=0 =0

k
= hn—i—k—l Z ﬁnz (fd(tn—&-i)un—&-i + g(tn—&-iv 'U/n+i)>7 n >0,
=0

where the coefficients of the method a.,; and 3,,;, 0 < i < k, depend on the quan-
tities wp41,wWnt2, ... Wntk—1. LThroughout, the components of the numerical
solution value u; are denoted by u; = (y;,z;)T € R™ x R™2, j > 0.

For the analysis, we employ a compact notation of the multistep method (2.5)

as a one-step method for the vector U,, = (tn, Uny1,- .-, un+k,1)T € RF™ com-
prising k consecutive numerical approximations. We introduce complex functions
sj(2) = (aj-1k — Bj—1,,2) " and ¢ji(2, 2) = —s;(2)(aj-1,5 — Bj-1,4%) for j > 1
and 0 < i < k — 1. Therewith, the companion matrix of the method equals
0 1 0o ... 0
: 0 1 :
ri(zo, 21, .., %K) = 0
0 0 ... 0 1
Cjo(Zk,Zo) le(Zk,Z1) Cj7k_1(zk7zk_1)
If z;, = zfor all 0 < i <k, we set 7;(2) = rj(2,2,...,2). The index j indicates
the dependence of 7; on the coefficients o;_;; and (Bj_1; of the method and
thus on wj,wjy1,...,wjtk—2. For constant stepsizes, i.e. w; =1 for all j > 1, we

omit the index and write r for short. Further, we let o7 = &/(t;) for j > 0 and
define #; = s;(hjyr—29+1—1) and

Rj = ri(hjsr—2i 1, hjrh—2j, . hjpr—2j k1)
for 7 > 1. Besides, with e, = (0,...,0,1)T € R*, we denote

k

G(Uj) = Bi-vier @Y (tjrio1, ujri1)-
=0
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We recall that for matrices B = (b;5);; and M, the (i, )-th component of the
Kronecker product B ® M equals b;; M.
With the above notation, the numerical scheme (2.5) becomes

Un-',—l = %n—HUn + hn+k—1fn+1g(Un+1)a n > 0.

Solving this recursion yields the following relation

(2.6) U, = H%ZUO + Zhj+k_2 H %zj] g(U]), n >0,
i=1 j=1

i=j+1

a representation of the numerical solution by means of a discrete variation-of-
constants formula.

Our hypotheses on the stepsize sequence and the linear multistep scheme rely
on [9]. As in [6], we further suppose that the stepsizes are bounded from below
by the parameter e. For the definition of the notions of order and A(p)-stability
of a variable stepsize linear multistep method, we refer to [4, 5].

The following assumption on the stepsize ratios is fulfilled by classical step
size selection procedures such as the differential/algebraic system solver DASSL
based on backward differentiation formulas, see [11].

HS 1. Suppose hj > ¢ for all j > 0. Assume further that there exists > 1
such that the stepsize ratios wj = hj/hj—1 fulfill Q=1 < w; < Q for
j=1.

The stability factors of the linear multistep method are of the form

J
Cj = D1H (1 +D2|wi — 1|)2

i=1

with positive constants D; and Da, see [9, Theorem 1]. In order to obtain
meaningful stability and convergence estimates, we need these quantities to be
bounded by a moderate constant.

HS 2. Assume that the stability factors C; of the linear multistep method are
uniformly bounded by a constant for all j > 1 such that t; <T.

Besides, we suppose that the following stability requirement is satisfied for
constant stepsizes. The angle 0 < ¢ < 7/2 is chosen in such a way that for
some a € R the spectrum of A(t) is contained in the interior of the sector
Sp(a) ={AeC:largla— )| < p}U{a} forall 0 <t <T.

HM 1. Assume that the linear multistep method (2.5) is A(yp)-stable and
strictly stable at zero and infinity. Thus, A = 1 is the only eigenvalue
of the companion matriz at zero with modulus one, and the spectral
radius of the companion matriz at infinity, o = o(r(c0)), is less than
one.
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Moreover, we make use of the following hypothesis for variable stepsizes.

HM 2. Suppose that the coefficients aj; and Bj; of the linear multistep scheme
(2.5) are bounded for all stepsize sequences satisfying HS1. Assume
further that the rational functions s;(z) and cj;(z) remain bounded for
z € 5,(0).

We close this section with an assumption concerning the order of the method.

HM 3. Assume that the multistep method (2.5) is consistent of order p > 1.

2.8 FEzxact solution.

Throughout the paper, we employ the abbreviation @; = u(¢;) for the value of
the solution of (2.4) at time ¢;, j > 0. Inserting the solution into the numerical
scheme (2.5)

k
§ anianJri == n+k 1 E ﬂnz un+z +5n+1)

= E 3 + + >
+1 +1 + + + = Y,
n+k 1 nz n 7 un 7 g( n zaun z) 577, 1) n 0

defines the defect d,,41 at t,4x. In vector notation, we have
Un+1 :%nqtlUn +hn+k71/n+1 (g( n+1) +An+1>7 n Z O,

. 5 ~ ~ ~ T
with Uy, = (una Unp+1y--- 7un+k—1) and

k
An+1 - Zﬁniek ® 6n+1-

i=0
As a consequence, we receive the analogue of (2.6) for the exact solution
(2.7) Un:H%’UoJrZhﬁkg H%/J Uj)+4,), n>0.
i=j+1

Moreover, provided that the solution u = (y, 2)T of (2.4) is sufficiently smooth,
the bounds

IN

titk—1
80 < omty [T o) ar,
1

(2.8) @ ty
H(SJ H S Chj+k 2 1<If_l‘r<iii+k IHZ(p—H)<T>H7

for the components 5;0 € R™ of §;, 1 = 1,2, follow by means of a Taylor series

expansion. Here, ||| denotes an arbitrary norm on R™:. For notational simplicity,
we do not consider different norms on R™* and R™2.
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2.4 Nonlinearity.

In the following, we state an auxiliary estimate for the nonlinear function G
defined in (2.3). For simplicity, as indicated above, we endow R™ and R™2 with
the same norm ||-|| and define the norm on the product space R™ = R™* x R™2
through ||v|| = ||v1]| + |Jva]| for v = (v1,v2)T € R™ x R™=2,

LEMMA 2.1. Under hypothesis HP1, there exists a constant L > 0 such that
1Gi(t,v) = Gi(t,w)|| < Lollv —wl|, i=1,2,

for all v,w € R™ satisfying ||v — u(t)|| < o0 and |Jw —u(t)|| < o.

PRrROOF. Fix t € [0,T] and consider a ball of radius ¢ > 0 around the value
of the solution u(t) = (y(t), z(t))T. Due to the fact that DF is locally Lipschitz
continuous by HP1, there exists C' > 0 such that

|DjFi(v) = DjFy(w)|| < Cllv —wl, i,j=1,2,
for all v,w € R™ with ||v — u(t)|| < g and ||w — u(t)|| < ¢. From the identity
Gi(t, U) — Gi(t,w) = Fz(v) — FZ(U)) — Aﬂ(t)(m — wl) — AiQ(t)('UQ — 'LUQ)

_ /0 (D1 Fi(owr + (1 — o)wr, v2) — Dy Fi(y(t), 2(8)) (01 — wy) dor +

+/0 (Do Fi(wi, 002 + (1 — 0)wa) — DaFy(y(t), 2(t)) (va — w2) do

the desired estimate follows with L = 2C. O

3 Stability estimates.

Throughout this section, we make use of the hypotheses and notation intro-
duced in Section 2.

We next derive stability bounds for the linear multistep discretization (2.5)
of (2.4). Hence, it suffices to consider the associated linear equation

(3.1) u'(t) = o (tyu(t),

where the linear multistep approximation simplifies to U,, = %Z,%n_1 - - - %1 Up.
So, we study ZnHn_1--- %X for arbitrary X € R¥™ and 1 < ¢ < n, and,
in view of formula (2.6), also hjyr_o%nFn—1-- RZjr1ex @ F;(I7 x) for some
z € R™ and 1 < j < n. Our basic idea is to compare %; with the companion
matrix

Ty = ri(hith—2Li—1, hivk—2Lis . s hig—2Litk—1)

that corresponds to the lower triangular matrix .Z(¢) resulting from «7(t). In
other words, we relate (3.1) to the partly coupled problem

(3.2) u'(t) = ZL(t)u(t), where Z(t) = <1A/;211(2) 1A202(t)> )
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In order to prove the necessary stability results for (3.2), as a first step, we
consider in Section 3.1 the fully decoupled system

rN . (A 0
(3.3) u'(t) = 2(t)u(t) with 2(t) = < 0 %Am(t) .
In this special case, the desired stability estimates for the associated companion
matrix

i =ri(hivk—2Di—1, hivk—2Di, ..., hivk—2Digi—1)

are a consequence of the results given in [9].

3.1 The decoupled problem.

For studying the stability behaviour of the linear multistep method (2.5) ap-
plied to the decoupled equation (3.3), it is useful to consider each component of
the numerical solution w, = (yn, 2,)T separately, that is, we henceforth identify
Up = (Un,Uni1,s .- Unsg—1)T with the reordered vector U,, = (Y, Z,)T where
Yn = (yn, Yn+1,--- aynJrkfl)T and Zn = (Zn, Zn4ly e Zn+k71)T~ HGHCG, in this
new order of components, for X = (X1, X2)T € RF™ x RF'™2  we receive

T TT( R 0N (X1 _ (Tl RX: 0
oo I 5) () - (0 )

Here, R; = ri(hizr—2A11(tic1), hivk—2A11 (i), . . ., higr—2A11 (tiyr—1)) and

hi — hz — hz -
S; n(%fhz(tiﬂ, +€k 2A22(ti)7-~-,%1422(ti+k1)>

denote the companion matrix associated with the first and the second compo-
nent, respectively. The following result provides an estimate for (3.4). For later
use, we further introduce J; = s;(hjyr—2411(tj4x—1)) and

Rigg_ Rivp_ hoo g
K., = J+Ek sz _ J+Ek 25j< J+Ek 2A22(tj+k1)).

An application of the integral formula of Cauchy as indicated in the proof of
Lemma, 3.1 shows the boundedness of J; and K. ;, see also Remark 3.1 below.

LEMMA 3.1. Under HP2 assume that the linear multistep discretization (2.5)
of Equation (3.3) satisfies HS1-2, HM1-3, and further c2> < 1. Then, there
exist H > 0 and C > 0 such that for any stepsize sequence (hj);>0 with 0 <
h; < H the following estimate holds with some 0 <y <1 forn > 1 as long as
tn+k71 S T

n

[17x

=L

< OIX + Oy xal, 1<e<n.

In particular, the constant C does not depend on n, h; and €.
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PROOF. Our proof is substantially based on the results and techniques from [9].
Owing to (3.4), it is sufficient to treat each component separately. For the first
one, the bound ||R,Ry,—1 - Ryl < C is a simple special case of [9, Theorem 3].
In order to estimate the second component, we compare S, S,,_1 ---Sp with the
frozen product S;Sy_ ---S; where

Sj = Tz(hz+: 2A22>

with fixed A3, = Aga(t*) for some 0 < t* < T. A telescopic identity for the
difference AS,, = S, Sn—1-+-S¢ — 5555 _1 -+ S} yields

j—1
(3.5) ASFZ Hs* ASJ1+Z Hs* —SH]] s
j=Li=j+1 j=Li=j+1 =4

We recall that all eigenvalues of A3, are strictly negative by hypothesis HP2.
With the help of Cauchy’s integral formula, we thus receive the representation

(3.6) Sy QM/H ( AL ZA)(M—A;Z)—ldA

with a finite path I' C C( contained in the negative complex plane that encircles
the eigenvalues of A3,. By [9, Lemma 2], for some 0 < v < 1, it holds

- hiyr—2

=/

g C’Ynif{i}l .

Using that (A — A3,)~" is bounded, we therefore obtain from (3.6)

I1s:

=0

(3.7) < Oyt

In addition, a comparison of S; with S} shows the boundedness of .S;. Conse-
quently, by estimating (3.5), after slightly increasing v < 1, we have

IAS, | < CY A" I AS || + Cym

j=t
Now, a Gronwall inequality yields the bound ||AS,|| < Cy"~ ! and, finally,
another application of (3.7) gives the desired result. ]

We next summarize some useful relations for the quantities J;, R, Ry—1 -+ Ry,
K. j, and S, Sp—1---S¢, see (3.4) and below. Note that the specified estimates
for R,R,_1--- Ry, and S,,S,,_1---S are a direct consequence of Lemma 3.1.
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Further, the boundedness of J; follows in an easy way from Cauchy’s integral
formula. As h“;‘Q 1+ hj+6’“_2 )~1 <1, an estimation of

1 Rjtr—2 itk—2A -1
Ka,j—Q—m/FJT@jl,k Bj-1k hirk—2) . ()\I*Azg(tjﬂc,l)) dA

shows that K. ; is bounded.

REMARK 3.1. In the situation of Lemma 3.1, for any 1 < ¢,5 < n, the
bounds

n n
Il <C |[[R|[ <C K 1 <C and (]S <y
i=¢ i={
are valid with constants C' >0 and 0 <y < 1.
We close this section with a remark on BDF-methods where §8;; = 0 for

all 0 < i < k—1and j > 0 and thus ¢ = 0. In particular, the condition
00? < 1 of Lemma 3.1 is fulfilled for any Q > 1. Here, a further investigation of
SnSn_1---51 shows that the sharper estimate

Hs

i=1

n

v

< (Ce
hi—1

(3.8)

is valid for n > k.

3.2 The partly coupled problem.

We are now ready to estimate the linear multistep approximation of the partly
coupled equation (3.2). Following the lines of the previous section, we employ
an alternative representation of U, = 9,.9,_1 -+ 71Uy by determining succes-
sively Y,, and Z,,. For the y-component, it clearly holds Y,, = R, R,,—1--- R1Yj.
Thus, by applying the discrete variation-of-constants formula to the z-component
and inserting the above representation for Y;, Z,, writes as

HSZO—i—Z Hseke@[(m (Bj + B;R;) HRYO

j=li=j+1

Wlth Bj = (ﬂjflyoAgl(tjfl), %ﬁj,1’1A21(tj), ey % jflykflAgl(thrk,g)) and also

Bj = (4Bj-1,1 Ani(ty), ..., 3Bj—1h-1421 (tj11—2), Bj—1,k A21(tj4x—-1)) denoting
a bounded matrix of dimension my x k - my. In particular, for k =1, let B; =

Bi—1,0A21(tj—1) and éj = fj_1,1421(t;). Henceforth, we identify the transfer
operator 9, 9,_1 -+ J; with

- 1, R: 0
H :( Pnf H?—z5i>7

=L
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where the quantity P, is defined through

n n j—1
PMZZ H Sier @ Ke j (Bj+BjRj) HR,:
j=L i=j+1 =0

With the help of Remark 3.1, it is easy to see that P, is bounded by a constant,
and, consequently, we obtain

n n n
H%X‘ < ( I1&: +|Pnz|>||X1||+ I 5:l1x:1
=0 i={ i={

< ClIXa] + Oy | Xall.

This proves the following result.

LEMMA 3.2. In the situation of Lemma 3.1, the linear multistep discretiza-
tion (2.5) of Equation (3.2) fulfills the estimate

n

[[7x

=0

<OIX|+Cy" X, 1<0<n,

with constant C independent of n, h; and €.
We note for later use that for BDF-methods the refined estimate

[[7x

i=1

,YTL

(3.9) e

< C||Xy1]| + Ce

HX2H7 n Z k7

follows from (3.8).

3.3 The coupled problem.

In the following, we derive stability estimates for the linear multistep approx-
imation U,, = %ZnPn—1---%#1Uy of the original coupled equation (3.1). As in

the preceding sections, we henceforth identify U, = (Un,Unt1,---Unik—1)"
comprising the solution values u,, = (yn, zn)T with the reordered vector U,, =
(Yn, Zn)T where Y, = (Yn, Ynt1, - - - ,yn+k—1)T and Z, = (Zn, Zn41,- - - Zn+k71)T-

Accordingly to that new order, we interprete elements X = (X, X»)T € RF™1 x
RF™m2_ Further, let @ = (71, 22)T € R™ x R™2,

In order to prove stability results for the transfer operator %, %n_1---%:
of (3.1), we make use of the fact that bounds for 7;,.7,,_1 - - - J; are provided by
Lemma 3.2. Thus, it suffices to study A%, = ZpnPp—1-+ %o — T Tn_1-++T.
For estimating this difference, our basic tool is the telescopic identity

n n n n j—1
(3.10) A%, = >[I 7% — 7) a% + > [ 7% — 7) [
j=¢i=j+1 j=C i=j+1 i=t

combined with a Gronwall inequality. Therewith, we are able to establish the
following stability bounds.
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THEOREM 3.3. In the situation of Lemma 3.1, the linear multistep discretiza-
tion (2.5) of Equation (3.1) satisfies the relations

n
H%ZXH < CIXa|| + C(hosr—2 + ") Xz,
=0

IN

hjyr—2 Chjyr—zlz1ll + C(hjir—2+ ’Y”_j) 2]l

[[ #ieve 7;(121)

i=j+1

for 1 < 1,5 <n with constants C independent of n, h; and €.

PROOF. In order to estimate (3.10), we first indicate the derivation of a needful
relation for the difference #; — .J; of the companion matrices associated with
the fully and partly coupled equations (3.1) and (3.2). By definition, it holds

0 0 0
%j - % - (ACj() Ale ACjJCl)

where the entries Acj; are given by

Acji = cjilhjyr—291h-1, hjtk—24i1) —
—¢ji(hjrk—2Ljrk—1,hjsp—2Lj4ri—1), 0<i<k-—1,

see beginning of Section 2.2. With the help of the quantity

J; 0
K =5i(hivp—oLith_1) = J
J J( j+k—2Lj+k 1) (ﬁjl,kKa,jAm (tj+k71)c]j KJ)
which is bounded according to Remark 3.1, Ac;; also writes as
Acji = —aj1i( 75 — H5) + hjun—2Bi-1:(Fj — Hj) i1 +
+ hjk-28j-1i85 (Fjrio1 — Lyyi)-

A straightforward calculation shows the identity #; = (I +hjix—2%;)%; where
Dj = (I = hjir—203 1 1 Ke jA21 (tj4x-1)Jj Ar2(tj1r-1)) " and thus

B — (0 le) _ <0 Bi—1,kJjA12(tj+k-1)D; )
! 0 Bj2 0 B2 1 1 KejAo(tjsn—1)JiA1a(tjrr—1)D;

is bounded for hj;r—o < H sufficiently small, see again Remark 3.1. Thus, we
obtain the relation ACji = thrk,Q(f@ji% + %ﬂ) with %ji = 7Oéj,1’if@j and

Bji = Bi-1.i(hjin—2Bj K Hjpi1 + H;(Hysics — Lipio1)) bounded. Finally,
this yields the identity

0 0o ... 0
(B11) Z; = J; = hjyr—2%;, where ¢; = (CKJ Cn o ... ij,k1>

comprises the bounded entries 6j; = $;; %; + géﬂ
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Now, a thorough investigation of the second term in (3.10) and a further
application of Remark 3.1 shows that

n n J—1
. 7@ -2 ]]72x
=L

=t i=j+1

<O X[l + C(hesr—2 +7"" )Xo,

and, altogether, we obtain

n
(3.12) IAZ, X < C Y hjrn—2(1+ 7" ) IAZ; 1 X || +
j=£
+ CIXq [l + C(herr—2 + 7" 1)1 Xal|.

For estimating A%, X, we next split X = (X1,0)T + (0, X2)T and replace (3.12)
with the following two inequalities. On the one hand, it holds

n
(3.13&) HA%n(Xl,O)TH S Czhj—i-k—ZHA%j—l(leO)TH + C||X1H
j=¢
and, on the other hand, we have

(3.13b) [|AZn(0,X2)"[| < CY hjpr-a(1+7"79)||AZ;-1(0, X2) || +
j=¢

+ C(hpsr—a + 7" ) 1 Xz

Now, at each time, the desired bound results from a discrete Gronwall-type
inequality, see [1, 2], e.g. In fact, for (3.13a), the estimate

(3.14a) A%, (X1,0)" || < Ol X4

follows at once from a standard Gronwall inequality. In view of (3.13b), we
consider a sequence (;);>¢—1 of positive numbers satisfying a relation of the
following form involving constants a,b > 0

n

&n = azhj+k_2(1 +" N+ b(heri—2 + ’y"_“'l).

j=¢
Due to the fact that this identity is reducible to the recursion

n—1

§nt1 = (2ahnik—1+7)6n +a(l —7) Z hjve—1&5 +0(1 —¥)hetr—2,
j=t—1

we further obtain &, < Cb(hyir_2 + 7"~ **1) which proves

(3.14b) |AZ,(0, X2)T|| < C(hugn—2 + ") |1 Xo|.
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Therefore, by combining (3.14) and Lemma 3.2, the first bound of Theorem 3.3
follows.

It remains to derive the second bound of the theorem. An easy calculation
shows the identity

hjr—2 25 (I @)

_ hjyr—2Jjx1+ I
hjyr—2Bj-1kKe jA21 (tj1n—1)Tj01 + Ko jao
s hjyk—2Bj18j-1,5Ke jA21 (tjrh—1)Jj21 + B Ke jao
THR=2\ hjyn—2BjoBj—1 xKe jAo1 (tjrr—1)Jj21 + Bjo K. jx2 )

Thus, the first bound applied with X = hji,_o #;(I7'z) and £ = j + 1 proves
the desired result. O

In view of our convergence estimate for BDF-methods, the first relation of
Theorem 3.3 with £ =1 is replaced by

n

[[#x

i=1

n
< CIXa)| +Ce(1+ =) IXall, n=k.

3.15
(3.15) e

This sharper bound is obtained by modifying slightly the proof of Theorem 3.3.
In the present situation, formula (3.11) holds for €}; = %;; ;. As a consequence,
@i is of the form

G — CH O12Kj o Cll hj+8k72 OIZKa,j
7\ Coy OnK;) \Cu 7 CxnK.;

Rjyr—2

with bounded matrices Ci1,C12,C21, and Cas. Following the above proof of
Theorem 3.3 and tracing the z-component together with (3.9) then yields the
refined stability bound for BDF-methods.

4 Convergence result.

In this section, we state our convergence estimate for variable stepsize linear
multistep methods applied to singular perturbation problems of the form (2.4).
For some function ¢ denote

T2
H¢II1,[TI,T2]=/ lo()lldrand ([dlloc,m,r) = max [l$(7)]l

<r<

Then, the following result holds, provided that the (p + 1)-st order derivatives
of the solution u = (y, 2)T of (2.4) remain bounded, precisely, if the bounds

(4.1) sl SCand 2 <C

i—tksts] Mtj—wots] —

are valid for every ¢t; < T with constants C' > 0 not depending on the parameter ¢
for e € (0, 9]
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THEOREM 4.1. Under HP2 assume that the solution u = (y,z)" of the initial
value problem (2.4) is sufficiently often differentiable and that its derivatives
fulfill (4.1). Assume further that the linear multistep discretization (2.5) of (2.4)
satisfies HS1-2, HM1-3, and 0Q? < 1. Then, there exist H > 0, d > 0 and
C > 0 such that for any stepsize sequence (h;);>0 with 0 < h; < H and for
initial values satisfying ||y, — y(:) || + ||zi — z(t:)|| < d for each 0 <i <k —1 the
estimate

_ < - . n - )
Jun = ulta)l| < € max s = y(t)]| +Chuor +97)  max |z = 2(t)] +

+ CZ hé)_lHy(p-‘rl)Hlv[tj*k’tj] +
j=k

n
+ ECZ (hj—1 + vn_j)hffl Hz(”“) HOO
=k

[ti—kst5]

s valid with some 0 < v < 1 for alln > k as long as t, < T. Especially, the
constant C does not depend on n, (h;);>0 and €.

REMARK 4.1. Note that for BDF-methods, due to ¢ = 0, the requirement
0Q? < 1 is satisfied for any £ > 1. Here, a refined convergence estimate is valid,
namely, the factor hi_1 + 7" multiplying the z-component of the errors in the
starting values, is replaced with (1 + %) This result follows at once from the

proof of Theorem 4.1 by estimating (4.3) with the help of relation (3.15).

REMARK 4.2. In particular, for constant or bounded stepsizes h; < h, j > 0,
we receive the convergence estimate

_ < o ) n (¢t
Hun u(tn)” = COSI?S%(_I Hyz ?J(tz)” + C(h + ) 03?‘5{_1 sz Z(tt)” +

+ Oy g +OW D] g tn<T.

0,tn] ,[0,t,]°

which is in accordance with the bound from [6, Theorem 3] for a constant stepsize
linear multistep method.

PROOF OF THEOREM 4.1. For constructing the linear multistep solution (2.5)
of (2.4), we carry out a fixed-point iteration based on the discrete variation-of-
constants formula (2.6). Thereto, we first introduce some useful notation.

For N € N such that ty41—1 < T, consider a sequence V = (Vn)ﬁfzO compris-
ing the vectors V,, = (Vn, Unt1, -+, Unik_1)" € R¥™ with entries

v = (vj(-l),vj(-z))T eR™ =R™ xR™, ;5 >0.
In particular, we denote by U = (U,)N_; and U = (U,)N_, the sequences
that comprise the numerical and exact solution values. We recall the notation
Un, = (Yn, zn)T for the components of the numerical solution. As in Section 3,
we henceforth identify the associated vector U,, = (U, Unt1, - - -, Untk—1)T with
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Upn = (Yo, Zo)Y = Yns -+, Yntbo1s Zny - - -, Znik—1) 1. Likewise, we employ the
notation @, = (§n,2n)" for the values of the exact solution and define U,, =
(Tiny Gt 1y - - oy 1)t = (}A’n, ZL)T. In accordance with the preceding sections,
we further set

o]l = HvS)H + vaf)H for v, = (vﬁll),vff))T ER™ =R"™ x R™
and define the vector norm through

IVall = ) max lvnsill

In order to guarantee the contraction property of the fixed-point iteration for a
reasonable time, we introduce additional weights in the sequence norm and set

[Vllso = max [Vl where [V, = e[|V

for some exponent p > 0 sufficiently large.
With the help of these abbreviations, we are in the position to define the fixed
point iteration ® on a ball around U by means of formula (2.6)

oY = {V=V) 0 [V-TUlop <ol — ¥:Vi— V),

(V) = [[%:U6+> hjri—2 [[ % 759V).
i=1 j=1

i=j+1

It remains to verify that the function ® defining the iteration is a contraction
on ¥. On the one hand, we have for sequences V, W € ¥

(®(V)—9(W)), = Zthrk_z H Rier® Ji(I7'x), where

j=1 1=j+1
k

T = Zﬁjfl,i(G(tjjtifl’Uijifl) *G(tj+i717wj+i71))-
i=0

An application of Lemma 2.1 shows
HGe(thri—l,UjJriq) - Gé(tj+i717wj+i71)H < Ce'ig||V =W, £=1,2.

Together with the second estimate from Theorem 3.3, this yields
[(@(V) = 2(W)), [, < Cod e (hjpiz +7" )V = Wil
j=1

and, furthermore,

[2(V) = 2(W)loo,u < KV = Wloo s,
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that is, ® is contractive with contraction factor

n

ko= CQOE;ZXNZG_H(%_H) (hj+k—2 + W’n_j) <1
<nEN <=

for p sufficiently small. We note that the size of C' > 0 is moderate for u large,
whereas for i = 0 the above relation becomes

1
H-cg<T+_)<1.
1—7

As a consequence, this condition considerably restricts the size of T'.
We next prove that ® maps ¥ to ¥/, that is,

||(I>(V) — ﬁ“oo " <o whenever |V — IAJHOO,N <o.
By means of the contraction property of ® on ¥, we obtain

|e(V)-TU

le(v) - a@)||_, + o0 -T|_,
Ko+ || ®(0) - T .

||oo,;¢

IN

Thus, it suffices to show that the quantity

n

(@(U) — ﬁ)n = H%Z(UO — (70) — Zh]‘+k_2 H %z er X jjla_lx

i=1 j=1 i=j+1

k
with z = Zﬁj_17i156‘7

i=0
is small enough, see (2.7). With the help of Theorem 3.3 and the bound (2.8)
for the defects, it follows

(4.2) |2(0), = Uy, < Cet*» <||YE] — Yo + (ha—1 +9™)|| 20 — Zo|| +

n
+ Z LA Hy(pﬂ) H1,[tj,1,tj+k,1] +
j=1

X Hz(PJFl)HOO’[tj1,tj+k1]>'

Taking the maximum over 0 < n < N finally gives

2(0) - 0., < (1 -0
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if the errors of the initial values and h; < H are sufficiently small. Altogether,
an application of Banach’s Fixed Point Theorem yields the existence of the
numerical solution U as unique fixed point of .

In order to estimate E,, = |U, — U,||, we employ the following representation
obtained by formulas (2.6) and (2.7)

n

@3)  Un—Un = [[2:(Us — Do) +
1=1
+> hjka || 2,759 (U;) - 9(U)) - A;).
j=1 i=j+1

Now, the above considerations together with the bounds from Theorem 3.3,
Lemma 2.1, and (2.8) show that the error satisfies

E, < O|Yo — Yol + C(hi—r +7")1 20 — Zo|| +

n—1 n
+ CZ (hjrh—2 +7"77)Ej + CZh§+k72Hy(p+1)”1,[tj,1,tj+k_1} +
Jj=1 j=1
n
+eC 2 hE o (hjpr—2 +7"77) (B Hoo,[tj,l,tﬁk_l]'
]:

Hence, the desired convergence estimate for |[u, — @y, || < Ep—k4+1 follows from a
Gronwall lemma, see proof of Theorem 3.3. m|
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Abstract

We analyse stability and convergence properties of a second-order Magnus-type integrator for linear parabolic
differential equations with time-dependent coefficients, working in an analytic framework of sectorial operators in
Banach spaces. Under reasonable smoothness assumptions on the data and the exact solution, we prove a second-
order convergence result without unnatural restrictions on the time stepsize. However, if the error is measured in
the domain of the differential operator, an order reduction occurs, in general. A numerical example illustrates and
confirms our theoretical results.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper, we are concerned with the numerical solution of nonautonomous linear differential
equations

u'(t)=AMu(t) + b)), 0<t<T, u(0)=uy. (1)

* Corresponding author.
E-mail addresses: cesareo@mac.uva.es (C. Gonzélez), alexander.ostermann @uibk.ac.at (A. Ostermann),
mechthild.thalhammer@uibk.ac.at (M. Thalhammer).
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In particular, we are interested in analysing the situation where (1) constitutes an abstract parabolic
problem on a Banach space. The precise assumptions on the operator family A(¢), 0<t < T, are given in
Section 2.

For linear matrix differential equations y’(¢) = A(¢)y(¢) with possibly noncommuting matrices A(z),
Magnus [11] has constructed the solution in the form y () = exp(Q2(¢))y(0) with a matrix Q(¢) depend-
ing on iterated integrals of A(z), see also [5, Section IV.7]. Only recently, this Magnus expansion has
been exploited numerically by approximating the arising integrals by quadrature methods, see [9,16]
within the context of geometric integration and [1] in connection with the time-dependent Schrodinger
equation.

As the convergence of the Magnus expansion is only guaranteed if || 2(¢) || < =, stiff problems with large
or even unbounded || A(7)|| seemed to be excluded. However, in an impressing paper [8], Hochbruck and
Lubich give error bounds for Magnus integrators applied to time-dependent Schrédinger equations, solely
working with matrix commutator bounds. The aim of the present paper is to derive the corresponding
result for a second-order Magnus-type integrator applied to linear parabolic differential equations with
time-dependent coefficients, exploiting the temporal regularity of the exact solution. For that purpose,
we employ an abstract formulation of the partial differential equation and work within the framework of
sectorial operators and analytic semigroups in Banach spaces.

The paper is organised as follows. In Section 2, we state the main assumptions on the problem and its
numerical discretisation. Our numerical scheme for (1) is a mixed method that integrates the homogeneous
part by a second-order Magnus integrator and the inhomogeneity by the exponential midpoint rule. In
Section 3, we first study the stability properties of the Magnus integrator. The given stability bounds
form the basis for the convergence results specified in Section 4. Under the main assumption that the
data and the exact solution are sufficiently smooth in time, the actual order of convergence depends on
the chosen norm in which the error is measured as well as on the boundary values of a certain function,
depending itself on the data of the problem. For instance, for a second-order strongly elliptic differential
operator with smooth coefficients, we obtain second-order convergence with respect to the L”-norm for
1 < p < 0o. However, if the error is measured in the domain of the differential operator, an order reduction
down to 1 4+ 1/(2p) is encountered, in general. These theoretical results are illustrated and confirmed by
a numerical experiment given in Section 5.

Throughout the paper, C > 0 denotes a generic constant.

2. Equation and numerical method

In the sequel, we introduce the basic assumptions on (1) and specify the numerical scheme. For a
detailed treatise of time-dependent evolution equations we refer to [10,15]. The monographs [6,14] delve
into the theory of sectorial operators and analytic semigroups.

We first consider abstract initial value problems of the form (1) with »=0. Our fundamental requirement
on the map A defining the right-hand side of the equation is the following.

Hypothesis 1. Let (X, | - ||x) and (D, || - ||[p) be Banach spaces with D densely embedded in X. We
suppose that the closed linear operator A(t): D — X is uniformly sectorial for 0<t <T. Thus, there
exist constants a € R, 0 < ¢ < /2, and M >1 such that A(r) satisfies the following resolvent condition
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on the complement of the sector Sy(a) = {4 € C: |arg(a — 1)|< ¢} U {a}

16T = A@) My ex < —! - forany 2 € ©\5(@). @)

A —a

Besides, we assume that the graph norm of A(¢) and the norm in D are equivalent, i.e., forevery 0<t <T
and for all x € D the estimate

C,  xllp <lxllx + IA@x]x <Cylixllp 3)

holds with some constant C,, > 1.

We remark that for any linear operator F : X — D relation (3) implies

[AOFllx ~x <ClIFllp—x and [[Fllpx<Cy(1+ [ADF|xx). “4)

As a consequence, for fixed 0<s<T, the sectorial operator A(s) generates an analytic semigroup
(e'1®)), - o which satisfies the bound

1 x x + 1N pp + 1162 px <My for0<t<T (5)

with some constant M»> > 1, see e.g., [10].
In view of our convergence and stability results it is essential that A(¢) is Holder-continuous with
respect to 7.

Hypothesis 2. We assume A € C*([0, T'], L(D, X)) for some 0 <a<1, i.e., the following estimate is
valid with a constant M3 > 0

IA®#) — A(S)lIx —p <M3(t — 5)” (6)

forall 0<s<r<T.

The nonautonomous problem (1) with b =0 is discretised by a Magnus integrator which is of classical
order 2. For this, let 7; = jh be the grid points associated with a constant stepsize 4 > 0, j >0. Then, for
some initial value ug € X, the numerical approximation u, 1 to the true solution at time ¢, 4 is defined
recursively by

hA h
Up+1 =€ "u,, n=0 where A, =A tn+§ . @)

This method was studied for time-dependent Schrodinger equations in [8].

We next extend (7) to initial value problems (1) with an additional inhomogeneity b: [0, T] — X.
Motivated by the time-invariant case, we approximate the inhomogeneity by the exponential midpoint
rule. This yields the recursion

h
Uns1 ="y + ho(hAy)by, n=0 withb, =b (zn + 5) : (8)

where the linear operator ¢(hA;) is given by

1 h
go(hAn):E /0 e=04n qr, 9)
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The competitiveness of the numerical scheme (8) relies on an efficient calculation of the exponential
and the related function (9). More precisely, the product of a matrix exponential and a vector has to be
computed. It has been shown in [2,7] that Krylov methods prove to be excellent for this aim.

We note for later use that the estimates (4) and (5) imply

lo(hAp)llx <x + lo(hA)lI DD + ho(hAn) D x <My (10)

with some constant M4 >1.
In the following example we show that linear parabolic problems with time-dependent coefficients
enter our abstract framework.

Example 1. Let Q € R? be a bounded domain with smooth boundary. We consider the linear parabolic
initial-boundary value problem

oU
E(x,t)=y/(x,t)U(x,t)—|—f(x,t), xeQ, 0<r<T (11a)

with homogeneous Dirichlet boundary conditions and initial condition
Ux,0)=Upx), xe. (11b)

Here, .</(x, t) is a second-order strongly elliptic differential operator

d

d
0 0 0
A(x,1) = i; o (oci,(x, ”aj) + ; Bi(x, 1) Tt y(x, 1). (11c)

We require that the time-dependent coefficients «; ;, fi;, and y are smooth functions of the variable x € Qand
Holder-continuous with respect to ¢. For 1 < p < oo and y € C§°(Q), we set (A, (1)) (x) =.o/ (x, )i (x)
and consider A ,(¢) as an unbounded operator on L”(Q). It is well-known that this operator satisfies
Hypotheses 1 and 2 with

X=L"Q) and D,=W>P(@) nW," @), (11d)

see [14, Section 7.6, 15, Section 5.2].

Our aim is to analyse the convergence behaviour of (8) for parabolic problems (1). Section 3 is concerned
with the derivation of the needed stability results.

3. Stability

In order to study the stability properties of the Magnus integrator (8), it suffices to consider the homo-
geneous equation under discretisation. Resolving recursion (7) yields

n
Up+] = 1_[ ehA"uo for n>0.
i=0
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Here, for noncommutative operators F; on a Banach space the product is defined by

ﬁ F— FnFn_l"'Fm ifl’l}m,
. 1 ifn<m.
1=m

In the sequel, we derive bounds for the discrete evolution operator

n
]—[ e forn>m>0 (12)

1=m

in different norms. In Theorem 1, for notational simplicity, we do not distinguish the appearing constants.

Theorem 1 (Stability). Under Hypotheses 1-2 the bounds

n n
[Te"|  <Ms and |J] e < M5 (ty1— )~ (1 (1H[10g R ) (g1 —1m))
i=m j

X<X r=m D<X
are valid for 0<t,, <t, <T with constant Ms> 1 not depending on n and h.

Proof. For proving the above stability bounds, our techniques are close to that used in [13]. The needed
auxiliary estimates are given in Lemma 1 at the end of this section.
The main idea is to compare the discrete evolution operator (12) with the frozen operator

n
l_[ ehAm — e([n-H_tm)Am’

i=m

where (5) applies directly. Therefore, it remains to estimate the difference

n n

From a telescopic identity, it follows

n—1 n
Anm — Z A’;+1(ehAj _ ehAm)e(Ij—tm)Am + Z etn+1=1j+1)Am (ehAj _ ehAm)e([j_tm)Am. (13)
(1) We first estimate A}, as operator from X to X. An application of Lemma 1 and relation (5) yields

n—1

hA; hA i—tm)A
A lixex< D 4% llxexll? — etdmyetmimny
j=m—+1

n
+ ) el Ay x| — Ay TimAn |y

j=m+1

n—1 n
SCh Y N4 llxex(t—tn) T+ Ch Yty — tw)
j=m+1 j=m+1
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with some constant C > 0 depending on M> and Mg. Interpreting the second sum as a Riemann-sum and
bounding it by the corresponding integral shows

n—1

[ 43l x < x <Ch Z 1A% 1l x—x (2 e}
j=m+1

where the constant additionally depends on 7, see also [13]. A Gronwall-type inequality implies
[ A4l x<x <C, (14)

and, with the help of (5), the desired estimate for the discrete evolution operator follows:

n
[1e
i=m

(i1) For estimating || 4}, || p«x, we consider (13) and apply once more Lemma 1 and relation (5)

N A™ I x —x + [lelnrt=mAm| v v < M.
XX

n—1
hA; hA ti—tm)A
Anlipex< D 4% Ipexli@ —etAmelimmAn)y y

j=m+1

n—1
+ Y el e An | x||(eh AT — ehAmyeltiTimAn |y

j=m+1
+ (A — hAmyetn=tm Ay

n—1 n—1

-1 -1 -1
<SCh Y A pex(t— ) T Ch D gy — 140) 7t — 1) T

+ C(ty — 1)~ ™

We estimate the Riemann-sum by the corresponding integral and apply a Gronwall inequality, see [12].
This yields

14" | px <C(1 + |log h|)(tyy1 — tw) 1 F
Together with (5) we finally obtain the desired result. [J

The following auxiliary result is needed in the proof of Theorem 1.

Lemma 1. In the situation of Theorem 1, the estimates

(e — et Amyeli=imAn |y _y < Moh(t; — ta) ™' and

Aj Am i —Im Am -1
|(ehAi — ehAm)eti=tm) I pex <Me(tj — tyy) '

are valid for 0<t,, < t; <T with some constant M > 0 not depending on n and h.

Proof. For proving Lemma 1, we employ standard techniques, see e.g., [10, Proof of Prop. 2.1.1].
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Let I" be a path surrounding the spectrum of the sectorial operators A ; and A,,. By means of the integral
formula of Cauchy, the representation

1
(e — e Amyelti=im)An — o f e"(A—hA) ™ — (L= hAy) Y ellizmAnq;
m Jr

1
=— | G —hA)Th(A; — Ap) G — hA,) lelimmAn g, (15)
2mi r

follows. The main tools for estimating this relation are the resolvent bound (2), estimate (5) and the
Holder property (6). We omit the details. O

4. Convergence

In the following, we analyse the convergence behaviour of the Magnus integrator (8) for (1). For that
purpose, we next derive a representation of the global error.

We consider the initial value problem (1) on a subinterval [#,, t,+1] and rewrite the right-hand side of
the equation as follows:

u' (1) = A()u(t) + b(t) = Ayu(t) + by + gn (1),
where the map g, is defined by
gn(t) = (A1) — Apu(t) + b(t) — b, for 1, <t <tp41. (16)

Consequently, by the variation-of-constants formula, we obtain the following representation of the exact
solution:

h
w(tns1) =" mu(t,) + f eI (b, + g, (1, + 1)) dr. (17)
0

On the other hand, the numerical solution is given by relation (8), see also (9). Let e,,+1 =up4+1 — u(ty+1)
denote the error at time 7,41 and 0,1 the corresponding defect

h
Ont1 = / eh=04ng (1, 4 1) dr. (18)
0

By taking the difference of (8) and (17), we thus obtain
entl = ehA”en —0pnt1, n=0, e9=0.

Resolving this error recursion finally yields

n—1 n—1
en:—z 1_[ ehAi5j+1, n>1, eg=0.
j=0 i=j+1

For the subsequent convergence analysis, it is useful to employ an expansion of the defects which we
derive in the following.
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Provided that the map g, is twice differentiable on (#,, #,41), we obtain from a Taylor series expansion

B h\ h h\? 11 , h AW
gn(tn+f)—(f_§>gn(tn+§>+(T_§> /(;( —O’)gn<tn+§+a<r—§)> a,

where 0 < t < h. We insert this expansion into (18) and express the terms involving g/, with the help of
the bounded linear operators

1 (" 1 ("
o(hAn) = f e =44 and WhAy) =5 / e"=04n 1 dz. (19)
0 0

Thus, we obtain the following representation of the defects

1 h
Ony1=h’ (l#(hAn) 3 qo(hAn)) 8n (ln + 5)

h 2,
h h h
+/ e(h—T)An (T— 5) / (1 —o-)g;l/ (tn—f—z—f—()'(f— 5)) dodr.
0 0

For later it is also substantial that the equality
Y(hAn) — 50(hAy) = hA,(hAy)

holds with some bounded linear operator y(hA,). Precisely, after possibly enlarging the constant M4 > 1
in (10), we receive

le(hA)lx<x + lo(hA) DD + Y (hA) I x—x
+ W (hA) DD + l2(hAD I x <x + Il 2(hA) I DD < Ma. (20)

The bounds for ¢(hA,) and y(hA,) are a direct consequence of the defining relations (19) and (5), see
also (10), whereas the boundedness of y(hA,) follows by means of the integral formula of Cauchy.

We first specify a convergence estimate under the assumption that the true solution of (1) possesses
favourable regularity properties. Our main tool for the derivation of this error bound is the stability result
stated in Section 3. In view of the proof of our convergence result, it is convenient to introduce several

abbreviations. Accordingly to the above considerations, we split the defects 6,11 = 552] + 0@

P where

50 2 (winan — toman) e (62 ") =3 amane (14"
j+1 = W( j)_z(/)( j) 8 tj+§ = jX( j)gj tj+§ ,

) " oA h\* (! " h h
607 = RISV [ p—— 1— g [ e - = dodr. 21
it /(; e (T 2) /()( o*)g](j-l—z—i-a(r 2)) odr (21a)

Analogously, the error is decomposed into e, = —ef,l) — ef,z) with
n—1 n—1
k) _ hA; (k) _
=% [] "o/l k=12 (21b)

j=0 i=j+1
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Henceforth, we denote by | g,|lx.co = max{||g,(*)|lx : t, <t<ty+1} the maximum value of the map
gn = (A — Ayu + b — b, on the interval [t,, t,+1]. Recall the abbreviations A, = A(t, + h/2) and
b, = b(t, + (h/2)) introduced in (7) and (8). Further, we set

g1l x,00 = max{llgnllx,c0 : 120, thy1 <T}.

Theorem 2 (Convergence). Under Hypotheses 1-2 with o = 1, apply the Magnus integrator (8) to the
initial value problem (1). Then, the convergence estimate

ln — u(ty) |l x <CH* (1€ 1 D.oo + 18" 1 x.00)»

is valid for 0<t, <T, provided that the quantities on the right-hand side are well-defined. The constant
C > 0 does not depend on n and h.

Proof. We successively consider the error terms e,(il) and 6,22) specified above. An application of
Theorem 1 yields

n—2 n—1
(1
lePlx <> T o] + sy
j=0 i=j+1 ¥
n—2 n—1 h
<h®-h Z 1_[ eAi IAjlx<pllx(hA)ID<D|&} (fj + 5)
j=0 [i=j+1 Yex b

+ 2 (lo(hAn_Dx <x + W (hA_Dllx<x)

, h
g1l th—1+ 5

with C > 0 depending on the constants M5 and M4 appearing in Theorem 1 and (20), on ||A(?)|l x b,
and on 7. A direct estimation of 55.24)_1 with the help of (5) shows

h 2 5l
520 [ 1 e (c=3) [a-o g (n+5+0(c-3
j+1 0 2 0 I\ 7o 2

<Mallg" 1 x.00 .
Consequently, for the remaining term, we obtain by Theorem 1

X
<Cllg Il p.oo I

dodr
X

n—2 n—1
; 2
lePlx<Y | T & 1620 lx + 16@11x <Clig” Il x.00 B
J=0 Jli=j+1 X<X

with a constant C > 0 depending on M»>, M5, and 7. Altogether, the desired estimate follows. [

We remark that, in the situation of the theorem, Hypothesis 2 is always fulfilled with « = 1. However,
in view of applications, the condition on the derivative of g, is often too restrictive. We next prove a
convergence result under weaker assumptions on g, . For the proof of Theorem 3 an extension of our
stability result is needed which we give at the end of this section.
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Theorem 3 (Convergence). Under Hypotheses 1-2 with o = 1, the Magnus integrator (8) applied to (1)
satisfies the bound

Ity — w(t) 1 x <CR*((1 + llog ~D1g" 1 x.00 + 118”1 x.00)

for 0<t, <T with some constant C > 0 not depending on n and h.

Proof. Following the proof of Theorem 2, we show a refined error estimate for e,(ll). Due to Lemma 2

which is given at the end of this section, we have

n—21 n—1
h
1 2 hA; 4 . . .
le" lIx <h -hZ H "N Ajy(hA ;) ‘g; (r,+5) .
j=0|i=j+1

X<X

+ R2(lohAp— Dl x<x + IWhA_Dllx<x)

, h
8n_1 | th—1+ 5

X
<Cllg' 1x.00 H*(1 + |log h])

which yields the result of the theorem. O

In the sequel, we analyse the convergence behaviour of (8) with respect to the norm in D. For that
purpose, we introduce the notion of intermediate spaces, see also [10].

For some 0 <9 < 1 let Xy = (X, D)y, , denote the real interpolation space between X and D. Conse-
quently, the norm in Xy fulfills the relation

) 1—9
Ixllx, <CullxlIplixlly © forallx € D
with some constant C, > 0. In particular, it follows
e Iy, x, + 1t 77 AN px, <My for 0<t<T. (22)

For the subsequent derivations, we choose ¢ in such a way that the interpolation space X4y = (D,
D(A(t)z))ﬁ’ » between D and the domain of A(t)2 is independent of ¢, and that the map A satisfies a
Lipschitz-condition from Xy to Xy. In applications, this assumption is fulfilled for ¢ sufficiently small,
see also Example 2.

Hypothesis 3. For some 0 < ¢ < 1, the interpolation space X,y does not depend on t. Further, we
suppose that the estimate

[A@) — Al xy<x149 SM3(1 —5)

holds with some constant M3 > 0 forall 0<s <r<T.

In this situation, following the proof of Theorem 1, we obtain

n n
1 1

after a possible enlargement of M5>1.

<Ms(tys1 — tw) T, (23)
DXy

<Ms and

Xy<—Xy
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Example 2. In continuation of Example 1, we consider the second-order parabolic partial differential
equation (11) subject to homogeneous Dirichlet boundary conditions and a certain initial condition. For
this initial-boundary value problem, the admissible value of ¥ in Hypothesis 3 relies on the characterisation

of the interpolation spaces between D = wWZr@)n W(} P (Q) and D(A(t)z). It follows from [4, Théoréme

8.1] that for 0< 9 < 1/(2p) the interpolation space X1y is isomorphic to W227-7(Q) N WO1 "7 (Q) and
thus independent of ¢. This is no longer true for ¥ > 1/(2p), since X4y, in general, depends on ¢ through
the boundary conditions A(z)u = 0 on 0Q. Therefore, we may choose 0<¥ < 1/(2p) in Hypothesis 3.
Assuming that the spatial derivatives of the coefficients o;;, $;, and y are Holder continuous with respect
to ¢, the required Holder continuity of A(¢) on Xy follows.

Under the requirement that the first derivative of g, is bounded in D and that g/ belongs to the
interpolation space X, for some y > 0 arbitrarily small, the following result is valid. Note that for stepsizes
h > 0 sufficiently small it follows IR C |log h|.

Theorem 4. Suppose that Hypotheses 1-2 with « = 1 and Hypothesis 3 with ¥ =y are fulfilled and apply
the Magnus integrator (8) to the initial value problem (1). Then, the convergence estimate

litn — u(@n) | p < CH*((1 + log ADIg'1p,00 + (1 477 )Ig" l1x,,00)
holds true for 0<t, <T. The constant C > 0 is independent of n and h.

Proof. Similarly as in the proof of Theorem 2, we successively analyse the error terms e,gl) and e,(12)

defined in (21) by applying Theorem 1 and (20). On the one hand, we receive

n—2 n—1
(1
lePp< | > T o'y + 0Pl
n—21 n-—1 h
<h’.h Z 1_[ eltAi 1Al x<pllz(hA)ID<D|g} (fj + 5)
j=0 [li=j+1 Dex b

+ 2 (lo(hAu—Dpp + WA DD)

<C|g'IIp.co (1 + [log h).

, h
1\ th—1+ 5

A direct estimation of 55.2421 with the help of the relation (22) shows

D

@) " oA AN h h

16,7 1 l1x, < /0 e "llx,<x, (r — 5) /0 (1-o0)|g, <tn + 5 +0 (r — 5)) dodz

X,
<Ma)1g"Ix, 00’
Besides, we receive
h h\? (! h h

) (h—1)A; 7

107 ||D</ le p Xh,<f——> / (1—o0) g-(t'—l——+a(r——>> dodr
s 0 o 2] Jo N2 2) ) Iy,

<Malg" I1x, 007 R
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Consequently, together with (23) it follows

n—=2 1| n—1
2 hA; 2 2
lePlp< Y | [T " 1650 I, + 16211
J=0 |li=j+1 D<X,

<Clg"x, 00 h* (147707,
This yields the given result. [
We next extend the above result to the situation where the first derivative of g belongs to the interpolation

space Xp = (X, D)y, for some 0 < f8 < 1. If Hypothesis 3 holds with ¥ = f5, a proof similar to that of
Lemma 2 below yields the auxiliary estimate

<Msh™ Pty — 1) 7 (24)
D(—X/;

n
[ An1xhAn-1)

1=m

As before, we further suppose g, € X, for some y > 0 arbitrarily small. Maximising the term v~ 17 with
respect to y yields y~'h? <C|log k| for h > 0 sufficiently small.

Theorem 5. Under Hypotheses 1-2 with « = 1 and Hypothesis 3 with 9 = [5, the Magnus integrator (8)
for (1) satisfies the estimate

lun — u(t) o <CH"FP(L + [log hDIIg 1xy.00 + B (1 + 77 B 1 x,.00)

for 0<t, <T with some constant C > 0 independent of n and h.

Proof. We follow the proof of Theorem 4 and modify the estimation of e,(ll). If ¢’ € Xp the integral
formula of Cauchy implies
, h
gn—] Ih—1 + 5

16011 p <h?

1
Y(hAp—1) — 3 @(hAn—1)

D<Xg Xp
148y .,/
<Ch'* Pl I1x,.
Together with (24) we thus receive
n—2 n—1
(1
leMp<| > T e o' +10P1p
j=0 i=j+1 D
n—=2 1| n—1 h
<h2.hz H e A7 (hA)) ‘g} (t,-+5)
j=0 ||i=j+1 Dex, Xp
2 1 , h
+h7 | y(hAp—1) — 5 @(hAn—1) gn—i \th—1+ =
2 DXy 2 Xp

<Cllg Ixp00 BT (1 + |log h))
which yields the given result. [



154 C. Gonzdlez et al. / Journal of Computational and Applied Mathematics 189 (2006) 142—156
The following extension of Theorem 1 is needed in the proof of Theorem 3.

Lemma 2. Assume that Hypotheses 1-2 with o. = 1 hold. Then, the bound

<Ms(1 + [logh| + (ty1 — tw) ™) (25)
XX

n
[T " An-1xhAn-1)

i=m

is valid for 0<t,, <t, <T with some constant M5 > 0 not depending on n and h.

Proof. We note that by the integral formula of Cauchy, Theorem 1 and Hypotheses 1-2 it suffices to
prove the desired bound (25) with A,,_; replaced by A,,. Thus, as in the proof of Theorem 1, we compare
the discrete evolution operator with a frozen operator

n
[ " AnihAn) = A3 Apy(hAw) + Ape =4y (R A,).

1=m
Clearly, the second term is bounded by
| Ame =m0 e x i (h Am) x - x < Cltar1 — tm) ™

see (5) and remark above as well as (20). For estimating the first term, we employ relation (13) for 47,
given in the proof of Theorem 1 and receive

n—1
A" Apy(hAy) = Z A:}_H(ehAj — Ay A, e G AN (R AL
j=m+1

n
+ Z etn+1=1j+1) Am (ehAj _ ehAm)Ame(tj_t'”)Am}((hAm).
Jj=m+1
As a consequence of the integral formula of Cauchy, see also (15), we obtain
147 — e Am) A=A x - x <Ch(tj — 1)~

Together with (5), (14) and (20), it thus follows

n
147 Amg(h Al x <x <Ch Y (tj — tw) ™' <C(1 + |loghl).
j=m+1

Altogether, this proves the desired result. O

5. Numerical examples

In order to illustrate the sharpness of the proven orders in our convergence bounds, we consider
problem (11) in one space dimension for x € [0, 1] and ¢ € [0, 1]. We choose a(x,7) =1 + e~*
and f(x,t) = y(x,t) =0, and we determine f(x,t) in such a way that the exact solution is given by
U(x,t) =x(1—x)e .
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Table 1
Numerically observed temporal orders of convergence in different norms for discretisations with N spatial degrees of freedom
and time stepsize h = 1/128

N Dy D) Dso L! L? L™

50 1.624 1.375 1.217 1.981 1.986 2.000
100 1.562 1310 1.101 1.979 1.986 1.998
200 1.531 1.280 1.051 1.979 1.986 1.998
300 1.521 1.270 1.034 1.979 1.986 1.998
400 1.516 1.266 1.026 1.979 1.986 1.998

We discretise the partial differential equation in space by standard finite differences and in time by
the Magnus integrator (8), respectively. Due to the particular form of the exact solution, the spatial
discretisation error of our method is zero. The numerically observed temporal orders of convergence in
various discrete norms are shown in Table 1. Recall that X = L?P(Q) and D), = W2P(Q) N WO1 P(Q).

The numerically observed order in the discrete L?-norm is approximately 2, which is in accordance
with Theorem 3. There is further a pronounced order reduction to approximately 1.25 in the discrete
D»-norm for sufficiently large N. This is explained as follows. The attainable value of f in Theorem 5 is
restricted on the one hand by Hypothesis 3 and on the other hand by the domain of the function

g, () =A'(Ou@) + (A1) — Apu' (1) + b (1), 1, <t<tyt1,

see (16). In our example, g, is spatially smooth but does not satisfy the boundary conditions. For X =L%(Q)
the optimal value is therefore f = 1/4 — ¢ for arbitrarily small & > 0, see [3,4] and the discussion in
Example 2.

Similarly, for arbitrary 1 < p < oo, Theorem 3 predicts order 2 for the L”-error, whereas an order
reduction to approximately 1 + 1/(2p) in the discrete D ,-norm for large N is explained by Theorem 5.
These numbers are in perfect agreement with Table 1, where we illustrated the limit cases p = 1 and
p = 0.
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A SECOND-ORDER MAGNUS TYPE INTEGRATOR FOR
QUASILINEAR PARABOLIC PROBLEMS

C. GONZALEZ AND M. THALHAMMER

ABSTRACT. In this paper, we consider an explicit exponential method of clas-
sical order two for the time discretisation of quasilinear parabolic problems.
The numerical scheme is based on a Magnus integrator and requires the eval-
uation of two exponentials per step. Our convergence analysis includes para-
bolic partial differential equations under a Dirichlet boundary condition and
provides error estimates in Sobolev-spaces. In an abstract formulation, the
initial-boundary value problem is written as an initial value problem on a
Banach space X
u(t) = A(u(®)u(t), 0<t<T, u(0) given,

involving the sectorial operator A(v) : D — X with domain D C X indepen-
dent of v € V' C X. Under reasonable regularity requirements on the problem,
we prove the stability of the numerical method and derive error estimates in the
norm of certain intermediate spaces between X and D. Various applications
and a numerical experiment illustrate the theoretical results.

1. INTRODUCTION

In this paper, we are concerned with the numerical solution of initial value problems
of the form

(1.1) u'(t) = Au(t))ut), 0<t<T, u(0) given.

Our main interest is to study (1.1) in an abstract setting where A(v): D C X — X
is a family of sectorial operators on a Banach space X which is defined for elements
v € V C X, in an open subset of some intermediate space D C X, C X. The scope
of applications includes quasilinear parabolic partial differential equations under
a boundary condition of Dirichlet type which arise in the modelling of diffusion
processes with state-dependent diffusivity and in the study of fluids in porous media.

In the present work, we pursue our convergence and stability analysis of Mag-
nus type integrators for the time discretisation of non-autonomous parabolic prob-
lems [11, 26, 27] and study an explicit exponential integration scheme for abstract
quasilinear problems (1.1). The numerical method considered relies on a second-
order Magnus integrator and requires the evaluation of two exponentials at each
step.

In the last few years, due to the progress of the art and the increasing potentiality
for the efficient calculation of the matrix exponential in non-dubious ways [22],
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see [10, 16] and references cited therein, numerical methods based on the Magnus
expansion have received a lot of attention. This is confirmed by a variety of recent
works, as a small selection we mention [5, 7, 17, 18, 19, 29]. Following an approach
studied by Magnus [21], for a linear system of non-autonomous ordinary differential
equations

(1.2) y'(t) = At)y(t),  y(0) given,
the solution is represented by the exponential of a time-dependent matrix 2
y(t) =e"y(0), 20,

which is given by an infinite series of iterated integrals involving matrix commuta-
tors of A

(1.3) () :/OtA(T)dT_;/Ot [/0 Afo)do, Ar)| dr + ...

In order to obtain a numerical approximation to the exact solution of (1.2), the
Magnus expansion (1.3) is truncated and the integrals are determined by means of
a quadrature formula. For instance, applying the midpoint rule to the first integral
and omitting the remaining terms yields the second-order approximation

(1~4) Y1 = ehA(h/2)y0

to the exact solution value at time h > 0. Here, the numerical starting value yg
is a suitable approximation to the exact initial value y(0). Such interpolatory
Magnus integrators were considered in Iserles & Ngrsett [18], e.g., in the context
of geometric integration, and, as proven in Hochbruck & Lubich [17], this method
class is also eminently suited for the time integration of spatial discretisations of
time-dependent Schrodinger type equations. In [11, 26], the second-order Magnus
integrator (1.4) was studied for abstract parabolic problems and further extended
to linear and semilinear equations.

The above considerations motivate the following Magnus type integrator for
differential equations of the form (1.1). For some initial value uy =~ u(0) and a
stepsize h > 0 the numerical solution u; is determined by the relation

(1.5a) uy = e AUy = u(h).

As auxiliary approximation to the exact solution value at the midpoint of the
interval [0, h], the additional internal stage Up; is calculated by means of a first-
order integrator

(1.5b) Uo = e/ 40y ~ u(h/2).

By Taylor series expansions it is straightforward to show that this scheme has
classical order 2. Tt is notable that (1.5) can also be considered as a Runge-Kutta
Munthe-Kaas method.

The objective of the present work is to analyse the stability and convergence
behaviour of the numerical method (1.5) in the situation where (1.1) constitutes
a quasilinear parabolic initial-boundary value problem written as an initial value
problem on a Banach space.

Our paper is organised as follows. In Section 2, we state the fundamental hy-
potheses on the differential equation in (1.1) and further specify several applications
that can be cast into our abstract setting. In Section 3, we introduce the Magnus
type integrator whose favourable stability and convergence properties in connection
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with parabolic problems are analysed in detail in the subsequent Sections 4 and 5.
In particular, under reasonable regularity requirements on the data and the solution
of the initial value problem (1.1), we state an error estimate in the norm of a certain
intermediate space between the underlying Banach space X and the domain D. In
Section 6, we finally comment on an extension of the Magnus type integrator to
equations with an additional inhomogeneity and illustrate the theoretical result by
a numerical example.

2. PROBLEM CLASS AND APPLICATIONS

In this section, we state the fundamental assumptions on the problem class consid-
ered and illustrate the abstract framework by several applications. The hypotheses
on the initial value problem (1.1) primarily rely on Gonzilez & Palencia [13] where
Runge-Kutta time discretisations for quasilinear parabolic problems were studied.
However, in our notation we follow Lunardi [20] and the previous works [11, 26].
For an extensive treatise of quasilinear evolution equations, we refer to the works
of Amann [1]-[4]. The theory of sectorial operators and analytic semigroups is
described in detail in the monographs [15, 20, 25]. A comprehensive overview of
interpolation theory is given in [20], see also [6, 28].

To simplify the notation, we henceforth do not distinguish the arising constants.
Thus, the positive quantities K, L, M > 0 and C > 0 possibly have different values
at different occurrences.

2.1. Quasilinear equation. We consider a complex Banach space (X, ||-||x) and
a dense subspace (D, ||-||p) which we assume to be continuously embedded in X.
For 0 < p < 1 we denote by X, some intermediate space between X and D such
that the norm in X, fulfills the relation

1—
lllx, < Kllzllx"Izlp, = €D,

with a constant K > 0. Specifically, we set Xo = X and X; = D.

The right-hand side of the differential equation in (1.1) is defined by the map
A:V — L(D, X) where V C X, is an open subset of some intermediate space X,
with 0 < v < 1. In view of applications, the requirement that the domain of the
unbounded linear operator A(v) : D — X is independent of v € V implies that
in general only initial-boundary value problems involving a boundary condition of
Dirichlet type are covered by our analysis. The fundamental assumptions on A are
as follows.

Hypothesis 2.1. (i) The closed linear operator A(v) : D — X is uniformly secto-
rial for v € V. Thus, there exist constants a € R, 0 < ¢ < 7/2, and M > 0 such
that for every v € V' and for any complex number A € C in the complement of the
sector

Se(a) = {z € C: |arg(a — 2)| < ¢} U {a}
the resolvent (A — A(v))_1 : X — X exists and further satisfies the estimate
(

@ Jor—a0) ™, <

. AeC\ Sya).

(ii) The graph norm of A(v) and the norm in D are equivalent, i.e., for every v € V
the following relation holds with a constant K > 0

(2.2) EYalp < llelx + [|A@)a| ¢ < Klzlp, € D.
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(iii) For some 0 < ¥ < 1 the intermediate space X;49 between D and the domain
of A(v)? does not depend on v € V. Moreover, the map A : V — L(X14y, Xyp) is
Lipschitz-continuous with respect to v, that is, the estimate

(2.3) 14@) =A@y, _x,,, <Ll =wlx,, vweV,

is valid with a constant L > 0.

By Hypothesis 2.1(ii), a suitable choice for the intermediate space X, is the
real interpolation space or the intermediate Calderén space, whereas, due to the
non-applicability of Heinz’s theorem, the fractional power space may depend on
veV.

Quasilinear parabolic initial-boundary value problems where the above assump-
tions hold true are specified below in Subsection 2.2.

Remark 2.2. In the situation of Hypothesis 2.1 with ¢ = 0, the unique solvabil-
ity of the abstract initial value problem (1.1) is ensured. Namely, it is shown in
Amann [2] that the quasilinear differential equation defines a semiflow in Xg NV
for every v < B < 1. However, the limiting case 3 = « is not covered by this result.

We note that for a linear operator F': X — D relation (2.2) implies the bounds
lA@Fx_x < KIFlp—x,  [Fllpex < K1+ [AQF]y_x)-

Besides, after possibly enlarging the constant M > 0, the following extension of the
resolvent estimate (2.1) is valid
M

< ;
X, =X, ~ |A—at]

(2.4)

RN = tA(v)) "

t>0, 0<p<sv<l,

see also [12]. For any fixed v € V the sectorial operator A(v) : D — X is the
infinitesimal generator of an analytic semigroup (etA(”)) >0 on X. Here, the linear
operator B

(2.5) emwkzlf/ewﬂ>¢A@»”dx t>0,
271 Jr

is defined through the integral formula of Cauchy, where I' denotes a path that

surrounds the spectrum of A(v). If t = 0 let e!4(") = I. Therefore, due to (2.4),

the estimates
Htl/—,uetA(v

)HX,,HX# S M

||t1+u—uA(v) etA(v) |

0<t<T, 0<p<v<l,

)

voex, SM,  0StST, 0<pr<l,

(2.6)

are valid, see also [20, Chapter 2]. Consequently, by means of the identity
t
AW 1= / A(v)e™®) dr,
0

we obtain the following bound

(2.7) [|e*4() <MtTvHE >0, 0<prv <1

-1
||X,/<—Xu
For later use, we further introduce the bounded linear operators

1 st
@(tA(v)) = ;/ t=mAW 47 ¢ >0, @(tA(v)) =1, t=0,
(2.8a) 0

t
¢@A@»:i§/7ﬂ“ﬂAde t>0, ¢@MW)=%L t=0,
0
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which are related to the analytic semigroup. Moreover, with the help of the integral
formula of Cauchy, the validity of the relation

D(tA®v)) = 1/2¢(tA(v)) = tA(v)x (tA(v))

with a bounded linear operator X(tA(v)) follows. More precisely, as a direct con-
sequence of the defining relations and (2.6), we obtain the estimate

[ o (tA@) ||y, x, + 170 (AW [, —x,
XA |y <M, 0<t<T,  0<p<v<l,

(2.8b)

with a constant M > 0.
We close this subsection with some useful abbreviations. In the sequel, the closed
ball in X, with radius ¢ > 0 and center v* € X, is denoted by

(2.9) B,(v*,0) = {veXu: lv —v*|x, gg} C X,

Further, for a family f = (fn)o<n<n of bounded maps f,, : I, C R — X, or for a
sequence g = (gn)o<n<n in X, we set
171, 00 = max, [allx, wor  Inllx, o = max|fa(®llx, .

(2.10) teln

lollx, oo = ymax [lonllx, -

2.2. Applications. The following initial-boundary value problem can be cast into
the abstract setting of Subsection 2.1, see also [13].

Example 2.3. Let Q be an open and bounded domain in R? with regular bound-
ary 092. We consider the following partial differential equation for a real-valued
function U : Q x [0, T] — R : (z,t) = (x1,x2,...,24,t) — U(z,t)

(2.11a) U (z,t) = A(U(z,t))U(z,t), xreQ, 0<t<T,
subject to a homogeneous Dirichlet boundary condition and an initial condition
(2.11b) U(x,t)=0, 2€0Q, 0<t<T, U(x,0) = Up(x), =z €.

Here, for v € C1(Q2) and w € C?(Q) the second-order differential operator A is
defined through

d
(2.12) A(v(z))w(z) = Z aij(z,v(x), Vo(2))0p,z,w(x), x € Q.
i,j=1
We suppose that the real-valued coefficients a;; which are defined on an open do-
main Q x A C R? x R x R? satisfy suitable regularity and boundedness assumptions,
and we further impose the ellipticity condition

d d
Zaij(xap7q)£i£j2’€z€i27 (xapaQ)GQXAa gERda
ig=1 i=1

for some k > 0.
By suppressing the spatial variable, the initial-boundary value problem (2.11)
takes the form of an abstract initial value problem (1.1) on the Banach space

X = LP(Q), d<p<oo.
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More precisely, we set (u(t))(z) = U(x,t) and define the linear operator A(v)
through (A(v)w)(z) = A(v(z))w(z). Then, by choosing

D=W>PQ)NnWyP(Q), V=X, 1/2+d@2p) t<y<]1,

it follows that Hypothesis 2.1 is satisfied with ¥ = 0. In particular, due to the
imbedding X, C C'(f2), the linear operator A(v) : D — X is well-defined for
elements v € X, see [15, Section 1.6]. If the coefficients of the differential operator
do not depend on the derivative, that is, in (2.12) a;;(z,v(z), 0,v(x)) is replaced
by a;;(z,v(z)), the less restrictive condition d (2p)~" < v < 1 follows.

The following illustration describes the movement of a fluid of variable density
through a porous medium under the influence of gravity and hydrodynamic disper-
sion. It is shown in Clément et al. [9] that the specified system of elliptic-parabolic
partial differential equations when reformulated as an abstract evolution equation
on a suitably chosen Banach space leads to a quasilinear parabolic problem.

Example 2.4. Let ) C R? be a rectangle or an open and bounded domain in R?
with regular boundary 9. Elements x = (z1,22)7 € R? are meanwhile interpreted
as columns. We consider a system of elliptic-parabolic partial differential equations
for functions U,V : Q x [0,T] — R : (x,t) — U(x,t)

{-AV(:L’, t) = O, U(l’, t),

2.13
(2.132) BU (2, ) + divF (z,t) = 0,

red, 0<t<T,

with map F = (Fy, F»)T : Q x [0,T] — R? defined by

(2.13b) F(z,t) = curlV(z,t) U(z,t) — D(curl V(z, 1)) VU (2, t).

Here, we set curl V = (=0,,V,0,, V)T and further employ the standard notations
VU = (0,,U,0,,U)", AV = 02V + 02V, and divF = 0,, Fi + 0,,F>. The
system (2.13a) is subject to the boundary conditions

(2.13c) V(z,t) =0, vIF(x,t)=0, zed, 0<t<T,

where v = (v1,12)7 is the outward normal unit vector on 9. Moreover, we impose
a certain initial condition U(z,0) = Up(x) for = € Q. Specifically, the real-valued
functions D;; : R? — R : ¢ — D(q) that define the hydrodynamic dispersion matrix

D(q) = (Di;(q)), <, ;<, are given by

/2 2\)5.. qiq;j i
2.13d D.. _ (Cl + c2 q1+q2)6lj+03 q%+q§ ) lfQ#(x
( ii(q) Vv

C1 (Sij, if q= 0.
The positive constants ¢y, ca, and c3 involve certain characteristic quantities such
as the transversal and longitudinal dispersion length, the molecular diffusion coef-
ficient as well as the tortuosity and porosity of the medium. As usual, d;; denotes
the Kronecker symbol. In particular, the ellipticity condition

2
Y Dij(9)6& > k(E+8&),  qeR?, £eR
i,j=1
holds for some x > 0.
Using the well-known result that the differential operator —A subject to a ho-
mogeneous Dirichlet boundary condition is invertible in LP(2), we express the
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solution V of (2.13a) in terms of U. That is, denoting the inverse operator by
(—Aly)~t, we get the relation V = (=Aly)~1,,U. Furthermore, by introducing
the solution-dependent coefficients a; and a;;,1 < 4,7 < 2, such that

—curl V(z,t) = —cwrl((—Aly) ' 0,,U(z,t)) = <a1 EU(J: t)g> ,
r T _ an(U(x,t)) alg( ( 3 ))
D(Cu 1V< 7t)) = <a21(U(x,t)) a22( (, )))
problem (2.13) takes the form
(2.14a) U (z,t) = A(U(x,t))U(x,t), z€eQ, 0<t<T

with differential operator A given by

A(U(z,t))U(z,t) = Z Oz, a;(U(x,t))U (,t)
(2.14b) I
+ > Onai; (U@, 1)) 00, Ula, ).
i,j=1

In addition, the solution U fulfills the boundary condition
2 2
(2.14c¢) Zuiai (U(z,t)) Z viaij (U(z,1))0,,U(z,t) =0
i=1 =1

for z € 0 and 0 < ¢ < T as well as the initial condition U(x,0) = Uy(z) for z € Q.
In order to cast this parabolic initial-boundary value problem into our abstract
framework, we set

Y =W (Q), X=Y, D=w"Q),
for 2<p<ooand 1/p’ =1 —1/p. Besides, we define A(u)u for v € D through

(2.15) (A(u)u,v) =

2
i=

2
<8miv,al Z O, v, ;5 (u Bm]u> vEeY,
1 =1

where we employ the standard notation
(f.9)= [ Fogla)dn,  fel@). ger’(@)

In (2.15), due to the imbedding W' (2) C C(R), the coefficients a;(u) and a;;(u)
are defined pointwise on the closure of Q. The investigations in [9] imply that
the operator family A : V' — L(D, X) satisfies Hypothesis 2.1 with V' = X, for
1/2+1/p<y<landd=0.

3. MAGNUS TYPE INTEGRATOR

In the sequel, we specify the numerical scheme for the time discretisation of quasi-
linear parabolic problems.

Henceforth, for integers n > 0 let ¢,, = nh be the grid points associated with
a constant stepsize h > 0. The numerical approximation u,41 to the value of the
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exact solution of the abstract initial value problem (1.1) at time ¢,,11 is determined
through the recurrence formula

U, = eM/? A"un7 A, = A(uy),

3.1
(3:1) ehA"lum A= A(Unl), n > 0.

Up+1 =

Here, similarly as for Runge-Kutta methods, the numerical solution w41 is com-
puted by means of an additional internal stage U,; which is a first-order approxi-
mation to the exact solution value at the midpoint t,, = t, + h/2.

Provided that the exponential is available, the benefits of the Magnus type in-
tegrator (3.1) are its explicitness and favourable stability properties. Namely, the
utilisation of exponentials instead of rational functions enhances the stability prop-
erties of the integrator. In this respect, we refer to Gonzdlez & Palencia [13] where
the stability and convergence behaviour of Runge-Kutta time discretisations for
quasilinear parabolic problems is studied. However, in [13] the requirement of
strong A(6)-stability implies that the Runge-Kutta method is implicit.

In the non-stiff case, by employing Taylor series expansions, it is straightforward
to prove that the numerical method (3.1) has classical order two. In the situation
where (1.1) constitutes an abstract quasilinear parabolic problem on a Banach space
its convergence behaviour is analysed in Section 5 below.

Remark 3.1. We note that the solution of (3.1) remains well-defined in XzNV for
any v < § < 1. Namely, whenever u,, lies in X3 NV it follows from (2.6) that Uy,
is bounded in Xg

HU" < MHun”X@'

1HXB

On the other hand, for h > 0 sufficiently small it holds

[Unt = un ., < [le"/24 |, < MEP 7 |lugx, < o,

- IHX,Y«—X5|

that is, the internal stage U,i is contained in a ball B, (u,,0) C X, and thus
in V for suitably chosen g > 0, see also (2.7) and (2.9). In particular, it follows
Un1 € XgNV, and therefore the sectorial operator A(U,1) is well-defined. Now,
similar considerations to before show that also u,41 belongs to XgN V.

For a family (F;);>0 of non-commutative operators on a Banach space, we employ
the product notation
n n
HFi:Fnanl"'qu ana HFi:I? n<m.
i=m i=m
As a consequence, by solving the recursion for the numerical solution in (3.1), we
get the relation

n
Uptl = HehA“uo = e AnighAn-11 ~--ehA01u0, n > 0.
1=0

Our first objective is to study the stability behaviour of this numerical approxima-
tion. This is done in Section 4 below.
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4. STABILITY

In this section, we analyse the stability behaviour of the numerical method (3.1),
that is, we study the dependence of the numerical approximation on the initial
value and the effect of additional perturbations. Several auxiliary estimates are
collected in Subsection 4.2.

4.1. Stability result. For the following considerations, we employ the assump-
tions and notation introduced in the previous Sections 2 and 3. In particular, we
denote by 0 < v < 1 and 0 < 9 < 1 the constants specified in Hypothesis 2.1.
Further, in view of Example 2.3 and the discussion in Subsection 6.2, it is senseful
to suppose ¥ < 7.

Henceforth, we fix v < 8 < 1 and ugp € Xg. Accordingly to our numerical
scheme (3.1), for initial values vy, wy € Xg and additional perturbations p,,, ¢, € Xg
for n > 1 we consider the recursions

hA(V, h/2A
Un41 = € ( nl)vn + hpn+17 Vi =e / (Un)vru

(4.1) BAWn) 0 4 hgnan, W, = eh/2AGwn)y, n>0.

Wn41 = €

We note that similar considerations as in Remark 3.1 imply that V,,; and v,41
belong to Xg NV provided that v, € XgNV, p,y1 € X bounded, and h > 0
sufficiently small. The analogue is valid for wy, 1.

The following result shows that furthermore these recurrence formulas remain
bounded in X . Especially, it follows that the Magnus type integrator (3.1) starting
from ug € Xg NV is applicable up to time T'.

Theorem 4.1 (Stability). Suppose that Hypothesis 2.1 is fulfilled with ¢ > 0. For
v < B <1letvg € XgNV and wy € XgNV and assume that p, and g, are bounded
in Xg forn > 1. Then, for h > 0 chosen sufficiently small the solutions of (4.1)
satisfy the bound

low = wallx, < C(Jlvo —wollx, + max lp; —gjllx,),  0<nh<T.
with constant C > 0 not depending on n and h.

Proof. Our proof is based on a fixed-point iteration based on a global representation
of the solutions in (4.1). For this purpose, we introduce several notations.
For the following, we choose up € Xg and fix y < ( < fand 0 < o < B — (. For
constants o > 0 and L > 0 we set
Z = {z = (2n)o<nh<T : 20 € Bg(uo,0) NV, 2, € XeNV forn >1

4.2 ~
(4.2) and nh < T, ||z, — zm|lx, < Lty — t)® for 0 <mh <nh < T}.

In particular, for z* € Bg(ug,0) NV we denote Z,~ = {z €Z:zy= z*} Note
that the sequence spaces Z and Z,- are complete metric spaces with the distance
induced by the maximum norm

el =, max fznllxc,

see also (2.10). Besides, for some o > 0 we introduce the set

S = {5 = (8n)h<nh<T : Sn € Bg(0,0) for n > 1 and nh < T}.
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For z € Z, accordingly to relation (4.1), we denote by Z;(z) = (an(z))n>0 the
sequence defined through a

(4.3a) Zni(2) = eh/2AG) 5 n > 0.

Moreover, we introduce a family of linear operators L(z) = (L7, (2)), 5., -, depend-

ing on the sequence Z; and thus on z -

(4.3b) L) = [[ %™, 0<m<n.

For the following, we fix z* € XNV and s € S and let

N:Z— Z:2— N(2) = N(z,8) = (N"(Z’S))0<nh<T’
(4.3c) nt
No(z,s) = 2%, Non(z,8) = L *(2)2* + h Z L}’;ll(z)sjﬂ, n>1.

=0

Clearly, a sequence z € Z,- that is a fixed-point of the nonlinear operator N, that
is, z satisfies the relation z = N(z), also fulfills the recurrence formula

(4.4) Znal = ehAZn) 4 hSni1, Zpy = /240G n >0,

with initial value zy = 2z*.

We next prove the unique solvability of the fixed-point equation z = N(z) and
the continuous dependence of the fixed-point on the initial value and additional
perturbations. Several auxiliary results needed for the following considerations are
derived in the subsequent Subsection 4.2.

(i) Let v,w € Z,~ and s € S. Estimating the difference N, (v, s) — N, (w, s) with
the help of Lemma 4.6 and using that [|s;41|| < o for 0 < j <n —1 gives

[N (w,5) = N, )], < 12571 0) = L™ @)y, e, 15715

n—1
+h ) |ILH @) = L )]y, x4l x,
7=0

n—2
< C(Z512" s + oh D (b1 = £541)° ) o = w0
§=0

< Oty (12" llx, + otn) o — wllx oo

If 6 =1 an additional logarithmic term (1 + |logh|) arises. Thus, for 0 < ¢, < T
and h > 0 small enough the mapping N is contractive, that is, the estimate

H./\/'(v)—./\/‘(w)HX(’c>o < Kllv —w||x¢, 00, v, W € Zx,

holds with constant x < 1.
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(ii) For any z € Z,« and s € § Lemma 4.4 and 4.5 imply

1Nz, 8) = N2, 8)]| ., < 1E6712) = L @)L, 127

m—1
+h YL (@) = L7 )|y, o, lsialxs
7=0

n—1
+h YL @ g, Isilxs
j=m

<C(1+ 0t ) (II2% x5 (tn — tm)P ¢ + Otmei(tn — t) = + 0 (taet — tm))
< C(1+Ct) (ty — t,)°~¢

with constant C > 0 independent of the Holder-constant L. This relation shows
that the constant L > 0 can be chosen such that sequence N(z) belongs to Z for
T > 0 sufficiently small. Again, if § = 1 an additional logarithmis factor appears
in the estimate.

As a consequence, A is a contraction on Z,«. Therefore, an application of the
Banach contraction principle shows that N possesses a unique fixed-point z € Z,-.
Consequently, for any z* € XgNV and s € S the recursion (4.4) is solvable in the
sequence space Z,«.

As a further consequence, we obtain the stability estimate of the theorem. As-
sume that v,w € Z and p,q € S fulfill the identities

v = N(v,p), w = N(w,q).
The bound in (i) together with Lemma 4.4 shows
lv = wllxe.o0 = [N (v, p) = N(w, 9] x .0
< [[N (v, p) = N(w,p)llxc.00 + | N (w,p) = N(w, q)|| x 00
< llv = wllxc 00 + C(llvo = wollx,s + llp = llx5.00) -

Therefore, as k < 1 we get the relation
lv = wllxc,00 < C(llvo = wollx, + 1P — dllxs,00)-

Applying the above arguments together with the previous estimate finally proves
the following bound in Xg

||’U - w”Xg,OO < HN(U,p) - N(va)HXs,OO + ||N(’LU,p) - N(va)HX,&N
< Cllv = wllx, 00 + C(|lvo — wollx, + [Ip = ¢l x5,00)
< C(llvo —wollx, + 1P — allx5.00)

which is the desired result.

We finally remark that the rather strong restrictions concerning the size of the
end time T > 0 can be weakend by introducing exponential weights in the maximum
norm. Alternatively, combining the stability and the convergence result given in
Section 5 shows the validity of Theorem 4.1 on the whole interval of existence of
the true solution u : [0,T] — Xg of (1.1). O

Remark 4.2. The analogue of Theorem 4.1 is valid for any Magnus type integrator
of the form u, 41 = ehUniy, provided that the internal stages U,,; satisfy an estimate
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of the form
HUnl_UmlHX Sc(tn_tm)aa OgtmgtnSTv
see also Lemma 4.3.

4.2. Auxiliary estimates. In the sequel, we employ the assumptions and abbre-
vitations introduced in the previous Subsection 4.1. In particular, as in the proof
of Theorem 4.1, we choose v < ( < S and 0 < a < f— (. In this subsection, we
denote by €' > 0 a constant that only depends on the constants that appear in Hy-
pothesis 2.1, but not on the Holder-constant L, see (4.2). Especially, the constants
C >0and C > 0 are independent of n and h.

At first, we show that for any sequence z € Z the associated sequence Z;(z)
reflects the Holder-continuity of z, see also (4.2) and (4.3a). For the moment, as
we consider a fixed sequence z € Z, we omit the dependence of Z; on z.

Lemma 4.3. Assume that Hypothesis 2.1 holds with 9 > 0. Then, for any z € Z
the associated sequence Z, = (an)n>0 defined by (4.3a) satisfies the estimate

HZM—ZMHXw < C(ty —tm)®, 0<ty,<t, <T,
with constant C > 0.
Proof. In order to estimate the difference Z,,1 — Z,,1, we make use of the identity
Tt — Ty = 12AG) (5 5y (eh/QA(zn) _ eh/2A(zm))Zm'
Due to the fact that z lies in Z, together with (2.6) it follows for 0 < ¢, <t, <T
h/2 A(zn) ( < ||eh/2 At |20 — Zmllx. < Cltn —tm).

||e Zn — Zm

)HX,Y X7<—X<‘

On the other hand, let I be a path that surrounds the spectrum of the sectorial
operators A(z,) and A(z,,). Then, by means of the integral formula of Cauchy, we
have the representation

(eh/2 Alzn) _ gh/2 A(Zm))zm = ﬁ et ()\I —h/2 A(Zn))_l

1 Jp
x (A(zn) = A(zm)) (AT = h/2 A(zn)) 2 d,

see also (2.5). We estimate this expression with the help of relation (2.3) and the
resolvent bound (2.4). Note further that ||z, — zm||x, < K|[zn — 2m||x, with some
K > 0. As a consequence, we get the estimate

H(eh/QA(zn> _eh/m(zm»z’”wa < %/F ’e’\|H()\I— h/2A(2n))_1H

X A(za) = Al _p || (AT = B/2 A(Zm))ﬂHDHxC 2l x. |47

< COllzn = zmllx, Izmllx. < Ctn — tm)®.
Altogether, this yields the desired result. (I

X =X

As a direct consequence of (2.6) we obtain the following bound for the analytic
semigroup generated by the sectorial operator A(Z,,1)

(4.5)  |[|eltrrrmtm)alz <Mtpgr —tm) ", 0<t, <t, <T,
In

7n1)H
X, «—X

whenever 0 < py < v < 1. Lemma 4.4 below shows that the corresponding estimate
remains valid for L = L(z), see (4.3b).
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Lemma 4.4. Suppose that Hypothesis 2.1 holds with ¥ > 0. Then, for any z € Z
the associated linear operator family L = (L;ib) defined by (4.3b) fulfills

n>m>0

1Ll x,x, < C(L4Cltnsr — tm)®) (tnpr —tm) "4, 0<ty <t, < T,

for all 0 < p <v <1 provided that 9 < p+ «.

Proof. Our techniques for proving Lemma 4.4 are close to that applied in [11, 26].
The basic idea is to compare L;,, with the frozen operator

n

H ehA(Zm,l) — e(tn+1_t'm)»A(Zrnl)7
where the bound (4.5) is available. Thus, it remains to estimate the difference
(4.6a) A" = L7 — eltnr17tm)A(Zm1) 0<m<n.

From a telescopic identity, we obtain the equality

n—1 n
(4.6b) Al = Z AT Eim + Z eltrt1=ti)AZm)
Jj=m+1 j=m+1

which involves the linear operator

S = (ehfuzm _ ehA(Zm))e(trtm)A(zml), i>m.
The integral formula of Cauchy yields the following representation, where the path I
is chosen in such a way that it surrounds the spectrum of the sectorial opera-

tors A(Z;1) and A(Zp1), see also (2.5) and the proof of Lemma 4.3
eltnt1—t41)A(Zm1) = h e eltnt1=t41) A(Zm1) ()\[ — hA(Z; ))
—im o j1
7i Jp

x (A(Zj1) = A(Zm1)) ML = hA(Zyp1)) ™ el =tm)AZmD) )\,

-1

We estimate this expression by applying the resolvent bound (2.4) and further (2.6).
Due to relation (2.3) and Lemma 4.3, for m < j < n we finally get

||e(tn+17t]’+l)A(Zm1) = < Ch(typgy — tj+1)7u+19(tj _ tm)71719+”

“ijX,,HXH
x |21 - Zml”xW
< Ch(tnyr —tjs1) VTt —ty) 0T < <.
Moreover, it follows

—_
—

Zmllx,  x,

S Chl—u-l—ﬁ(tn _ tm)—1—19+u+a'

Thus, by interpreting the last sum in (4.6b) as a Riemann-sum and estimating it
by the associated integral, we have

n—1
E "e(thrI*thrl)A(Zml)E
j=m+1

ol s, < Clbnss — t) 7070

provided that ¥ < p + «. Furthermore, we make use of the relation

HEijXM‘_XM = Chl_u+ﬂ(tj - tm)_l_ﬂ-ﬂﬁ_av j>m.
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First, we estimate A}, as operator from Xy to X,. With the help of the above

relatlons, due to the fact that for j > m and n > m it holds

HEijXW—Xp S Ch(t] - tm)71+av ’|EanXV<—X19 é ChliVJrﬂ(tn - tm)71+aa

n—1

Z ||e(tn+1ftj+1)A(Zm1 _ijx x, < C(tn-H _ tm)7u+19+a7
j=m+1

we obtain the following bound
n—1

8% x, —x, = D0 187, [Eomll, —x, + [Bmlx, —x,

j=m+1
n—1
+ Z ||e(t,,L+17tj+1)A(z,,,L1)EjmHX .
j=m+1 v A
n—1
<Ch Z ||A§L+1HXV<_X19(tj b)Y 4 Oty — )V
j=m+1

Thus, from a Gronwall-type inequality with a weakly singular kernel, see [8, 24],
g., it follows

1A%,

with constant C' > 0 possibly depending on 7. Now, it is straightforward to
estimate A}, as operator from X, to X,

lx, —x, < Chltass = t) 07

n—1
8%k, —x, < 22 187y, —x, Bimllx, x, + [Znmllx, —x,
j=m-+1
n—1
T
j=m+1
n—1
SOR D7 (tuan =) T = ) 7T Oty )
Jj=m+1

wherefore we finally have

(4.7) A < Ctpyy — ty) VT,

HX —X,

Together with (4.5) this yields the desired result. O

Now, with the help of Lemma 4.4 we are in the position to show that L is
Holder-continuous.

Lemma 4.5. In the situation of Lemma 4.4, for z € Z the associated operator
family L = (L:Ln)n>m>0 satisfies the following estimates

1L (2) = LT (2)llx, e x,, S C(1+Cta) (tn — tm) T, v #1,
|L7(2) = L (2)p—x, < C(1+ Ct) (1 + [log h|) (t, — tm) "+,

where 0 < p,v <1 and 0 <t; <t <t, <T.
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Proof. From a telescopic identity, for 7 < m < n we obtain

LI = (L — DL = Y L (ME0 — )iy, j<m<n,
1=m-+1

We note that the relations in (2.8) imply

HehA(Z“ HXHD =

see also [25], e.g. Further, it holds

||ehA(Zz'1) _ I||XV<—D < Mhliy, 0 < t; < T.

Thus, by applying the bound from Lemma 4.4, for any 0 < p, v < 1 we get

n—1
125 = Ly ex, < D0 IEEll, o[l = Tl o1 |,
1=m-+1
+ HehA(Z“) - I||XU<—DHL?LHD<—XM
~ n—1
< C(l + Ct%) h Z (tn+1 — ti+1)7y(tm+1 - tj)71+u'
1=m-+1

Therefore, interpreting the sum as a Riemann-sum and estimating it by the asso-
ciated integral yields for v # 1
HL? o L?HX,,HXM < 6((1 + Ot%)(tnﬂ - tm-&-l)liy(tm-s-l - tj)ﬂﬂ‘
~ n—m 1—p
<CA+Ct)(tn —t —”W(i)
< C(A+Ct)(ty — tm) o —

< C(1+ Ot (ty — tyn)

which proves the desired result. If v = 1 the additional term (1 + |logh |) arises in
the estimate. O

In Lemma 4.6 we study the dependence of the operators L”,(z) on z. For that
purpose, for v = (v,)n>0 and w = (w,)n>0 in Z we denote by |[v — w||x, 00 the
maximum value of ||v, —wy||x, for 0 < nh < T, see also (2.10).

Lemma 4.6. Suppose that Hypothesis 2.1 is satisfied with ¥ > 0. Then, for se-
quences v = (Up)n>0 € Z and w = (Wn)n>0 € Z the following estimates are valid
for arbitrary 0 < p <v<1land0<t, <t,<T. Ifv+#1 and p# 0 it follows

||L:ln(v) _L;Lm(w)‘ < C(tn _tm)_y+ul|v_w||X<,007

Xl,«—XH

else if v =1 or u =0 the bound
[L0(0) = Ly ()|, _x, < Cltn —tm) ™" (1+ [log h ) v — wllx, 00
holds.

Proof. For v = (vp)n>0 € £ and w = (wy)n>0 € Z we define the associated se-
quences Vi = (an)n>0 and W, = (Wnl)n accordingly to (4.3a). An application
of the telescopic identity yields

L, (0) — () = 37 Ly (0) (o409 — 400 157 ),
j=m

>0
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see also the proof of the previous Lemma 4.5. We estimate L7 (v) — LI (w) as
operator from X, to X,

[ Lo (w) = L7,

< HL%H(U)HXVHXHehA(Vm) _ ohAWim

(w)HX,,HX,L )HXHX“

n—1
+ >0 |15 0)]
Jj=m+1
+ HehA(an) . ehA(Wnl

A A
—

thxue (w)HD<—X“

)qu@DHL?nil(w)Hthp'

By the integral formula of Cauchy, we have the representation

h _
ehAVin) _ ohAWin) — — / eM (M — hA(Vj1)) !
r

i
X (A(Vin) = A(Win)) (M = R AW;1)) " d,
see also (2.5). Consequently, with the help of (2.4) and (2.6) we have
e 405 — hAWa || < O AV) — AW | e 0<m <1,

[¢hA050) — AW < ORI AW - AWy 0 EL

)HX,,%

Hypothesis 2.1 and similar considerations as in the proof of Lemma 4.3 yield the
bound

14Van) = AWan) [ p < Ll[Vir = Waa |

_ LHeh/2A(vn)vn _ eh/2A(wn)wn||X < Cllvg — wallx,-
Y
As a consequence, by means of Lemma 4.4 we finally have
L5 (@) = Ly ()|, < Cltn —tm) ™o — w]lx o

Here, an additional logarithmic factor arises if v = 1 or u = 0. This proves the
desired result. O

5. CONVERGENCE

In this section, we state a convergence result for the Magnus type integrator (3.1)
applied to the quasilinear problem (1.1). Our proof relies on a favourable relation
for the global error which we derive first.

5.1. Relation for error. For the subsequent considerations, we employ the abbre-
viations introduced before in Sections 2 and 3. In particular, for a constant stepsize
h > 0 we let t, = nh and t,,; = t, + h/2 and set 4, = A(u,) and A, = A(Unl)
for n > 0. Furthermore, we define

Pnl = (p(hAnl)v Yn1 = "/J(hAnl)v Xnl = X(hAn1)7 Y = (h/2 An)»

see also (2.8a). Besides, it is convenient to denote the exact solution values by

~

an+1 = u(tn+1)7 Unl = u(tn1)7 ;{n = A(’/Lb\n), A\nl = A(ﬁn )

Then, the global error of the numerical approximation and the internal stage, re-
spectively, equals

Cn+1 = Un+4+1 — Un+1, Enl == Unl - Unla n 2 0.
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Moreover, the discrete evolution operator is given by
n
(5.1) en=1T[e"" o0<m<n
i=m

In addition, we set £, = I if n < m.

In order to represent the global error e,;1 in a suitable way, we consider the
differential equation (1.1) on the subinterval [t,,,t,+1] and rewrite the right-hand
side by adding and substracting A,

W' (t) = Apu(t) + gn(t),  gn(t) = (A(u(t)) — Ap)u(t).
Thus, with the help of the variation-of-constants formula, a relation similar to the
second formula in (3.1) involving further the defect of the method follows

h
(5.2) Unyr = "0, 4 dp dnt1 = / "= A g, (&, + 7) dr.
0

By taking the difference of (3.1) and (5.2) and resolving the resulting recursion
for e, 41, we finally obtain

(53) €n+1 = 86160 - Z g;l+1dj+1.
7=0

For deriving a useful relation for the defects, we decompose g,, as follows

(5.4)  gu(t) = fult) + (Ap1 — Aud)u(®),  fult) = (A(u(t)) — Anr)u(t).
Provided that the map A and the exact solution u satisfy suitable regularity as-
sumptions, a Taylor series expansion of f, : [t,, tn+1] — X yields

faltn +7) = (7= 1/2) f} (tn1) + (7 — h/2)2 /01(1 —0) [} (tp1 + o (T — h/2)) do,
and, moreover, the following identity is valid
At = Api = A Bpry A = /01 A(0Up + (1= 0)Up1) do,
with A’(v) : V — L(D, X) denoting the Fréchet derivative of A at v € V. Conse-

quently, by integrating accordingly to (5.2) and applying (2.8a), the defects split

up into dp11 = Opt1 + Opy1 = 57(&)1 + 5n1+)1 + 6,11 where

(5'53‘) 57(1(21 = h2 (¢n1 - 1/2 (Pnl)frll (tnl) = h3An1Xn1f7lL (tnl)y

h 1
(5.5b) 6L), = / e(h=m)An (7 _ h/2)2/ (1= o) £ (tms + (T — h/2)) do dr,
0 0

h
(5.5C) 9n+1 = _/ e(h_T)AnlAnlEn1u(fn + T>d7'-
0

As the term 6,, 1 involves the error of the internal stage, we next derive a suitable
relation for E,;. Rewriting again the right-hand side of (1.1)

u'(t) = Apu(t) + Go(t), Gn(t) = (A(u(t)) — Ap)u(t),

by the variation-of-constants formula, we obtain the representation

~ h/2
(5.6) Unl = eh/2 Anan + _D,nl7 Dnl = / e(h/2—7')AnGn(tn + 7_) dT,
0
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and, together with the first formula in (3.1) this implies
(5.7) En =e?4me, — D,1.
Similarly to before, we employ a decomposition of G,
(5.8) Gn(t) = Fu(t) + (A, — Ap)u(t),  Fu(t) = (A(u(t)) — A, )u(t),
and thus obtain from a Taylor series expansion the identity
1
Pt +7) = 7F. (1) + 72 / (1= o) F"(tn + o) do,
0
and, on the other hand, the relation

1
A, — A, = Apen, A, = / Al (O’ u, + (1 — U)ﬂn) do,
0

follows. Consequently, determining the integral in (5 6) with the help of (2.8a),

yields the splitting D1 = App + Op1 = ( ) + A + ©,,1 for the defect of the
internal stage where

(5.9a) A = n2/a4y,Fl (L),
h/2 B 1
(5.9b) AW = / e(h/Q*T)A”?Q/ (1—0)F)/(tn +07) dod7,
0 0
h/2 B
(5.9¢) O, = —/ e(h/Q_T)A".Anenu(tn + ?) dr.
0

Finally, we expand relation (5.3) by inserting successively formula (5.5¢) for the
defect dy11 = 0pt1 + Opna1, formula (5.7), and further (5.9¢) for Dyy = App + Op.
Altogether, we have the following representation for the global error

e, = 0 60+Z€;L+11/ e(h—T)Alejl

h/2 B
X / M/ 2=0A A eju(ty +7) dT u(ty +7) dF u(t; + 1) dr
0
(5.10) n—1 h
+ Z 5]’-:11 / e(h_T)AJ'l./éljleh/2 Ajej u(t; +7)dr
— 0

n— n—1 h
-S et - e [ A s
=0 =0
where the defects 6,41 =9 ©

j+1 Tt 5J+1 and Aj; = A(O) + A(l) are defined through
the formulas (5.5a)-(5.5b) and (5.9a)-(5.9b).

5.2. Error estimate. We next analyse the error behaviour of the Magnus type
integrator (3.1) for the quasilinear parabolic problem (1.1) and state a convergence
estimate with respect to the norm of the intermediate space Xg where v < 8 < 1.

For the derivation of Theorem 5.1, our main tools are the global representa-
tion (5.10) as well as the stability estimate of Theorem 4.1. In order to obtain
the optimal convergence order, we further make use of a refined stability bound
specified in Lemma 5.2 at the end of this subsection. Regarding the error esti-
mate it is notable that the differentiability of the functions f,, and Fj, introduced
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in (5.4) and (5.8) is governed by the smoothness of the exact solution u and the
operator family A, that is, the requirement that the first derivatives of f, and F,
are bounded in Xy for a certain ¥ > 0 is satisfied in various applications, see also
Subsection 6.2. We finally note that the restriction 8 < 1 is senseful in view of
Remark 3.1, however, the statement of Theorem 5.1 remains valid for the limiting
case 3 = 1.

In the sequel, for maps ¢ : [0,7] — X and G; : [tj,t;41] — X defined for integers
7 > 0 we employ the abbreviations

loll oo = s ol N6l = 285 Gl o

where HGjHX,OO = max{HGj(t)HX tt; <t <tjq1}, see also (2.10).

Theorem 5.1 (Convergence). Suppose that Hypothesis 2.1 is fulfilled for constants
0 <Y <v<1and choose v < 8 < 1. Assume further that the exact solution
of (1.1) is bounded in X149 and that A'(v) : V — L(X149,Xy) is bounded for
every v € V. Besides, we require u : [0,T] — Xg to be Lipschitz-continuous with
respect to t. Then, for h > 0 chosen sufficiently small the numerical method (3.1)
applied to the abstract initial value problem (1.1) satisfies the convergence estimate

Jun — ), < Cllio = w05
N Ch%@w((l +log h )| ]|, o + HF/HXWQ

+0h2<||quX’oo+h17ﬂ||FuHX’OO), 0<t,<T,

provided that the quantities on the right-hand side are well-defined. The constant
C > 0 is independent of n and h.

Proof. We note that the existence of the numerical solution in Xg is ensured by
Theorem 4.1. Thus, it remains to derive the desired convergence bound. For this
purpose, we consider relation (5.10) for the global error e,, and estimate it in Xg. On

the one hand, for the error terms involving the initial values and ej, 0 < j <n —1,
we thus obtain the bound

eI, < 165" M1, x, leollxs

-1 2 —-T)A A L 9
nZ /h /h/ Hcc/’;t;lle(h ) jl”X «—X,g” jl”
j=0v0 70 8 (X1+19’X) X

™24 e il ) s,

X lults +7)x,, letts + 7, dFdr

n—1 h
n Z /O ’|g;z+—11e(h—r)Aj1 ||Xﬁ<—X19 HAjl ||L(X1+ﬁ,Xq9)‘—X—y
j=0

24l el s + ),
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On the other hand, inserting the representation (5.5a) for the defects 57(321 yields
the following estimate for the remaining terms

n—2
e, <23 e Anxn ., x, 15 (i) [ .,
7=0

+ h2(||1/’"*1»1“XB~X19 +1/2 H@”*lvluxw—xﬂ) Hfr/hl(tnflvl) H)g9

n—2

+ 3o llEr e, x ol + 1601,
=0

n—1 h
+ Z /0 Hé’;::lle(h_T)Ajl HXﬁHXﬂ HAjl HL(XHﬁ,Xﬂ)‘_Xw
j=0

<Ay, lluts + Dl o

M.,

We next apply the bounds for the analytic semigroup and the related operators,
see (2.6) and (2.8b), as well as the stability bounds of Lemma 5.2. Note further
that for any 0 < pu < 1 the relation

h 1
||5§}+>1||Xu§/0 /0 e e

X Hfrlz/(tnl + U(T - h/2))HX dodr < Chg_quHHX,oo

holds, and that we moreover have
[Anilly, < B [¢nllx,—x, [ Fntlx,
h/2 1 N
[ R I+ 07) | o
0 0 ’
< OR P F |y, oo + O P

Therefore, under the assumptions of the theorem it follows

leallx, < llei”llx, + llei” x,
n—1

< Clleollx, +Ch Yy (tn = t5) 7 |lesl .,
§=0

F O[B4 og k)17 ]y, oo + 12 1F ], o

n—2
2| e B ) B (b = )P

=0

n72
L op2o hz(t" - tj+1)_1||f/||Xﬂ,oo~
j:O
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As a consequence, by interpreting the sums as Riemann-sums and estimating them
by the corresponding integrals we get
n—1
He"HXg < C”eOHX[f +Ch Z(tn - tj)_ﬁ-i_ﬂ”ej ||Xg
§=0
+ Cmin {0 2P R (1 [log h) || ]|, o

+ ORIy, o+ CR2 |7 g o + CHP ||

I, o0 I oo

Finally, the application of a Gronwall lemma shows
lenllx, < Clleollx, + Cmin {n**, 247} (1 4 [log h)) || ]| .,

5.11
( ) +Ch27ﬁ+19||F/H +Ch2”f” +Ch37ﬁHFH

Xy ,00 HX,oo ||X,oo’

see also the proof of Lemma 4.4.

We note that the exponent « in the bound (5.11) as it is restricted by the
condition 0 < a < 8 — ¢ with 7 < { < 3 possibly is close to 0. However, regarding
the numerical experiments of Section 6 it is essential to raise the size of a. For that
purpose, let u denote the exact solution of (1.1) started at the numerical initial
value ug € X and assume that it is Lipschitz-continuous on Xg, i.e.

|u(tn) — u(tm)HXﬁ < Oty —tm).

In particular, this relation holds true if the first derivative v’ is bounded in Xg.
Consequently, due to the convergence estimate (5.11) which implies that the order
of the numerical scheme in X3 is at least one, we have

[tn = v, < Jlum = wtn)l[ 5, + [ = wltm)|, + [ultn) = ultn)] x,
< Ch+Clty —tm) < Cltn —tm), 0<t, <t, <T.

Altogether, these considerations show that we may set « = 1 in (5.11) which proves
the desired result. (]

For the proof of the above convergence estimate, the following stability result is
needed. Recall the abbreviation y,,; = X(hAml).

Lemma 5.2. Assume that Hypothesis 2.1 is valid with ¥ > 0. Then, the discrete
evolution operator & defined in (5.1) fulfills the estimates

1€, x, + | Ensr = 8) " ER 5, _x, < C
\]5,2Am1Xm1|\X[&X19 < Ch (14 |log h|) (tng1 — tm) P H?
+ O Pty — )™, 0<ty, <t, <T,
with constant C' > 0 not depending on n and h.

Proof. The first estimate of Lemma 5.2 is a direct consequence of Lemma 4.4.
For proving the second bound, we correlate the discrete evolution operator with
the analytic semigroup generated by A,,;. That is, similarly as in the proof of
Lemma 4.4, we make use of the identity

g:rLLAm1Xm1 = A:Lnfanl Xm1 + Aml e(tn+1_tM)Am1 Xm1

n—1 n
= Z AV Ejm + E e(tnt1=tj41) Am Zim + Ami eltnt1=tm) Ami
j=m+1 j=m+1
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where AP, = £ — eltnt1=tm)Am1 and

Ejm = (eh“‘j1 — ehA""l)Aml e(tj_tm)A’"lel, 7 >m.
By means of the integral formula of Cauchy, we obtain the relations

Zimllx, o, < ChlE =) 727 [Zamly,cx, < OB (b0 = tn) 727
Consequently, with the help of the estimate

[Amy eltrsr=tmdmin | ) € Mg — tn) 777,

see also (4.5) and (2.8b), and (4.7) we obtain
n—1

}’g%Am1Xm1|}XB«—X,§§ Z ||A?+1|‘Xﬁ<—x,0Héimnxw_xﬂ
j=m+1

n—1

+ Y et dm Bl ox, [l
Jj=m+1
T

n—1
SCh > (tngr —tion) PTH(ty — b)) 72 4 Cltngr — tw) P
j=m+1
< Ch (L + [log b ) (tng1 — tm) P17 + Cltngr — tn) 1017

which yields the specified estimate. O

6. EXTENSION AND NUMERICAL EXAMPLE

In this section, we discuss a possible extension of the Magnus type integrator (3.1)
to quasilinear equations with an additional inhomogeneity and illustrate the the-
oretical convergence result by a numerical example. Throughout, we employ the
hypotheses and notation introduced in Sections 2-5.

6.1. Extension to inhomogeneous quasilinear problems. The convergence
analysis of the previous Section 5 easily generalises to problems with an additional
inhomogeneous part. In view of our numerical example, we consider an abstract
initial value problem of the form

(6.1) u'(t) = A(u(t))u(t) +b(t), 0<t<T, u(0) given,

involving a time-dependent map b : [0,7] — X. In this case, the numerical

method (3.1) for the quasilinear parabolic equation (1.1) is modified as follows
62) Upni :eh/zA"un+h/2ap(h/2An)bn, by, = b(ty),
. Un+1 = ehAnlun + h‘P(hAnl)bnla bnl = b(tnl)a n > 07

see (2.8a). Similar considerations as in Section 5 show that the following conver-
gence result is valid with maps f, and F;, defined by

(63) fn(t) :fn(t)+b(t) 7bnla ﬁn(t) :Fn(t)+b(t)*bna n207

provided that first and second derivatives of b are bounded in certain intermediate
spaces, see also (5.4) and (5.8).
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Theorem 6.1 (Convergence). Assume that the requirements of Theorem 5.1 are
satisfied. Then, for h > 0 chosen sufficiently small the numerical method (6.2)
applied to the abstract initial value problem (6.1) fulfills the convergence bound

[un = ultn)| ., < Clluo —u(0)|x,
+ R (14 1og ) [P, o + 17, )

+OR (1o + B PN g )s OStST,
with constant C > 0 not depending on n and h.

6.2. Numerical example. The following application illustrates the above conver-
gence result. In order to keep the realisation simple, we restrict ourselves to a
parabolic initial-boundary value problem in one space dimension.

Example 6.2. We consider a one-dimensional initial-boundary value problem for
a function U : [0,1]> — R : (z,t) — U(x,t) comprising a quasilinear partial differ-
ential equation with additional inhogoneneous part

(6.4a) U (z,t) = A(U(z,t))U(,t) + B(z, t), 0<zx<1, 0<t<1,
subject to a homogeneous Dirichlet boundary condition and an initial condition
(6.4b) U,t)=0=U(1,t), 0<t<1, U(z,0) =Up(z), 0<z<1.
For functions v € C1(0,1) and w € C?(0,1) the differential operator A is given by
(6.4c) A(v(z))w(z) = a(z,v(z), dpv(z))diw(z), 0<z<1,

with coefficient a : R® — R satisfying suitable regularity and boundedness assump-
tions. Specifically, for the numerical example we set

(6.4d) a(z,p,q) =1+p° +cq®, ¢=0,1,

and determine the function B and the initial condition Uy such that the exact solu-
tion of (6.4) is given by U(z,t) = e 'z(1—=z). Note that U fulfills the homogeneous
Dirichlet boundary condition.

We let (u(t))(z) = U(z,t), (A(v)w)(z) = A(v(z))w(z), and (b(t))(z) = B(z, t).
With this notation, the initial-boundary value problem (6.4) takes the form of
an initial value problem (6.1) on the Banach space X = LP(Q) for 1 < p < o©
with domain of A(v) given by the function space D = W22(0,1) N W, *(0,1).
From the previous Example 2.3 we thus conclude that the linear operator family
A: X, — L(X149, Xyp) satisfies Hypothesis 2.1 with ¢ = 0 and constant -y restricted
by the condition ¢/2+(2p)~! < 7 < 1. Furthermore, due to the fact that the domain
of A(v)? equals

D? = D(A()?) = {w e W (0,1) n Wy (0,1) : 82u(@)|, _, , = 0}

and therefore does not depend on v € V, the same holds true for any intermediate
space D C X419 C D(A(v)z). Besides, for A : X, — L(DQ,D) is Lipschitz-
continuous with respect to v. As a consequence, Hypothesis 2.1 remains valid for
every 0 <9 < 1.

In the present situation, all requirements of Theorem 5.1 are fulfilled. Namely,
the exact solution U(z,t) and the data a(z,p,q) and B(z,t) are sufficiently regular.
Therefore, the maps fn and F,, defined in (6.3) are twice differentiable in X, and,
besides, the Fréchet derivative A’(v) : Xy — L(Xi4y9,Xy) is bounded. A result



24 C. GONZALEZ AND M. THALHAMMER

[B\M ] 50 [ 100 | 150 | [B\M] 50 | 100 [ 150 |
27 [ 1.8983 | 1.8987 | 1.8986 27 ][ 1.3462 | 1.3335 | 1.3203
2% | 1.9021 [ 1.9018 | 1.9017 2% | 1.2770 [ 1.2621 | 1.2572

2-1111.8965 | 1.8959 | 1.8957
275 1[1.9078 | 1.9067 | 1.9064
2=6 ][ 1.9184 | 1.9163 | 1.9159
2-7 |1 1.9291 | 1.9252 | 1.9244
2 8
2 9

1711'1.2987 [ 1.2760 | 1.2686
511.3185 [ 1.2847 | 1.2738
6 1 1.3480 | 1.2977 | 1.2817
—7 1 1.3947 | 1.3181 | 1.2946
8
9

1.9409 | 1.9333 | 1.9319 1.4679 | 1.3495 | 1.3141
1.9553 | 1.9415 | 1.9388 1.5817 | 1.3977 | 1.3437
2710 11'1.9728 | 1.9508 | 1.9457 2710 11'1.7389 | 1.4730 | 1.3889
TABLE 1. Numerically observed temporal convergence order in the

discrete Xg-norm for c=0,p =2, 3= (2p)~* = 1/4 (left), =1

(right). Expected values x1/4 ~ 2, k1 = 14 1/4, see (6.5b).

in Grisvard [14] which characterises the intermediate spaces X C Xy C D implies
that any function which is spatially smooth but does not satisfy further boundary
conditions belongs to Xy as long as 9 < (2p) ™1, see also the discussion in [11]. That
is, the first derivatives of fn and Fn are bounded in Xy for ¥ < (2p)~!. Moreover,
the exact solution of (6.4) lies in the intermediate space Xy if ¥ < (210)*1 and
its first time derivative 0,U(x,t) = — U(x,t) remains bounded in Xg for arbitrary
0 < B < 1. Asaconsequence, accordingly to Theorem 5.1, the expected convergence
order with respect to the norm of the Sobolev-space Xz is

(6.5) kg=2-0+10, ¢/2+@2p) " <y<l,  I<(2p)

where 7 < 8 < 1.

For the numerical example, the partial differential equation is discretised in space
by symmetric finite differences of grid length Az = (M + 2)~1, and, for the time
integration, we apply the numerical method (6.2) with stepsize h > 0. The numeri-
cal temporal order of convergence measured in the discrete Xg-norm is determined

=]
=

[ 50 [ 100 [ 150 | [h\
2.0180 | 2.0180 | 2.0180 2~
2.0465 | 2.0464 | 2.0463 2~
1.9818 | 1.9813 | 1.9812 2
1.9827 | 1.9819 | 1.9817 2~
1.9859 | 1.9843 | 1.9840 2~
2
2
2

MJ[ 50 [ 100 | 150 |
211 1.0854 [ 1.0661 [ 1.0601
31 1.0752 | 1.0492 | 1.0408
4711'1.0895 | 1.0504 | 1.0375
5
6
7
8
9

1.1184 | 1.0616 | 1.0429
1.1662 | 1.0831 | 1.0560
1.2396 | 1.1169 | 1.0775

1.9910 | 1.9880 | 1.9874
1.9968 | 1.9920 | 1.9909 1.3500 | 1.1678 | 1.1101
2.0001 | 1.9965 | 1.9943 1.5106 | 1.2439 | 1.1584
2.0137 | 2.0012 | 1.9978 2-10 11 1.7118 | 1.3572 | 1.2302
TABLE 2. Numerically observed temporal convergence order in the
discrete Xg-norm for ¢ = 0, p = 100, 8 = (2p)~ = 1/200 (left),
B = 1 (right). Expected values k1,900 ~ 2, k1 ~ 1+ 1/200,
see (6.5b).

MI\DMI\‘DL\JI\DL\DI\D
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[MM] 50 [ 100 | 150 | [BW\M] 50 [ 100 [ 150 |
27 [ 1.5985 | 1.5955 | 1.5948 27 [[1.2614 | 1.2482 | 1.2438
2% | 1.4579 | 1.4533 | 1.4523 2% [[1.2056 | 1.1915 | 1.1868

2-1 11 1.4644 | 1.4568 | 1.4550
275 |1 1.4922 | 1.4788 | 1.4756
2=6 [[ 1.5154 | 1.4920 | 1.4863
2-7 | 1.5474 | 1.5067 | 1.4968
2 8
2 9

1711.2529 [ 1.2315 | 1.2244
5111.2864 | 1.2546 | 1.2443
6 1 1.3222 | 1.2748 | 1.2599
—7 | 1.3712 [ 1.2995 | 1.2775
8
9

1.5963 | 1.5263 | 1.5090 1.4432 | 1.3326 | 1.2997
1.6737 | 1.5560 | 1.5261 1.5524 | 1.3802 | 1.3301
271011 1.7854 | 1.6040 | 1.5528 2710 11'1.7069 | 1.4520 | 1.3741
TABLE 3. Numerically observed temporal convergence order in the
discrete Xg-norm for c =1, p=2, 8 =1/2+ (2p)~! = 3/4 (left),
B =1 (right). Expected values rg/q ~ 1+ 1/2, k1 = 14 1/4,
see (6.5¢).

from the numerical and exact solution values. In particular, if the differential opera-
tor involves no first derivative, i.e., ¢ = 0 in (6.4d), for the limiting cases 8 = (2p)~*
and 0 = 1 we expect a numerical convergence order of approximately

(6.5b) Kop-1 =2—(2p) ' +0=~2,  ki=1+9~1+(2p) ",
see (6.5a). On the other hand, for the case where ¢ = 1 we have
(6.5¢) Kijorap—1 =1+1/2—(2p) '+~ 1+1/2, ki =14+0~1+(2p) "

The results of the numerical experiment for p = 2 and p = 100 are displayed in
Tables 1-4. The observed numbers are in good agreement with the expected values.
We remark that for the chosen values of M and h the problem becomes non-stiff as
the temporal stepsize h tends to 2710, wherefore the numerical order approaches
the classical convergence order 2.

=]
=

H 50 \ 100 \ 150 ‘ ’h\M H 50 \ 100 \ 150 ‘
1.6447 | 1.6441 | 1.6440 272 110.9801 [ 0.9598 [ 0.9535
1.4681 | 1.4669 | 1.4667 273 |1 1.0091 | 0.9838 | 0.9757
1.4697 | 1.4677 | 1.4673 2=% 11.0474 | 1.0102 | 0.9979
1.4835 | 1.4791 | 1.4784 277 || 1.0875 | 1.0338 | 1.0161
1.4858 | 1.4865 | 1.4849 276 [ 1.1397 | 1.0613 | 1.0358

=7

.

2—9

1.5559 | 1.4946 | 1.4904 1.2132 | 1.0979 | 1.0609
1.4690 | 1.4935 | 1.4951 1.3199 | 1.1488 | 1.0947
1.5942 | 1.5602 | 1.4983 1.4742 | 1.2222 | 1.1423
1.7540 | 1.4754 | 1.5582 2-10 1116743 | 1.3298 | 1.2109
TABLE 4. Numerically observed temporal convergence order in the
discrete Xg-norm for ¢ = 1, p = 100, 3 = 1/2+ (2p)~* = 1/2 +
1/200 (left), 3 = 1 (right). Expected values f1/241/200 = 1+ 1/2,
k1~ 14 1/200, see (6.5¢).
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A FOURTH-ORDER
COMMUTATOR-FREE EXPONENTIAL INTEGRATOR FOR
NON-AUTONOMOUS DIFFERENTIAL EQUATIONS

MECHTHILD THALHAMMER*

Abstract. In the present work, we study the convergence behaviour of commutator-free expo-
nential integrators for abstract non-autonomous evolution equations
u'(t) = A(t)u(t), 0<t<T.
In particular, we focus on a fourth-order scheme that relies on the composition of two exponentials

involving the values of the linear operator family A at the Gaussian nodes

Meaditadn) hladitaada) yy qp = £, o= FF I, A= Aleh), =12

uy =€ T2

We prove that the numerical scheme is stable and derive an error estimate with respect to the
norm of the underlying Banach space. The theoretically expected order reduction is illustrated by a
numerical example for a parabolic initial-boundary value problem subject to a homogeneous Dirichlet
boundary condition.

Key words. Exponential integrators, commutator-free methods, non-autonomous differential
equations, parabolic evolution equations, stability, convergence

AMS subject classifications. 65105, 65M12, 65J10

1. Introduction. In the present paper, we consider a non-autonomous differen-
tial equation involving a time-dependent linear operator A

u'(t) = A(t)u(t), 0<t<T, u(0) given. (1.1)

Our setting includes parabolic initial-boundary value problems that take the form
(1.1) when written as an abstract initial value problem on a Banach space. The objec-
tive of this work is to analyse the error behaviour of the fourth-order commutator-free
exponential integrator

— eh(a2A1+a1A2) eh(alAlJragAz) Uo,

Ui
(1.2)
ai:%iga ci:%:':gv AZ:A(CZh)7 i:172a

to explain the substantial order reduction for problems of parabolic type. For that pur-
pose, we derive a representation for the defect of (1.2) which remains valid within the
framework of sectorial operators and analytic semigroups. In situations, where A(t)
is a bounded linear operator, the Campbell-Baker-Hausdorff formula is a powerful
tool for the error analysis of (1.2) and higher order schemes, respectively. However,
it is problematic to justify its validity in the context of parabolic evolution equations.
Therefore, in this paper, we follow a different approach based on the variation-of-
constants formula.

Numerical schemes that involve the evaluation of the exponential and related
functions were proposed in the middle of the past century already. For a historical
review, see [24]. At present, a variety of works confirms the renewed interest in such
exponential integrators. As a small selection, we mention the recent works [5, 8,
14, 16, 19, 20] and refer to the references given therein. A reason for these research

*INSTITUT FUR MATHEMATIK, UNIVERSITAT INNSBRUCK, TECHNIKER-
STRASSE 13, 6020 INNSBRUCK, AUSTRIA. MECHTHILD. THALHAMMERQUIBK.AC.AT
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activities are advances in the computation of the product of a matrix exponential
with a vector, see for instance [10, 15, 25]. As a consequence, numerical integrators
based on the Magnus expansion [23] and related method classes [2, 3, 6, 7, 17, 21] are
practicable in the numerical solution of non-autonomous stiff differential equations,
see also [11, 12, 30] and references cited therein.

The excellent error behaviour of interpolatory Magnus integrators for time-depen-
dent Schrédinger equations is explained in Hochbruck and Lubich [14]. There, it
is proven that the exponential midpoint rule applied to ordinary differential equa-
tions (1.1)

up = ey, Al = A(%), (1.3)
is convergent of order 2 without any restriction on the size of h||A(t)H Moreover,
under a mild stepsize restriction, a fourth-order error bound is valid for the Magnus
integrator

hay(A1+A2)+h%as[Az,A1] U
)

Uy =€
alzév a2:§7 Ci:%:':§7 A7:A(Clh)a 7::172a

where [A1, Ag} = A; As— A5 Ay denotes the matrix commutator. In [11], we considered
the numerical scheme (1.3) in the context of parabolic evolution equations and showed
that the full convergence order 2 is obtained when the error is measured in the norm
of the underlying Banach space, provided that the data and the exact solution of (1.1)
are sufficiently smooth in time.

The purpose of the present work is to investigate the convergence properties of
higher-order methods for linear non-autonomous parabolic problems (1.1). Provided
that the time-dependent sectorial operator A(t) is Holder-continuous with respect to t,
it is ensured that any linear operator defined through B = aA(&1)+ (1 —a)A(&2) with
a,&1,& € R generates an analytic semigroup (etB ) >0+ that is, numerical schemes

such as (1.2) remain well-defined for abstract evolution equations (1.1). For that
reason, we focus on commutator-free exponential integrators that rely on the compo-
sition of exponentials involving linear combinations of values of A. We show that the
fourth-order scheme (1.2) is stable, however, unless the operator familiy A fulfills un-
natural requirements, a substantial order reduction is encountered. For instance, for
one-dimensional initial-boundary value problems subject to a homogeneous Dirichlet
boundary condition, the order of convergence with respect to a discrete LP-norm is
2+ Kk where 0 < k < (2p)~!, in general.

The present work is organised as follows. In Section 2, we first state the funda-
mental hypotheses on the non-autonomous evolution equation (1.1). The considered
commutator-free exponential integration scheme is then introduced in Section 3. The
numerical approximation is based on the composition of two exponentials that in-
volve the values of A at certain nodal points. Sections 4 and 5 are concerned with a
stability and convergence analysis for parabolic problems. In Section 5.1, we derive
an expansion of the numerical solution defect which remains well-defined for abstract
differential equations (1.1) involving an unbounded linear operator A(t), provided
that the data and the exact solution of the problem are sufficiently differentiable
with respect to time. The main result, a convergence estimate for the fourth-order
scheme (1.2) is given in Section 5.2. Important tools for its proof are the stability
bound and the representation of the defect derived before. Section 6 is finally devoted
to a numerical example that illustrates the expected order reduction.
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2. Parabolic problems. Henceforth, we denote by (X,||-||x) the underlying
Banach space. Our basic requirements on the unbounded linear operator family A
defining the right-hand side of the differential equation in (1.1) are that of [11, 30].
For a detailed treatise of time-dependent evolution equations we refer to [22, 29].
The monographs [13, 27] delve into the theory of sectorial operators and analytic
semigroups.

HypoTHESIS 1. We assume that the densly defined and closed linear operator
A(t) : D C X — X is uniformly sectorial for 0 <t < T. Thus, there exist constants
a€R,0<¢<7F, and M > 0 such that for all 0 < t < T the resolvent of A(t)
satisfies the condition

for -, = 2

XX~ |[A—d 2.1)

for any complex number X\ € Sy(a) = {\ € C : |arg(a — N)| < ¢} U{a}. The graph
norm of A(t) and the norm in D fulfill the following relation with a constant K > 0

K- zlp < llzlx +[[A®)z|y < Kl2|p, €D, 0<t<T.
Moreover, it holds A € Cgﬁ([O,T], L(D,X)) for some 0 <9 <1, i.e., the bound
|A®) — A(s)|| . p < L(t—5)”, 0<s<t<T, (2.2)

is valid with a constant L > 0.
For any 0 < s < T the sectorial operator ) = A(s) generates an analytic semi-
group (em) >0 o1 X which is defined by means of the integral formula of Cauchy

0= L foanr—)tan, >0, =1, t=0. (2.3)
27 Jr
Here, I' denotes a path that surrounds the spectrum of 2.

Henceforth, for 0 < u < 1, we denote by X,, some intermediate space between
the Banach spaces D = X; and X = X such that the norm in X, satisfies the bound
]l x, < K||z||% ||z 5% * with a constant K > 0 for all elements z € D. Examples
for intermediate spaces are real interpolation spaces, see Lunardi [22], or fractional
power spaces, see Henry [13]. Then, for all 0 < u < v < 1 and integers k > 0 the

following bound is valid
Htwu emeuHx# 4 ||tk+u7u QF etQHXl,(*Xu < M, 0<t<T, (2.4)

with a constant M > 0. As a consequence, the linear operator ¢, which is given by

1 ¢ o L 1

et = Gy (m—1)!

I, (2.5a)

for integers m > 1, remains bounded on X, for any 0 <¢ < T and 0 < p < 1. In the
subsequent sections, we make use of the identities

1
=T +tQ ¢ (tQ), Om—1(tQ) = m—1) I+tQen(tQ), m>1. (2.5b)
m — 1)!
Furthermore, it is substantial that the relation
Pm(t2) — om (0) =t x(1€2) (2.5¢)

holds with a linear operator x(t(2) that is bounded on X, see [13, 22] and also [11, 30].
3



3. Commutator-free exponential integrator. In this section, we introduce
an integration method for linear non-autonomous parabolic problems (1.1) which
relies on the composition of two exponentials. We note that the considered scheme is
an example of a Crouch-Grossman method [9].

For a constant stepsize h > 0 the associated grid points are denoted by t; = jh
for j > 0. The numerical approximation w41 /= u(t,+1) to the true solution of (1.1)
is given by the recurrence formula

Upyq = €SMCn o1 Bny n > 0. (3.1a)
Here, we employ the following abbreviations

A, = A(tn + Cih), 1=1,2,
(3.1b)
Bn = aAnl + BAnQa Cn = ’YAnl + (5An2
Throughout, we assume that the nodal points ¢ ,z, c1,c2 € R and the coefficients

a, B,7,d € R satisfy

0< (<1, (=1-¢, 0<c < <1, a+p=1, v+46=1. (3.1¢)

The following remark shows that relation (3.1a) remains senseful within the analytical
framework of Section 2.
REMARK 1. Under the assumptions of Hypothesis 1, the linear operator

a1+ (1 — Oé)AnQ = A0+ Oz(Anl — Ang), a €R,

is sectorial, see also [13, Theorem 1.3.2]. Therefore, the commutator-free exponential
integrator (3.1) is well-defined for abstract evolution equations (1.1).

4. Stability. The stability properties of the commutator-free exponential inte-
grator (3.1) are determined by the behaviour of the evolution operator

n

H ChCi oChBi — oChCn oChBrn oChCr oChBroi . oChCm oChBm (4.1)
i=m

where n > m > 0. The following result implies that the numerical solution u,, remains
bounded for arbitrarily chosen stepsizes h > 0 as long as nh < T.

THEOREM 1 (Stability). Under the requirements of Hypothesis 1 on A, the dis-
crete evolution operator (4.1) fulfills the bound

<M, 0<mh<nh<T,

n
H H oChCi (ChB;
- X—X

=m

with a constant M > 0 that does not depend on n and h.

PROOF. As in our preceeding works [11, 30], the proof the above stability result
relies on the telescopic identity and the integral formula of Cauchy. In the present
situation, it is useful to compare the discrete evolution operator (4.1) with the linear
operator

n n
H eChAm2 oChAmz _ H ehAmz — e(tn+l_tm,)Am2,
i=m i=m

4



which satisfies the well-known bound

He(thrlftm)AmQ

+ H (tn—i-l - tnz) Am2 e(tn+17tm)Am2

X+—X X=X

for 0 < t,, <t, <T. Therefore, it suffices to estimate the difference

n
A" = H efhci eChBi, _ e(tn+1—tm)Am2
m
i=m

n—1
= E AT (eCth eChBi _ ehAm2)e(tj —tm)Aj2
j=m

n
+ E e(tnftj)Ajz (eChCJ eChB]' _ ehAerZ)e(tj7t7rL)Aj2.

j=m
For this purpose, it is notable that the following relation holds true
oChCy oChB; _ ghAmz _ (eEhcj _ eEhAmg) oShB; | oChAms (egth _ eghAM).
By means of the integral formula of Cauchy, the resolvent identity
A= Q)= (A= Q)™ = (M — Q)71 — Qo) (M — Q)7
and the relations given in (3.1), we receive

(ethj oChBj _ ehAmg) olti—tm) Az

Ch -
= [0 = ChG) ™ (1A — Ap) + App — Avo)
X ()\ - ZhAmQ)il eCth e(tjftm)A]Q d\
h ~
+ Ch et elhdma () — Cth)—l(a(Ajl —Aj) + Ajp — Ana)

27 Jp

X (A = ChApg)~teltimtm)Asz q),

With the help of the resolvent bound (2.1), the Holder estimate (2.2) for A, and (2.4)
it thus follows

H (e<h,cj oChB; _ ehAmz) olti—tm) A2 < MR, j=m,

X—X
< Mh(t; —ty) ' j>m.

H (efhcj oChBj _ ehA,,,Q) o(ti—tm) Az

X—X

Consequently, a further application of (2.4) together with a Gronwall-type inequality
with a weakly singular kernel, see also [4, 26], yields the desired stability bound. 0O

5. Convergence. In this section, we analyse the convergence behaviour of the
considered commutator-free exponential integrator for parabolic problems (1.1). As
a first step, we next derive a useful relation for the defect of (3.1) by means of a
suitable linearisation of the differential equation and an application of the variation-
of-constants formula. Similar techniques have been used in the study of exponential
splitting methods, see [1, 18, 28] and references therein. The following considerations
also explain the definition of the numerical method.

5



5.1. Expansion of the defect. Replacing in (3.1) the numerical by the exact
solution values defines the defect of the method

U(tnt1) = ChCn oChBn u(tn) + dpt1, n > 0. (5.1)

Our basic approach is to consider the initial value problem (1.1) on the subinter-
val [tn,tn+1] and to derive an analogous relation to (3.1a) for the exact solution
values. For that purpose, we set

Gult) = (A(H) = Bo)ult),  Ha(t) = (A() — Cu)ult). (5.2)

On the one hand, rewriting the right-hand side of the differential equation in (1.1)
as u'(t) = Bpu(t) + Gy (t) and applying the variation-of-constants formula, see [22],
yields the following relation for the solution value at time ¢,, + Ch

Ch
u(tn + Ch) =P u(ty) + / h=Bn G (b, + 7) dr.
0

On the other hand, by linearising (1.1) around C,, and inserting the above represen-
tation for u(t, + Ch), we further obtain

- _ Ch
U(tnyr) = e Byt ) + ehOn / eCh=TBn G (4, + 7)dr
0

cho
+ / eCr=mCn [, (t,, + Ch + 7) dT.
0

Consequently, the defect of the numerical method (3.1) equals

N Ch Ch
dpyy = eSHOn / elh=mBn Q@ (t, +7) dr+/ eCh=1Cn [ (t, +Ch+7)d7. (5.3)
0 0

In order to derive a suitable expansion of d,, 41, it is useful to introduce some additional
notation.

The time-derivatives of the linear operator A and the exact solution u of (1.1) at
time t,, are denoted by

AD = A9y, >0,  a¥ =u9(,), j>0. (5.4a)
For the coefficients of the numerical scheme, we define
wi = ach + Bck, v = ych + 8¢k, 1=1,2,3, (5.4b)

see (3.1). We note that for a sufficiently differentiable function f : [t,,tn+1] — X a
Taylor series expansion yields

f(tn+T):Z%féz)—f—R(TT”J’_l,f(erl))’ OSTSha
— 1.
i=0 1 ) (5.5)
R(rmHt, fm+y = — / 1 — o)™ fm (¢, + o7)do,
. 0

where féi) = f@(t,). Thus, provided that the quantity

[y =, amax 70

6



is well-defined, the remainder fulfills

HR(T7U+1,f(Tn+1)) < Mh7n+1Hf(m+1)HX700’ 0<71< h,

I

with some constant M > 0. Terms that satisfy an estimate of this form are hence-
forth denoted by Z(h™**, f(m+1)). In particular, the abbrevitation 2 (h*, A ()
signifies that the bound
k AG), G k
12 (n*, AV uD) || < MBE - max [ AD () D @)

tn<s,t<tny1

holds true.

Provided that the involved derivatives of A and u are well-defined, the following
representation is valid for the defect d,,11 given by (5.1). We recall formula (2.5a) for
the linear operator ¢, .

LEMMA 1. The numerical solution defect of (3.1) fulfills the relation

dppr= Y WP 0, ADGD) + 2(h°, Au)
(i,5)€7
+%(h5,Amu/) —&—9?(h5,A”u”) +%(h5,A’u/”),

where ®;; = ®;;(hB,,, hCy) is defined through

1 )
0= {d“ GO (i 4 )1 C it g1 (ChBu) = oy (ChB))
i+j
+ Z Vil (i-;j)é-i+j7fz€+lspl+l(thn)
l=j+1

+ Zj:Z! Cj—égﬁ—&-l((i-il;j)g —vi(} ))Wﬂ(ghc )}
£=0

and ¢ ={(1,0),(2,0), (1,1),(3,0),(2,1), (1,2)}.
ProOF. We first derive a useful relation for the maps G,, and H,, defined in (5.2).
With the help of (5.5), by combining the expansions

3
Aty +7) Z%' (% — i) gf)—l—%(h‘l,A(‘l)),
2

Z 1 8 + R(r*,u®),

J=0 ‘7

we receive the following representation
1 . N
Gultn +7)= Y ﬁ(rz — )T ADTY) + 2 (1),
(ies (5.62)
R(h*) = Z(h*, ADu) + 2 (h*, A7) + 2 (W', A"") + 2 (h*, Au™),
see also (3.1b)-(3.1c) and (5.4). Similarly, it follows
1
Hy(ty +Ch+7)= Y == ((Ch+7)" —uvil’)(Ch+ 7V ADTY) + 2(h*). (5.6b)

e s
7



We next insert the above expansions (5.6) into (5.3) and express the resulting integrals
by means of (2.5a). Altogether, this yields the given result. 0O

In the situation of Section 2, a reasonable smoothness assumption on (1.1) is
that the linear operator A and the exact solution u are sufficiently differentiable with
respect to the variable t. Precisely, we suppose A (t) and u® (t) to be bounded in
the underlying Banach space X for all 0 < ¢ < 7T. The following remark states that
then the expansion of Lemma 1 is well-defined. However, unless the exact solution
satisfies additional (unnatural) requirements such as A’(¢t)u(t) € D for 0 <t < T, in
general, it is not possible to further expand the defect.

REMARK 2. Provided that u/(t) € X it follows from the differential equation
n (1.1) that A(t)u(t) € X and therefore u(t) € D for 0 < ¢t < T'. Differentiating (1.1)
with respect to the variable ¢ implies A(t)u'(t) = u”(t) — A'(t)u(t) € X, and, as a
consequence, u/'(t) € D for any 0 < ¢t < T. Similarly, it follows v~V (t) € D if
u(j)(t) € X for 0 <t <T and j = 3,4. Thus, under the regularity requirements
Ac€ ‘54([0, T], L(D, X)) and u € ‘54([0, 7], X), the representation of the defect given
in Lemma 1 is well-defined.

5.2. Error estimate. With the help of the stability estimate and the expansion
of the defect given in Sections 4 and 5.1, we are able to prove the following convergence
result.

THEOREM 2 (Convergence). Assume that the requirements of Hypothesis 1 are
fulfilled and that further A € ‘54([0,T],L(D,X)) and u € %4([O,T],X). Then,
provided that A (t)ul)(t) belongs to the intermediate space X, with 0 < Kk < 1
for 0 <t < T and (i,j) € {(1,0),(2,0),(1,1)}, the fourth-order commutator-free
exponential integrator (1.2) satisfies the error estimate

tn — utn)|x < C(Huo —u(0) + P (1 + \logh\)), 0<t, <T,

with some constant C' > 0 independent of n and h.
PROOF. In order to obtain a suitable relation for the global error e,, = u,, —u(ty),
we first resolve the recurrence formula (3.1a) for the numerical approximation

n—1
Up = H eCi gChBi U, n > 0.
i=0

Furthermore, by using (5.1), we receive e, = e+ 6512) with

n—1 n—1 n—1

el = [T e e (ug — u(0)), e == [ e ehBrayy.  (57)
i=0 =0 i=j+1

We next estimate the terms in (5.7) with respect to the norm of the underlying
Banach space X. An application of Theorem 1 shows that the first term is bounded
by a constant times the error of the initial value

n—1

e < || T e e
=0

o = u(©)lx < Clluo — u(0)]x.

For estimating the second term eg), we employ the representation of the defect given

in Lemma 1. Making use of the fact that the sums involving the remainder and the
8



terms where i + j > 3 are bounded by constant times h3, we receive

n—1 n—1
el <0 3| TT e @ng(am;. n0y)|
J=0 " i=j+1

(e
Xex, T,

n—1 n—1
- ;o | i:ylllewi 0 (B, )| 45, (5.8)

n—1

n—1

+m§]‘HEMQW@QHm@mQWh%H%@MN

§=0  i=j+1 g

+Ch®.

We note that the coefficients of the fourth-order scheme (1.2) satisfy the conditions
D20(0,0) = 3{¢ (32— ) + {3 B+ T+ —m) } =0, o
o _ .9a
11(0,0) = (3¢~ ) + (53 + 532 =) + (¢~ ) =0

Therefore, similar arguments as in the proof of Theorem 1 show the refined bounds

n—1
H H eChCi eChBi CI)QQ(th,th)HX X S Mh(tn —tj)_1+ﬁ,
i=j+1 T

n—1
| T et eche ¢ll(th,hcj)HX S Mh(t, = )7,
i=j+1 "

see also (2.4) and (2.5¢). In relation (5.8), it remains to estimate the sum involv-
ing ®19. For that purpose, we apply (2.5b) together with suitable Taylor expansions
of B; and C;. Moreover, the coefficients of (1.2) fulfill

©10(0,0) = (3¢ — ) + 5+ (¢ —m) =0,
2(1 1 (172 17 1 (5'9b)
W10(0,0) =¢ (gC—§M1)+C<gC +§C(C—V1)+C(§C—M1))=O-

As a consequence, we finally obtain the refined estimate

n—1
H [T o echo: <I>10(th,hcj)HX

< M1+ logh| + (tngr — tm) ™).
i=j+1 "

—X

Altogether, this implies

n—1
||e£12)||X < Cp¥tr Z (14 logh| + (t, —t;)7")
7=0

n—1
+ChY Y (tn — ;)7 4 Ch® < Ch*H (1 + [log h)
j=0

which proves the given error estimate. 0O
REMARK 3. Going over the proof of Theorem 2 shows that the essential conditions
for a fractional convergence order of 2 + k are (5.9). We note that the conditions for

9



Stepsize I [ 12 [ 1/4 [ 1/8 [ 1/16 | 1/32 |

Method 1 (M = 50) 2.0076 | 1.9632 | 1.9597 | 1.9699 | 1.9822
Method 1 (M = 100) || 2.0075 | 1.9631 | 1.9595 | 1.9696 | 1.9818
Method 2 (M = 50) 1.0924 | 1.9634 | 2.2295 | 2.3162 | 2.4248
Method 2 (M = 100) || 1.0949 | 1.9604 | 2.2267 | 2.3153 | 2.4181
Method 3 (M = 50) 2.2597 | 2.1983 | 2.3386 | 2.4337 | 2.4999
Method 3 (M = 100) || 2.2591 | 2.1960 | 2.3348 | 2.4227 | 2.4782
Method 4 (M = 50) 3.3250 | 3.5115 | 3.3419 | 3.0490 | 2.8486
Method 4 (M = 100) || 3.0426 | 3.4011 | 3.4838 | 3.2384 | 2.9488

TABLE 6.1
Numerical temporal convergence orders
in a discrete L'-norm for spatial discretisations of grid length Ax = (M + 1)~1.

a classical convergence order 3 are equivalent to the relations in (5.9). However,
it is not possible to construct a commutator-free exponential integrator of classical
order 3 that is based on the evaluation of one exponential only, that is, the validity
of relation (5.9) implies 0 < ¢ < 1 in (3.1).

6. Numerical example. In this section, we illustrate the error estimate of The-
orem 2 by a numerical example for a parabolic initial-boundary value problem subject
to a homogeneous Dirichlet boundary condition. We start with a brief discussion of
the considered time integration schemes. For notational simplicity, we only give the
first step and denote A; = A(c;h).

METHOD 1. For parabolic problems (1.1), it follows from the error estimate given
in our previous work [11] that the exponential midpoint rule
— oAy,

)

N

3% 05 1 =

is convergent of order 2 with respect to the norm of the underlying Banach space.
METHOD 2. The commutator-free exponential integration scheme

up = e(17C)h(a1A1+(17a1)A2) eChAl Uo,

ngv a1 = — 3 CZZ%ZFQ i:172a

1
17 1o 6 >
has a classical convergence order 3.

METHOD 3. The numerical method

_ _h(axAi1+a, A h(a1A1+asA: 1 3 1 3 .
_e(21 12)6(11 QZ)UO, ai—zﬂ:\[ Ci_§:|:%a i=1,2,

uy 6

is the unique scheme of the form (3.1) that satisfies the conditions for a classical
convergence order 4, see also (1.2).

In the numerical example, as an illustration, the fourth-order commutator-free
exponential integrator given before is compared with a fourth-order interpolatory
Magnus integrator. To explain the stability and error behaviour of this method for
parabolic problems is beyond the purpose of the present work.

METHOD 4. The fourth-order interpolatory Magnus integrator

_ ehal(A1+A2)+h2a2[A2,A1] o,

—
Nl

) a2 =

)

N

Uy ap =

requires the evaluation of the linear operator [AQ, Al] = AyA; — A1 As.
10



Stepsize I [ 12 [ 1/4 [ 1/8 [ 1/16 | 1/32 |

Method 1 (M = 50) 2.0120 | 1.9740 | 1.9723 | 1.9786 | 1.9879
Method 1 (M = 100) || 2.0120 | 1.9739 | 1.9722 | 1.9785 | 1.9878
Method 2 (M = 50) 1.1979 | 1.9223 | 2.0992 | 2.1336 | 2.1732
Method 2 (M = 100) || 1.1985 | 1.9208 | 2.0977 | 2.1303 | 2.1666
Method 3 (M = 50) 2.0197 | 2.0409 | 2.1271 | 2.1917 | 2.2331
Method 3 (M = 100) || 2.0194 | 2.0397 | 2.1244 | 2.1859 | 2.2210
Method 4 (M = 50) 3.3204 | 3.5217 | 2.9654 | 2.4024 | 2.3609
Method 4 (M = 100) || 3.0341 | 3.4204 | 3.3656 | 2.6010 | 2.3197

TABLE 6.2
Numerical temporal convergence orders
in a discrete L?-norm for spatial discretisations of grid length Ax = (M + 1)~1.

We consider a one-dimensional initial-boundary value problem for a real-valued
function U : [0,1] x [0,T] — R : (x,t) — U(x,t) comprising the partial differential
equation

U (z,t) = o (x,t) U(z,t), 0<z<l, 0<t<T, (6.1a)
subject to a homogeneous Dirichlet boundary condition and an initial condition
U@,t)=0=U(1,t), 0<t<T, U(z,0) =Up(z), 0<z<1. (6.1b)
The differential equation involves a second-order differential operator
o (x,t) = a(x,t) 02 + B(x,t) O + (2, 1) (6.1c)

which we assume to satisfy the condition of strong ellipticity. We further suppose
that the space and time-dependent coefficients «, 6 and ~ fulfill suitable regularity
and boundedness requirements. For v € €§°(0,1) we define u(t) and A(¢) through
(u(t))(z) = U(z,t) and (A(t)v)(z) = & (z,t)v(z). Then, problem (6.1) can be cast
into the abstract framework of Section 2 for

X =1IP(0,1), D=wWr%0,1)n W' (0,1), 1<p< oo,
see [11] and references therein. In view of the numerical experiment, we choose
a(z,t) =e" O(x,t) = xt, v(z,t) = 2 (1 +e').

The admissible values of x in Theorem 2 are 0 < x < (2p)~!. Thus, the expected
fractional convergence order in X = LP(0,1) is 2 + x where £ < (2p) 1.

In the numerical experiment, we discretise the problem in space by symmetric
finite differences of grid length Az = (M + 1)~!. In time, we apply the exponential
integrators given above with stepsize h = 27% for 1 < ¢ < 5 and integrate the problem
up to time T' = 1. A reference solution is determined for a temporal stepsize h = 2710,
The numerical temporal order of convergence with respect to a discrete LP-norm is
determined in a standard way from the numerical solution values. The obtained num-
bers for p = 2 and the limiting cases p = 1 and p = co are displayed in Tables 6.1-6.3.
The convergence order 2 for the exponential midpoint rule (Method 1) is explained by
a convergence result proven in [11]. For the commutator-free exponential integrators
of classical order 3 (Method 2) and classical order 4 (Method 3), respectively, the
values of approximately 2 + (2p)~! are in accordance with the convergence orders
predicted by Theorem 2.
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Stepsize I [ 12 [ 1/4 [ 1/8 [ 1/16 | 1/32 |

Method 1 (M = 50) 2.0250 | 2.0065 | 2.0208 | 2.0226 | 2.0149
Method 1 (M = 100) || 2.0250 | 2.0063 | 2.0207 | 2.0222 | 2.0129
Method 2 (M = 50) 1.2328 | 1.7318 | 1.8169 | 1.8604 | 1.9092
Method 2 (M = 100) || 1.2341 | 1.7313 | 1.8135 | 1.8559 | 1.9072
Method 3 (M = 50) 1.7384 | 1.8369 | 1.9113 | 1.9649 | 1.9851
Method 3 (M = 100) || 1.7391 | 1.8347 | 1.9103 | 1.9604 | 1.9736
Method 4 (M = 50) 3.3042 | 3.0169 | 1.9200 | 2.0864 | 2.1880
Method 4 (M = 100) || 3.0257 | 3.4434 | 2.0132 | 1.9839 | 2.0752

TABLE 6.3
Numerical temporal convergence orders
in a discrete L>°-norm for spatial discretisations of grid length Ax = (M + 1)~ 1.

7. Conclusions. In the present work, we studied the convergence properties
of a commutator-free exponential integrator that relies on the composition of two
exponentials for parabolic initial value problems of the form (1.1). In particular, we
focused on the fourth-order scheme (1.2) which is based on the Gaussian nodes. We
showed that the exponential integration scheme remains stable for arbitrarily large
stepsizes. But, it is seen from the theoretical investigations and as well in a numerical
experiment that a substantial order reduction occurs, in general. For instance, for one-
dimensional parabolic initial-boundary value problems under a homogeneous Dirichlet
boundary condition a fractional convergence order of at most 2 + (2p)~! can be
expected in the norm of the function space LP. The order reduction is explained
by the fact that even if the exact solution of the initial-boundary value problem
belongs to the domain of the differential operator and further is temporally smooth,
it in general does not fulfill additional boundary conditions, that is, combinations of
the form A(s)A(t)u(t) are not well-defined for all 0 < s,t < T

For that reason, concerning the derivation of high-order exponential integrators
for non-autonomous parabolic problems, it seems more promising to employ a suit-
able linearisation and to base the numerical schemes on explicit exponential meth-
ods of Runge-Kutta or multistep type. Also, the error analysis for non-autonomous
parabolic equations is of theoretical value as it gives insight how to construct and
study numerical methods for quasilinear equations which are of particular interest in
view of practical applications. For example, quasilinear parabolic problems are used
in the modelling of diffusion processes with state-dependent diffusitivity and arise in
the study of fluids in porous media, see [12]. It is intended to investigate this approach
in a future work.
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Abstract.

In this paper, we consider a class of explicit exponential integrators that includes as
special cases the explicit exponential Runge-Kutta and exponential Adams—Bashforth
methods. The additional freedom in the choice of the numerical schemes allows, in an
easy manner, the construction of methods of arbitrarily high order with good stability
properties.

We provide a convergence analysis for abstract evolution equations in Banach spaces
including semilinear parabolic initial-boundary value problems and spatial discretiza-
tions thereof. From this analysis, we deduce order conditions which in turn form the
basis for the construction of new schemes. Our convergence results are illustrated by
numerical examples.

AMS subject classification (2000): 65L05, 65L06, 656M12, 65J10

Key words: Exponential integrators, general linear methods, explicit schemes, abstract
evolution equations, semilinear parabolic problems, convergence, high-order methods.

1 Introduction

In the past few years, exponential time-integrators for semilinear problems
(1.1) y'(t)=Ly(t)+ N(t,y(t)), 0<t<T, y(0) given,

have attracted a lot of interest. They are particularly appealing in situations
where this differential equation comes from the spatial discretization of a partial
differential equation. Exponential integrators were for the first time considered
in the sixties and seventies of the last century. For a historical survey, we refer
to Minchev and Wright [15].

For exponential Runge-Kutta methods, a convergence analysis for parabolic
problems has recently been given by Hochbruck and Ostermann [10, 11]. The
stage order for explicit schemes, however, is one at most. For that reason,

*Submitted version, August 2005. Revised version, February 2006.
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the construction of high-order methods is rather complicated, due to the large
number of additional conditions required for stiff problems. On the other hand,
the convergence of exponential Adams-type methods has been studied in Calvo
and Palencia [5]. This class easily enables the construction of high-order schemes,
although the resulting methods are only weakly stable in the sense that all
parasitic roots for ¢’ = 0 lie on the unit circle.

In the present paper, we are considering a class of explicit exponential inte-
grators that combines the benefits of exponential Runge-Kutta and exponential
Adams—Bashforth methods. There, it is possible to achieve high stage order
which facilitates the construction of high-order methods with favorable stability
properties for stiff problems. In addition, all methods included in our class are
zero-stable with parasitic roots equal to zero.

An outline of the paper is as follows: In Section 2, we introduce a class
of explicit exponential general linear methods based on the Adams—Bashforth
schemes and further give the stage order and quadrature order conditions. These
conditions form the basis for the construction of schemes of arbitrarily high or-
der for stiff problems. In Section 3, we state our hypotheses on the problem
class (1.1) employing the theory of sectorial operators in Banach spaces. In
particular, parabolic initial-boundary value problems are included in our frame-
work. The core of Section 3 is devoted to convergence estimates. Our main
result is Theorem 3.4 proving that, for sufficiently smooth solutions of (1.1), the
order of convergence is essentially min{P, @ + 1}. Here, P and @ denote the
quadrature order and the stage order of the method, respectively. In Section 4,
we exploit the order conditions in a systematic way to construct new schemes.
In particular, we show that the class of two-stage methods of order p involving
p — 1 steps is uniquely determined up to a free parameter. Moreover, we derive
a three-stage two-step method of order 4. The favorable convergence properties
of our methods are illustrated in Section 5. In Section 6, we finally indicate how
the convergence analysis given extends to exponential integrators with variable
stepsizes.

The functions introduced below are commonly associated with exponential
time differencing methods where the method coefficients are (linear) combina-~
tions of these functions. As we will see in Section 4, they also naturally arise in
the construction of exponential general linear methods.

1.1 Exponential and related functions

For integers j > 0 and complex numbers z € C, we define ¢,(z) through

1 -1
(1.2a) pi(z) = /0 ell=m)z hdﬂ 7=l po(z) = e
Consequently, the recurrence relation
1 .
(1‘2b) SDJ'(Z) = ﬁ + Z‘:Oj+1(z)v zeC, j=0,

is valid.
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The following result provides an expansion of the solution of a linear differential
equation which is needed in the convergence analysis of Section 3.3.
LEMMA 1.1. The ezact solution of the initial value problem

y'(t)=Lyt) + f(t), t>tn,  ylta) given,
has the following representation

m—1

y(tn +7) = e y(ta) + Z o (TL) f(z)(tn) + Rn(m, 7),
£=0

T T—0 7 (0' _g)mfl m
Rn(mﬂ'):/o el )L/O mf( tn+€)dédo, 720,

provided that the function f is sufficiently many times differentiable.
PROOF. Substituting the Taylor series expansion of f

m—1

JZ
Fltn+0) =3 5 FO(tw) + Su(m. o),
(1.3) =0

7 (o gt
Sh = SR d
moa) = [ 1+ ),
into the variation-of-constants formula
(14)  yltn+7) =" y(tn) +/ T f(ty +0)do,  T>0,
0
and applying the definition (1.2a) of the ¢-functions yields the desired result. O

2 Exponential general linear methods

In this paper, we study a class of explicit exponential general linear methods
that in particular contains the exponential Runge—Kutta methods and the ex-
ponential Adams-type methods considered recently in the literature, see [3, 6,
11, 12, 13] and further [5]. As will be seen from the theoretical results and the
illustrations that follow in Sections 3-5, the extra freedom in the choice of the
numerical method allows the construction of high-order schemes that possess
favorable stability properties and exhibit no order reduction when applied to
parabolic problems.

2.1 Method class

We study explicit exponential general linear methods for the autonomous prob-
lem

(2.1) y(t)=Lyt)+N(yt), 0<t<T, y(0) given.
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For given starting values yo, y1,...,¥q—1, the numerical approximation y,4; at
time t,,+1, n > ¢ — 1, is given by the recurrence formula

s q—1
(2.2a) Yni1=€"y, + 1> Bi(hL) N(Yyi) +h Y Vi(hL) N(yn—i).
=1 k=1

The internal stages Yy;, 1 < i < s, are defined through

i—1 q—1
(22b)  Yp=e“"y, + by Ay(hL) N(Yn;) + b U(hL) N(ynr)-

j=1 k=1
The method coefficient functions A;;(hL), U;r(hL), B;(hL), and Vi (hL) are lin-
ear combinations of the exponential and related ¢-functions, see Section 1.1. The
numerical scheme extends in an obvious way to non-autonomous problems (1.1)
by replacing N(Y,;) with N(t, + ¢;h,Y,:) and N(yn—k) with N(tn—g, Yn—k),
respectively.

The preservation of equilibria of (2.1) is guaranteed under the following con-

ditions

ST B(E) + Y Ve(hE) = g1 (hE),
=1 k=1

(2.3) . —
> Ay(hL) + > Ui(hL) = cipr(c;hL),  1<i<s.
j=1 k=1

Moreover, these conditions also ensure the equivalence of our numerical methods
for autonomous and non-autonomous problems. Throughout the paper, we tac-
itly assume (2.3) to be satisfied. We further suppose Ui (hL) = 0 which implies
c1 =0 and thus Y1 = y,.

C2 Agl(hL) Ugl(hL) e U27q_1(hL)
Cg Aél(hL) ‘e Asys_l(hL) Uél(hL) e Usyq_l(hL)
Bi(hL) ... B.i(hL) Bs(hL) | Vi(hL) ... V,1(hL)

Table 2.1: The exponential general linear method (2.2) in tableau form.

The explicit exponential Runge-Kutta methods considered in Hochbruck and
Ostermann [11], see also [6, 7, 12, 13, 19], are contained in our method class (2.2)
when setting ¢ = 1. The exponential Adams-Bashforth methods [3, 6, 16, 20]
result from (2.2) for the special case of a single stage s = 1.

2.2 Order conditions

For deriving the order conditions for the method class (2.2), we assume the data
in (2.1) to be sufficiently regular. In particular, we require that the nonlinearity
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evaluated at the exact solution f(t) = N (y(t)) is sufficiently often differentiable
with respect to ¢t for 0 <t < T.
Substituting the exact solution values

(24)  Ga=yltn),  Vu=y(tatch), 1<i<s, n20,
into the numerical scheme (2.2) defines the defects of the internal stages
i—1
Dni = i;ni - e(:ihL :/[/\n —h Z Am(hL) f(tn + th)
(2.5a) =t
—hY Uir(hL) f(tn—r), 1<i<s,

and the defect of the numerical solution

dpi1 = Gni1 — " Go = B Bi(hL) f(ty + cih)
=1

(2.5b)
—hY Vi(hL) f(tn—k), n>q—1.
We next make use of the representation for the exact solution values given in

Lemma 1.1 and further expand the nonlinear term in a Taylor series, see (1.3).
This leads to the following expansions for the defects of the internal stages

Q
Dyi =Y h*O©u(hL) f*V(t,) + R

ny

(2.6a) 6211 L o1 -1 i1
Oui(hL) = ¢t y(c;ihL) — ; ﬁ Aij(hL) — kgl % Uir(hL).

Likewise, the numerical solution defect equals

dnt1 = Zheﬁe (hL) fUD () + 75,

(2'6b) - s1 /—1 q—1 -1
Ye(hL) = @o(hL) — ; (50_7 ;;1 ¢ _) 1)! Vie(AL).

The remainders are defined through
i—1

R = Ru(Q.cih) = by Aij(hL) Su(Q. ¢jh)

j=1
q—1
(26(3) —h Z Uzk(hL) Sn(Qa _kh)v
k=1

s q—1
r = Ra(P.h) = 1> Bi(hL) Sy(Pycih) = h'>_ Vi(hL) S,(P, —kh),

i=1 k=1
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see Lemma 1.1 for the definition of R,, and S,,.

The numerical scheme (2.2) is said to be of stage order @ and quadrature
order P if D,; = O(h9t) for 1 < i < s and d,y1 = O(hFT!). That is,
requiring Oy (hL) =0 for 1 <i < sand 1 < ¢ < Q as well as 9,(hL) = 0 for
1 </ < P, we obtain the order conditions

1—1 l—1
¢ G
. hl) = — A, (hL
¢i pel(cihL) ?::1 (C—1)! ij (hL)

(2.7a)
q— 1 k: _
=1
S cf—l q— 1 -1
(27)  pelhL) =3y BhL) + 3 gy Ve(hL),  1<E<P
i=1 k=1

Here, by definition c? =1foralll <7<s.

In Section 3, we will show that the convergence order of explicit exponen-
tial general linear methods (2.2) when applied to parabolic problems (2.1) is
essentially p = min{P, @ + 1}. Therefore, it is desirable to construct numerical
schemes of high stage order.

3 Parabolic evolution equations

In this section, we provide a convergence analysis for explicit exponential general
linear methods within the framework of abstract semilinear parabolic evolution
equations. For a thorough treatment of the theory of sectorial operators and
analytic semigroups, we refer to the monographs [8, 14, 18].

3.1 Analytical framework

Let X be a complex Banach space endowed with the norm ||-||x and D C X
another densely embedded Banach space. For any 0 < ¢ < 1 we denote by Xy
some intermediate space between D = X; and X = X, such that the norm
in Xy fulfills the relation

lzllx, < Clelpllzlx s, zeD, 0<9<1,

with a constant C' > 0. Examples are real interpolation spaces, see Lunardi [14],
or fractional power spaces, see Henry [8].

We consider initial value problems of the form (2.1) where the right-hand side
of the differential equation is defined by a linear operator L : D — X and a
sufficiently regular nonlinear map

(3.1) N:X,— X:v— N(v), DcCX,CX, 0<ac<l.

This requirement together with Hypothesis 3.1 renders (2.1) a semilinear parabolic
problem.
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HypoOTHESIS 3.1. We assume that the closed and densely defined linear oper-
ator L : D — X is sectorial. Thus, there exist constants a € R, 0 < ¢ < 7/2,
and M > 1 such that L satisfies the resolvent condition

(3.2) lor-o)7| < M yec\ Sya),

X—x " |[A—dq|

on the complement of the sector Sy(a) = {X € C : |arg(a — \)| < ¢} U {a}.
Moreover, we suppose that the graph norm of L and the norm in D are equivalent,
that is, the estimate

(3-3) CMzlp < llzllx + || Lallx < Cllz|p, @€ D,

is valid for a constant C' > 0.

From the results in [8, 14, 18] it is well-known that the sectorial operator L is
the infinitesimal generator of an analytic semigroup (etL ) >0 On the underlying
Banach space X. Precisely, for L : D — X sectorial and any positive ¢ the linear
operator e'* : X — X is given by Cauchy’s integral formula

1 —1
4 = — [ NN —tL)  dA t
(3.4) e 5 Fe ( ) ) >0,
with T' denoting a path that surrounds the spectrum of L. Especially, if t = 0
one defines e* = I. By means of (3.2), it is shown that the estimate

(3.5) |t He < C, 0<t<T, 0<pu<v<l,

tL

I, —x,
is valid with a constant C > 0, see [14, Prop.2.3.1]. Furthermore, for the
functions defined in (1.2) the same type of bound

(3.6) [t oetD)||y _x <C,  0<t<T, 0<p<v<l,
v H

follows for every ¢ > 1.
REMARK 3.2. Under the assumption that the nonlinear map N in (3.1) is
locally Lipschitz-continuous

(3.7) [N@)=Nw)|x <C@llv-wlx.. lvlx, +lwlx, <e,

the existence and uniqueness of a local solution of the semilinear parabolic prob-
lem (2.1), with initial value y(0) € X,,, is guaranteed. Moreover, the solution is
represented by the variation-of-constants formula (1.4), see [8, Sect.3.3].

The following example can be cast into our abstract framework of semilinear
parabolic problems. For simplicity and in view of our numerical experiments, we
restrict ourselves to one space dimension. Accordingly to Henry [8], Xy denotes
a fractional power space.

ExAMPLE 3.3. We consider the following initial-boundary value problem for
a real-valued function Y : [0,1] x [0,7] — R comprising a semilinear partial
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differential equation subject to a homogeneous Dirichlet boundary condition
and an additional initial condition

oY (x,t) = L(x) Y (z,t) + f(ac,Y(:z:,t), @Y(x,t)),

3.8
B8 0 —0=Y(1), Y(@0) =Ye(), O0<z<l, 0<t<T.

Here, the second-order strongly elliptic differential operator
(3.8b) Z(z) = a(x) Opz + B(x) O + v(2)

involves the coefficients «, 3,7 : [0,1] — R which we require to be sufficiently
smooth, and, in particular, «(z) has to be positive and bounded away from 0.
Besides, we suppose the function f to be regular in all variables and to satisfy a
certain growth condition in the third argument, see Henry [8, Example 3.6].

By defining a linear operator L and a map N through

(L v) (z) = ZL(x)v(x), (N(v))(x) = f(x,v(x),@wv(x)), v € 65°(0,1),

the above initial-boundary value problem takes the form of an initial value prob-
lem (2.1) for (y(t))(z) = Y(z,t). The results in [8] imply that L, when con-
sidered as an unbounded operator on the Hilbert space X = L2(0,1), satisfies
Hypothesis 3.1 with D = H?(0,1) N H}(0,1). Further, a suitable choice for the
domain of the nonlinearity is the Sobolev space X, = X5 = HL(0,1).

3.2 Global error relation

Under the requirements of Section 3.1 on the initial value problem (2.1), we
analyze the convergence behavior of the method class (2.2). We start with
deriving a useful relation for the global error.

The errors of the numerical solution values and the internal stages, respec-
tively, are defined through

en = Yn — Yn, Eni:i}ni_yni, 1<i<s,
see (2.4). Moreover, we introduce the abbreviations
AN, = N(@) — N(Wn),  ANp=N(Yn) - N(Yn), 1<i<s.

Comparing formulas (2.2) and (2.5), we receive for n > ¢ — 1

1—1 q—1
(3.92)  Ep; =e“"le, +hY " Ajj(hL) ANnj +h Y Uig(hL) ANp_g + Dy,
j=1 k=1

s q—1
(3.9b)  eny1=e"en + 7> Bi(hL) ANni+hY " Vi(hL) ANy _j + dys.

i=1 k=1
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Resolving the recurrence formula for e,, leads to

n n—1
en = eltn—ta=le, | 43 eltnmtlg, 4 )y 37 gltnmtern)k
l=q l=q—1

(3.10) ot
X <ZBi(hL)ANgi+ZVk(hL) ANg_k>, n>q—1.
i=1 k=1

In Section 3.3, we exploit the above error relation under certain requirements on
the order of the method and the smoothness properties of the nonlinearity.
3.8 Convergence estimates

Throughout, we employ the assumption that the starting values yo, y1, ..., ¥q—1
have been computed using some starting procedure and that they belong to X,,.
Further, we suppose that the method coefficients are sufficiently regular and
satisfy

1455 L) [, o x,, + | Bi(hL + [V hLly, . x,
| VihD)| g, _x, SCh7F h>0,  0<p<v<L

)HXM—XM

(3.11)

In particular, the exponential general linear methods considered in Section 4
fulfill these requirements, see (1.2) and (3.6). As before, we set f(t) = N (y(t))
and denote ||f||X19 = max{”f(t)”xi9 0<t<T}for 0<9 <1

It is straightforw}cmrd to deduce the following convergence result from the global
error relation (3.10).

THEOREM 3.4. Under the requirements of Hypothesis 3.1, assume that the
explicit exponential general linear method (2.2) applied to the initial value prob-
lem (2.1) satisfies (3.11) and further fulfills the order conditions (2.7). Suppose
that f(@(t) € Xz for some 0 < 3 < a and fF)(t) € X. Then, for stepsizes
h > 0 the estimate

q—1
_ _ Q+l—a+fB ¢ (@)
lottn) = onllx, < © 2 llotte) = wel, + CHET2 sup 190,

+Ch" swp [fP0)| <t <T,
0<t<tn

holds with a constant C > 0 independent of n and h.
PROOF. We estimate (3.10) in the domain of the nonlinear term and obtain

n
leally, < N5y llegally, + || Y ete=Rde]
t=q

n—1 s
th Yy et Bi(hL) | AN
l=q—1i=1

n—1 g—1

+th Z Z He(tn_tHl)L Vk(hL)Hx(XhXHAN‘Z—kHX'
l=q—1k=1
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Consequently, using the bound (3.5) for the analytic semigroup, relation (3.11)
and the Lipschitz-property (3.7), we receive

n
lenll, < Clleailx, +| Ze“ﬂ-

+Ch Z (tn —te)~ <Z||Eth +ZH€€ k{X)

l=q—1

(3.12)

For the error of the internal stages (3.9a), measured in the norm of X, we have

i—1

1Bl < NIy, x Neellx, + 2D NAu(RDx, x AN
j=1
qg—1
+h Y ULy, |ANek]|x + [ Deil .-
k=1

Using again (3.5), (3.7), and (3.11), the bound

i—1

1Eeil| ., < Clleel|, +Cn* "ZHE@HX +Ch'” “‘ZH@@ bl x, + 1 Deill .,
k=1
and therefore the estimate
q—1 i
|Eeil ., < Cllecll, +CR D flee—ll ., +C D[Pl .,
k=1 j=1

follows. The constant C' > 0 in particular depends on T', but is independent
of h. Inserting this relation into (3.12), leads to

n—1

o < el + 003 =0,
=0

e Z St — 1) D] +Hze

l=q—1i=1

(3.13)

It remains to estimate the terms involving the defects (2.6). From the assumption
that the stage order conditions (2.7a) are fulfilled, it follows Dy = Ré?) for
1 <i < s. Therefore, provided that the Q-th order derivative of the map f is
bounded in Xg, by (3.5) and (3.11), we obtain

i—1
HRgg)HXO S ||Rf(chih)Hx(x + hz ||Aij(hL)HXQ<—X5HSZ(Q7th)HX5
=1
q—1
+h ) VD), ., 15:(Q. k)],
k=1

< thQ+1—m—ﬁHf(C2)Hxﬁm7 1<i<s,
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see also (2.6c) and Lemma 1.1. Moreover, the validity of the order condi-
tions (2.7b) implies dy = ré ). Tt then holds

57 < 1B (P L 53 Byl Sea (Pt

=1
q—1
+h Y VL) | Se-a(P=kh)|
k=1

< ORIy

Similarly, we obtain ||7”(P) HXa < ChP“’aHf(P) ||X - Thus, a direct estimation

of the last sum in (3.13) gives

"
D2 et Ly, xllrd” N + 1P,

n—1

< ChPJrl Z(tn - t@)ia Hf(P)HX,oo
l=q

(3.14)

We insert the above estimates in (3.13) and interprete the arising sums as Rie-
mann-sums and bound it by the corresponding integrals. From a Gronwall-type
inequality with a weakly singular kernel, see [4, 17], the result follows. 0

The example methods given in Section 4 comprise explicit exponential general
linear methods with high stage order @ = P—1. In many practical examples, the
exact solution of (2.1) and the map N defining the nonlinearity are sufficiently
often differentiable. That is, the assumptions f(7)(¢t) € X and f(P=V(t) € X,
are fulfilled for all 0 < ¢ < T. Therefore, the convergence order predicted by
Theorem 3.4 is p = P. This result is also confirmed by the numerical examples
presented in Section 5.

REMARK 3.5. Let & = 0 and L be the generator of a %p-semigroup, see [18].
Then, the bound H% (tL) ||X ¥ < C is valid for finite times 0 < ¢ < T and any
j > 0. Returning to the above proof shows that the convergence estimate of
Theorem 3.4 remains valid for %p-semigroups with the choice § = 0.

The following result shows that for parabolic problems it suffices to satisfy,
instead of (2.7b), the weakened quadrature order conditions

s [_1 (11 —
—k)*
W(hL):E:M hL+§ 6_1)' Ve(hL), 1<¢<P -1,

(3.15) =t -

— = Zcf’*l Bi(0) 4+ (k)P v,(0),

i=1 k=1

LS}
s

to obtain the full convergence order p = P. That is, the condition where ¢ = P
is fulfilled for L = 0, but not necessarily for arbitrary arguments, see also (1.2).
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THEOREM 3.6. Assume that the requirements of Hypothesis 3.1 are valid and
that the explicit exponential general linear method (2.2) fulfills (3.11). Further,
suppose that the stage order conditions (2.7a) and the weak quadrature order
conditions (3.15) are valid for @ = P — 1 and that 0 < 3 < «. Then, for
stepsizes h > 0 the estimate

qg—1
- _ P—atf (P-1)
[y(tn) =yl < C;) [y(te) = well . +Ch IS 1 Ol P

+ChY sup ||FfP)| te<ta <T,
0<t<t,
holds with a constant C' > 0 independent of n and h, provided that the quantities
on the right-hand side are well-defined.

PRrROOF. The derivation of the above result follows the lines of the proof of
Theorem 3.4. For simplicity, we assume 3 = «. It suffices to derive a refined
bound for the last sum in (3.13) involving the numerical solution defects dy.
Under the weak order conditions (3.15), the representation

de =0 s(7 77, sP = 0p(hD) fPD (),

is valid, see (2.6). The remainder is estimated in the same way as before and
yields a contribution of ChPHf(P)HX -, n the convergence bound, see (3.14).

We need to show that the sum
$= 3t
l=q

when measured in the norm of X4, is bounded by a constant. For that purpose,
we employ Abel’s partial summation formula to obtain the identity

n—1 0
S=6&,58) — 15 — Z @%(s,ﬁ’j{ - sép)), & = Ze(t"_t-f)L.
l=q 7=0

We notice that the second condition in (3.15) implies ¥p(0) = 0, and, by
Cauchy’s integral formula (3.4), we further receive 9p(hL) = hLp(hL). In par-
ticular, if the method coefficients are (linear) combinations of the -functions,
the linear operator 1 is bounded on X. The bound

|hL & w(hL)HX,,qu < Jleftnmtt]

4
sy, [P D e ()|
j=0

X=X,
SCty —tg) ™™, q—1<l<n, 0<p<v<l,
follows by Cauchy’s integral formula, see also [10, Lemmal.1]. Further, it holds

IhL Ea (R, x, < CRTFH, 0<pswv <l
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As a consequence, we obtain the estimate
ISIlx, < 1AL & WALy, _x 17770 ),
+{|PL & p (L) ||y, e, 1177Vt x,

n—1 h
ML END g, [ 17 s+ €] e
=q
< Oy, 0 + Ol
which yields the desired result. O

4 Example methods

In this section, we construct explicit exponential general linear methods (2.2)
which have a favorable convergence behavior. We mainly focus on two-stage
schemes with stage order () = P — 1 where by Theorem 3.4 the full convergence
order p = P is ensured for abstract evolution equations. In the subsequent
Section 5, the schemes are tested numerically on a semilinear parabolic initial-
boundary value problem. Further, a table comparing the computational effort of
various exponential integrators is included there, see Table 5.1. Among others,
we count the number of evaluations of the nonlinear map N required at each
step. However, by making use of the previous steps, the number of function
evaluations can be reduced considerably.

Henceforth, for notational simplicity, we set z = hL and ¢;; = @;(c;z). As
well, we occasionally omit the argument in the method coefficient functions and
write A;; = A;;(2) etc.

4.1  Two-stage schemes

We first discuss explicit exponential general linear methods (2.2) with s = 2.
Requiring the quadrature order and stage order conditions (2.7) to be fulfilled
for g+1=p=P = @ + 1 determines the coefficients of the numerical scheme
up to a free parameter, as the following result shows.

THEOREM 4.1. For any 0 < co < 1 there exists a unique explicit exponen-
tial general linear method of the form (2.2) with two stages and q steps that is
convergent of order p = q+ 1 for abstract parabolic problems (2.1).

PRrROOF. The stage order conditions (2.7a) yield the following linear equations
in the unknowns As; and Uy

p—2 p—2 (7]{:)[—1
A1+ Usi = capa, ZWUQ’C:CQW% 2<l<p-1
k=1 k=1 '

As this system is of Vandermonde form, it possesses a unique solution which
depends on 0 < ¢y < 1. Similarly, the order conditions (2.7b)
p—2 A1 p—2 (_k)e—1
B+ B Vi = —2 B V= 2<(<
1+ 2+; k= P1, ‘-1 2+;1(£_1)! k= P, SEsp,
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uniquely determine the coefficient functions B; and Vi. By Theorem 3.4, the
order of convergence for abstract evolution equations (2.1) equals p, provided
that the nonlinear term f satisfies suitable regularity assumptions. O

To minimize the number of p-function evaluations, we choose to set the pa-
rameter co = 1. The resulting methods EGLMpsq can be considered as general-
izations of the PEC schemes using a generalized Adams—Bashforth predictor of
order p — 1 and a generalized Adams—Moulton corrector of order p.

1. V1 1. Y1+ @2 . —p2
‘901—302 P2 ‘<P1—2<P3 %@24-@3‘—%9024-903

Table 4.1: Coefficients of EGLM221 (left) and EGLM322 (right) for c2 = 1.

Order 2. To achieve order two, one has to satisfy the order conditions given in
the proof of Theorem 4.1 with p = 2. To this set of equations, the uniquely de-
termined solution is an exponential Runge-Kutta method with coefficients given
in Table 4.1. The scheme EGLM221 requires three ¢-function evaluations, four
matrix-vector products, and two function evaluations of the nonlinear map N,
provided that the values of the previous step are available.

Order 3. For convergence of order p = 3, the resulting two-stage two-step
method EGLM322 requires four o-function evaluations, six matrix-vector prod-
ucts, and two new function evaluations, see Table 4.1.

1. <P1+%SD2+903 . —2p2 =23 %‘P2+<P3
| o1+ 102203301 lostoatos | —w2+03+300 2oz — o

Table 4.2: Coefficients of EGLM423 for co = 1.

Order 4. The two-stage three-step method EGLM423 with coefficients given in
Table 4.2 is convergent of order p = 4 and requires five ¢-function evaluations,
eight matrix-vector products, and two function evaluations.

A MAPLE code for generating the coefficients of the schemes EGLMpsq in-
volving s = 2 stages and ¢ = p — 1 steps is downloadable from the webpage
http://www.math.ntnu.no/num/expint/.

4.2 Schemes involving s > 3 stages

For explicit exponential general linear methods (2.2) involving s > 3 stages,
contrary to two-stage schemes, there is some freedom available in the choice of
the method. This makes it feasible to suitably weight desirable properties of
the numerical scheme such as stability, small error coefficients, the number of ¢-
function evaluations, matrix-vector products, or function evaluations. Another
possibility would be to use the extra freedom available to increase the conver-
gence order of the scheme. This involves a thorough investigation of the global
error (3.10) in the lines of Hochbruck and Ostermann [11] which is beyond the
scope of the present work.
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For the purpose of illustration, however, we briefly describe the construction of

a scheme involving s = 3 stages and ¢ = 2 steps. For simplicity, we now assume

that the nonlinear map N defining the right-hand side of the differential equation

in (2.1) is defined on X, = X, see (3.1). We require the weak quadrature order

conditions (3.15) and the stage order conditions (2.7a) to be fulfilled for P = 4
and ( = 2. This implies that the defects of the internal stages are of the form

Dy; = h* ©3:(hL) f"(t,) + R,

2

i—1
c 1
@31(}7,[/) = C? cpg(cth) — E é A”(hL) — 5 11(hL),
Jj=1

see (2.6). A suitable relation for the error of the internal stages (3.9a) to-
gether with Taylor series expansions of the nonlinearity finally shows that the
error (3.10), when measured in X, is bounded by Ch* provided that the term

Z B;(hL) N'(y,) ©s;(hL)

vanishes. Altogether, the conditions for the order of convergence p = 4 with
respect to the norm in X are

i—1 C@—l _1ye—1
(1) 3 Auh) + T Uahh) = ey, 1<e<2
3. -1 _qye-1
am Y o B + G i) = palbD), 1< e<3,
(4.1¢) > Bi(hL)J ©3;(hL) =0,
(4.1d) S Bi0) - Vi(0) = 7,

where J is an arbitrary and bounded linear operator on X.

We note that it is not possible to achieve ©35, = 0. Therefore, in order to
satisfy condition (4.1c), we set Bo = kBs for a scalar k. Inserting this ansatz
into (4.1c) results in Bz J (/@' O30 + @33) = 0. This condition can be satisfied
either by setting x = 0 or by choosing c; = c3. In view of the computational
effort required, we fulfill both which gives By = 0 and co = ¢3 = 7/10. We refer
to the resulting scheme as EGLM432. It requires eight ¢-function evaluations,
eight matrix-vector products, and three function evaluations.

We conclude this subsection with a brief remark on exponential generalized
Runge—Kutta—Lawson methods which provided the initial motivation for consid-
ering exponential general linear methods of the form (2.2), see also [13, 15]. The
basic idea for constructing these schemes is to replace the nonlinear part by
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an interpolation polynomial and to perform the Lawson transformation involv-
ing the exponential function. Then, a classical explicit Runge-Kutta method is
used on the transformed problem and the obtained numerical solution is finally
transformed back into the original variable. However, the resulting numerical
schemes are inferior to methods constructed directly from the order conditions.
As an example, we mention the four-stage three-step scheme GLRK34 which
satisfies the order conditions (2.7) with @ = P = 3 and the weakened quadrature
order conditions (3.15) for P = 4. Thus, the order of convergence is p = 4. A
MAPLE code to generate the coefficients of the generalized Lawson methods is
downloadable from the website http://www.math.ntnu.no/num/expint/. The
numerical experiments in Section 5 show that GLRK34 is not competitive with
EGLM432 when comparing the computational effort and the size of the error.

4.3  Multistep schemes

We conclude this section on example methods with a remark on explicit expo-
nential multistep methods that are contained in our method class (2.2) by setting
s = 1. Under the requirements ¢ = p = P = @ + 1, the order conditions (2.7)
simplify as follows

p—1 p—1
Bi+ ) Vi=g¢1, S (=R T V= (t=1)gs, 2<L<p,
k=1 k=1

and uniquely define the coefficients of the method. An alternative way for de-
riving these schemes is to represent the exact solution of (2.1) by means of the
variation-of-constants formula

h
Y(tnt1) = ehl y(tn) + / elh—m)L N(y(tn + T)) dr
0

and to replace the nonlinear map N with the interpolation polynomial through
the points (tn_i, N(yn_i)) for 0 < i < g—1. Such exponential Adams-Bashforth
methods were considered in [3, 6, 16, 20]. As an illustration, we include the four-
step method EGLM414
Yni1 = ey, + h By(hL) N(yn) +h Vi(hL) N(y,_1)
+ BVa(hL) Ngn2) + hVa(hL) N(yns),

with coefficient functions
By =1+ % 02+ 2903+ ¢4, Vi=-3p2—5p3 — 34,
Vo= 32 +403+3¢4, Vs =—%¢2— 03— @4,

that is convergent of order p = 4 for abstract evolution equations and requires five
-function evaluations, five matrix-vector products, and one function evaluation.

The exponential multistep schemes studied in Calvo and Palencia [5] are in-
stead based on the following representation of the exact solution

qh
Y(tni1) = M y(tnqir) + / N (y(t—g41 + 7)) dr.
0
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method H ‘ #p ‘ #vec ‘ #fun ‘

V)

P P Q q
EGLM221 2 2 1 2 1 3 4 2
EGLM322 3 3 2 2 2 4 6 2
EMAMA4 4 4 3 1 4 ) 5 1
EGLM414 4 4 3 1 4 ) 5 1
EGLM423 4 4 3 2 3 ) 8 2
EGLM432 || 4 —~ | 4(weak) | 2 3] 2 8 8 3
ERKM4 4—~ | 4(weak) | 1 5 1 8 13 5
GLRK34 4 |4(weak) | 3 | 4| 3] 8 16 4

Table 5.1: Computational effort of various exponential integrators (order of conver-
gence p for Problem 5.1, quadrature order P, stage order (), number of stages s,
number of steps g, number of distinct p-functions needed to be evaluated, number of
required matrix-vector products, number of (new) function evaluations of the nonlinear
map N per step).

For instance, the four-step method which we refer to as EMAM4

Yns1 ="y, 3+ h By (4hL) N(yn) + h Vi (4hL) N (y,_1)
+ h Va(4hL) N(yn—2) + h V3(4hL) N (yn-3),

with coefficient functions

31:13—6302764g03+256g04, Vi = —24 ¢y 4 256 p3 — 768 g4,
Vo =48y — 320 3 + 768 4, Vs =4¢1 — 52 0y 4 128 p3 — 256 ¢4,

retains the full convergence order p = 4 for semilinear parabolic problems (2.1)
and requires the same computational effort as the fourth-order scheme EGLM414.

We note that the exponential Adams—Bashforth methods are zero-stable with
parasitic roots equal to zero. They have thus superior stability properties com-
pared to the methods considered in [5] which are only weakly stable in the sense
that all parasitic roots for 4’ = 0 lie on the unit circle.

5 Numerical experiments

In this section, we illustrate the theoretical results given in Section 3.3 on the
convergence behavior of explicit exponential general linear methods for abstract
evolution equations. As test problem, we choose a one-dimensional semilinear
parabolic initial-boundary value problem.

PROBLEM 5.1 (PARABOLIC PROBLEM). We consider the following parabolic
differential equation under a homogeneous Dirichlet boundary condition

O Y (z,t) = 030 Y(x,t) — Y(x,t) 0, Y (z,t) + O(x, 1),
Y(0,t) =Y (1,t) =0, Y(z,0)=xz(1—x), 0<z<1, 0<t<T,
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T T
3 || O EMAM4 :
{ EGLM414
O EGLM432

T
3 || O ERKMm4
{ EGLM423
O GLRK34

2 ) -1 -2 . _1
10 stepsize 10 10 stepsize 10

Figure 5.1: The numerically observed convergence orders of various explicit exponential
integrators when applied to Problem 5.1. The error measured in a discrete H3-norm
is plotted versus the time stepsize.

where ® is chosen such that the exact solution is Y (z,t) = z(1 — ) e’.

As in Example 3.3, the above initial-boundary value problem is written as
an abstract initial value problem of the form (1.1) for (y(¢))(x) = Y (x,t) with
linear operator L and nonlinearity N defined by

(L v) (2) = Oz v(2), (N(t7 v))(ac) = —v(x) dpv(x) + ®(z,1),

for v € €5°(0,1). A suitable choice for the underlying Banach space is the
Hilbert space X = L?(0,1). Then, it holds D = H?(0,1) N H(0,1) and the
domain of the nonlinearity NN is equal to [0, 7] x X, where X, = X1/5 = Hg(0,1),
see also Henry [8, Sect.3.3].

We note that, accordingly to Lunardi [14, Sect.7.3], an alternative choice is
X = %(0,1), D = 65(0,1), and X, = Xy = €;(0,1). Here, we denote

T T
-3 O ERKM4 EMAM4

: -3 o
1071 & Eclmaza| A o 9 071 O EcLmata | T
Ny =]

O GLRK34 EGLM432

-2 -1 -2 -1
10 stepsize 10 10 stepsize 10

Figure 5.2: The numerically observed convergence orders of various explicit exponential
integrators when applied to Problem 5.1. The error measured in a discrete € -norm is
plotted versus the time stepsize.
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T T T
0| O ERKMa |t i w0l © EmAma 1 — >
{ EGLM423 { EGLM414
O GLRK34 D O EGLM432 a
10° : = 10° :
2107 7 g 107
[ [
107° o T R e 10° b AT AR
[
10711" | 10 112 ..............................
1 " 1
2 ) ~1 -2 ) —1
10 stepsize 10 10 stepsize 10

Figure 5.3: The numerically observed convergence orders of various explicit exponential
integrators when applied to Problem 5.2. The error measured in a discrete L?-norm is
plotted versus the time stepsize.

¢5(0,1) = {v e €*(0,1) : v(0) =0 =wv(1)} for k =1,2.

In order to solve Problem 5.1 numerically, we use a spatial discretization by
standard finite differences of grid length Az = (M + 1)~ with M = 200.
For various explicit exponential general linear methods discussed in Section 4,
the resulting system of ordinary differential equations is integrated up to time
T = 1. The numerical convergence orders with respect to a discrete X,-norm
are determined from the exact and numerical solution values.

The numerically observed convergence orders for the explicit exponential gen-
eral linear methods are in exact agreement with the values expected from the
theoretical results given in Section 3.3. For example, the schemes EGLM423,
EGLM414, and GLRK34 show full order p = 4, see Figures 5.1-5.2. We point out
that the scheme EGLM432 discussed in Section 4.2 and as well the exponential
Runge-Kutta method ERKM4 considered in [11, Eq. (5.19)] suffer from a slight
order reduction. The convergence order with respect to a discrete Hi-norm is
approximately p = 4 — v with v = 1/4. When the error is measured in a dis-
crete 6y-norm, an additional order reduction down to approximately p =4 — ~y
with v = 1/2 is encountered. These fractional orders can be explained using
arguments as in [11, Sect.6].

In the following example, we illustrate the convergence behavior of our method
class for an evolution equation which is governed by a %j-semigroup.

PROBLEM 5.2 (HYPERBOLIC PROBLEM). We consider the hyperbolic initial-
boundary value problem

10:Y (2,t) = Ope Y (2, t) + + ®(x,t),

1
1+Y(2,t)2
Y(0,)=Y(1,t)=0, Y(z,00=2(1-=z), 0<z<l, 0<t<I1,

as abstract initial value problem on X = L?(0,1). The function ® is determined

such that the exact solution equals Y (z,t) = (1 — z) e’

As before, we use standard finite differences of grid length Az = (M + 1)~!
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error
error

> = - Z
10 stepsize 10 10 stepsize 10

Figure 5.4: The numerically observed convergence orders of the two-stage schemes
EGLMp2q with ¢ = p — 1 steps of orders 2 < p < 6 when applied to Problem 5.1 (left)
and Problem 5.2 (right). The error measured in a discrete %¢-norm and L2-norm,
respectively, is plotted versus the time stepsize.

with M = 200 to discretize the problem in space. The obtained values for the
error between the numerical and exact solution, measured in a discrete L?-norm,
are displayed in Figure 5.3.

We note that the exact solution has bounded time derivatives of moderate
size. We are therefore in the situation of Remark 3.5, and, in particular, the
error bound of Theorem 3.4 applies with « = = 0. The observed convergence
orders confirm the theoretically predicted values.

We conclude this section with an additional numerical experiment where we
illustrate the error behavior of the exponential methods EGLMpsq with s = 2
stages and ¢ = p — 1 steps of order p for the above test problems, see Figure 5.4.

Due to the special structures of the above test problems, Fourier techniques
are applicable for the numerical implementation of the -functions. We there-
fore used this approach in our numerical experiments. In more general situations
where spectral techniques do not apply, matrix functions can be computed by
subspace methods such as Krylov subspace techniques, see [9] and references
cited therein. If the dimension of the involved matrices is moderate, an alterna-
tive implementation of the ¢-functions is provided by the MATLAB package [2],
downloadable from the website http://www.math.ntnu.no/num/expint/.

6 Extension to variable stepsizes

In this section, we briefly indicate how the techniques employed in this paper
extend to variable stepsizes.

We let (hj)j>0 be a sequence of positive stepsizes and define the associated
grid points through ¢;41 = t; + h; for j > 0, where tqg = 0. The stepsize ratios
(wj);j>1 are given by h; = wjhj_1. As described in Section 4.3, a generic tool
for the construction of numerical methods for (2.1) is the variation-of-constants
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formula

ha,
(6'1) y(tn—H) =t y(tn) + / e(h"—"')L N(y(tn + T)) dr
0

together with a replacement of the nonlinear term by some interpolation poly-
nomial.

To keep the presentation simple, we illustrate the basic ideas by an explicit
exponential integrator involving two stages and two steps. This generalizes
the scheme EGLM322 of Section 4.1 to variable stepsizes. In order to deter-
mine the internal stage Y,,2, we replace N in (6.1) with the polynomial through
(tn_l,N(yn_l)) and (tn,N(yn)). Integration yields

Yoo = "Ly + iy ASY (B L) N(ya) + by Uy (B L) N(y),
Ag;) = 1 + Wy P2, U2(1) = —Wn ¥2.
Similarly, we obtain the numerical solution value
Y1 = " F £ by B (hL) N(yn) + b BS" (hn L) N(Yo2)
+ h VI (hn L) N (g-1),

1
BM™ = A% — (o +2wnps), B = 17w (902 +2wn p3),

(902 + 2wn ®3),

wWn
1 21 1 T
by interpolating through the above points and (t,4.1, N (Yp2)).
More generally, we allow explicit exponential general linear methods with co-
efficients depending on several subsequent stepsize ratios

it = P g+ By Y B (L) N (Vo) + b, Zv““ P L) N (yn-).
=1 k=1

Yoi = el y, + by, ZA“”(hnL)N wi) + ZUW hnL) N(yn-),
k=1

see also (2.2). Provided that the stepsize ratios are bounded from above and
below, that is, it holds

(6.2) C1 <wj <y, J=1

with (moderate) constants Cy,Cs > 0, the coefficient operators satisfy an es-
timate of the form (3.11) with h replaced by h,. We emphasize that assump-
tion (6.2) is always fulfilled in practical implementations. Due to the special
form of the considered method class, no further requirements on the stepsize
sequence are needed. As a consequence, it is straightforward to generalize the
convergence analysis of Section 3.3. More precisely, by means of a Gronwall-type
inequality derived in Bakaev [1, Lemma 4.4], the proof of Theorem 3.4 extends
literally to variable stepsizes. We do not elaborate the details here.
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7 Conclusions

The present work shows that the considered class of exponential integrators has
the following benefits. It allows, in an easy manner, the construction of methods
with high stage order and excellent convergence properties for stiff problems.
Further, the combination of exponential Runge-Kutta and exponential Adams—
Bashforth methods results in schemes with favorable stability properties.

It is beyond the scope of this paper to identify methods which are competitive
with established schemes. To reach this aim, it is indispensable to implement
the method with variable stepsizes based on an error control. In particular, an
efficient implementation of the -functions plays a crucial role here. Besides, it
remains to look into the computation of the starting values. These investigations
are part of future work.
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Summary. In this paper, we consider exponential integrators that are based on
linear multistep methods and study their positivity properties for abstract evolution
equations. We prove that the order of a positive exponential multistep method is
two at most and further show that there exist second-order methods preserving
positivity.

1 Introduction

Integration schemes that involve the evaluation of the exponential were first
proposed in the 1960s for the numerical approximation of stiff ordinary differ-
ential equations. Nowadays, due to advances in the computation of the product
of a matrix exponential with a vector, such methods are considered as practi-
cable also for high-dimensional systems of differential equations. The renewed
interest in exponential integrators is further enhanced by recent investigations
which showed that they have excellent stability and convergence properties.
In particular, they perform well for differential equations that result from a
spatial discretisation of nonlinear parabolic and hyperbolic initial-boundary
value problems, see [4, 9] and references therein.

However, aside from a favourable convergence behaviour, the usability of
a numerical method for practical applications is substantially affected by its
qualitative behaviour, and, in many cases, it is inevitable to ensure that cer-
tain geometric properties of the underlying problem are well preserved by
the discretisation. In particular, it is desirable that the positivity of the true
solution is retained by the numerical approximation. More precisely, if the
solution of a linear abstract evolution equation

u(t)=Ault)+ f(t), 0<t<T, u(0) given, (1)

remains positive, the numerical solution should retain this property. Unfor-
tunately, as proven by Bolley and Crouzeix [3], the order of positive rational
one-step and linear multistep methods, respectively, is restricted by one.
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The objective of the present paper is to investigate exponential multistep
methods where the coefficients are combinations of the exponential and closely
related functions. The general form of the considered schemes is introduced
below in Section 3. Examples include Adams-type methods that were studied
recently in [4, 9] for parabolic problems, see also the earlier works [8, 12].

The main result, which we deduce in Section 4, states that positive expo-
nential multistep methods are of order two at most. Further, we show that
there exist second-order methods which preserve positivity. Thus, the order
barrier of [3] is raised by one. For exponential Runge-Kutta methods, a similar
result has recently been obtained in [10].

Our analysis of exponential multistep methods for abstract evolution equa-
tions is based on an operator calculus which allows to define the Laplace-
Stieltjes transform involving the generator of a positive Cy-semigroup. We re-
fer to the subsequent Section 2, where the basic hypotheses on the differential
equation and some fundamental tools of the employed analytical framework
are recapitulated.

2 Analytical framework

In this section, we state the basic assumptions on the abstract initial value
problem (1).

Throughout, we let (V, I 1) denote the underlying Banach space. Further,
we suppose A : D C V — V to be a densely defined and closed linear operator
on V that generates a strongly continuous semigroup (etA) >0 Of type (M,w),
that is, there exist constants M > 1 and w € R such that the bound

et < Met,  t>0, (2)

is valid. For a detailed treatment of Cp-semigroups, we refer to the mono-
graphs [6, 11].

The notion of positivity requires the Banach space V' to be endowed with
an additional order structure. In the present paper, to keep the analytical
framework simple, we restrict ourselves to the consideration of the Lebesgue
spaces and subspaces thereof, respectively, as it is then straightforward to de-
fine the positivity of an element pointwise.! In general, an appropriate setting
is provided by the theory of Banach lattices treated in Yosida [13, Chap. XII].
Our results remain valid within this framework.

We recall that a bounded linear operator B : V' — V is said to be positive
if for any element v € V satisfying v > 0 it follows Bv > 0.

LA function v : 2 C R — R in LP(£2), 1 < p < oo, is said to be positive if it
is pointwise positive, i.e., v(z) > 0 for almost all z € (2. In that case, we write
v > 0 for short. We employ here the standard terminology, although the term
non-negative would be more appropriate.
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Example 1. We consider the differential operator 0., subject to a mixed
boundary condition on the Banach space of continuous functions, that is, for
some c1,co € Rwelet A: D — V : v+ v where V = C([0,1]) and
D = {v e C*([0,1]) : v'(0) + c1v(0) = 0 = v/(1) + cov(1)}. It is shown in
Arendt et al. [1, p. 134] that the associated semigroup (etA)

>0 18 positive.

Henceforth, we assume that the linear operator A : D — V is the genera-
tor of a positive semigroup (etA)t>0 of type (M,w), see (2). Then, from the
formulation of the linear evolution equation (1) as a Volterra integral equation

u(t) = et u(0) + /t e(t*T)Af(T) dr, 0<t<T, (3)
0

it is seen that the solution w remains positive, provided that the initial
value u(0) and the function f are positive.

Let a € BV denote a function of bounded variation that is normalised
at its discontinuities and satisfies a(0) = 0. The associated Laplace-Stieltjes
transform is defined through

G(z) = /000 e’ da(t), (4)

see Hille and Phillips [6, Sect. 6.2]. We recall that a real-valued function G is
said to be absolutely monotonic on an interval I C R if

GYl(z)>0, xzel, j>0.

The following result by Bernstein [2], which characterises absolutely monotonic
functions of the form (4), is the basis of our analysis in Section 4.

Theorem 2 (Bernstein). A function G is absolutely monotonic on the half
line (—oo,w] iff it is the Laplace-Stieltjes transform of a non-decreasing func-
tion a € BV such that

e“! |da(t)| < .
0
A well-known operational calculus described in Hille and Phillips [6, Chap. X V]
allows to extend (4) to unbounded linear operators. More precisely, for A being

the generator of a strongly continuous semigroup (etA) >0 on V, it holds

G(hA)v = / e v dal(t), h>0, veV, (5)
0

where the integral is defined in the sense of Bochner. It is thus straightforward
to deduce the following corollary from Theorem 2, see also Kovécs [7].

Corollary 3. Suppose that the linear operator A generates a positive and
strongly continuous semigroup of type (M,w). Assume further that the func-
tion G is absolutely monotonic on (—oo, hw| for some h > 0. Then, the linear
operator G(hA) defined by (5) is positive.
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Remark 4. We note that the converse of the above corollary is true as well.
Namely, if G(hA) is positive for any generator A of a positive and strongly
continuous semigroup, then the function G is absolutely monotonic. The proof
of this statement is in the lines of Bolley and Crouzeix [3, Proof of Lemma 1].

The construction of exponential integrators often relies on the variation-of-
constants formula (3) and a replacement of the integrand f by an interpolation
polynomial. As a consequence, the linear operators ¢;(hA) defined through

(2) /l o k) P P S eC (6)
Ppil\z) = € . ) J =4 z )
! 0 (-1t

naturally arise in the numerical schemes. By the above Theorem 2, these
functions are absolutely monotonic, and thus the positivity of the associated
operators ¢;(hA) follows from Corollary 3.

3 Exponential multistep methods

In this section, we introduce the considered exponential multistep methods
for the time integration of the linear evolution equation (1) and state the
order conditions. The positivity properties of the numerical schemes are then
studied in Section 4.

We let t; = jh denote the grid points associated with a constant stepsize
h > 0. Besides, we suppose that the starting values wug, u1,...,uxr—1 € V are
approximations the exact solution values of (1). Then, for integers j > k, the
numerical solution values u; =~ u(t;) are given by the k-step recursion

k

K
> an(hA) unye =hY_ Be(hA) f(tnse), 1> 0. (7a)

£=0 £=0

Throughout, we choose o = 1. Furthermore, we assume that the coefficient
functions ay and 3, are given as Laplace-Stieltjes transforms of certain func-
tions ay and by. Thus, it holds

ay(z) = /000 e'*day(t), Bi(z) = /000 e'” db(t), z € (—oo,w].  (7b)

For simplicity, we require by to be piecewise differentiable such that the left-
sided limit of bj(t) exist at ¢t = j for all integers j > 0. In particular, these
assumptions are satisfied if the coefficients functions are (linear) combinations
of the exponential and the related ¢-functions (6). We therefore refer to (7)
as an exponential linear k-step method. Due to (7b), the operators ay(hA)
and §¢(hA) are bounded on V.

Examples that have recently been studied in literature for the time inte-
gration of semilinear evolution equations are exponential Adams-type meth-
ods. For the choice a3 = ... = a1 = 0 and [ = 0, the resulting meth-
ods are discussed in Calvo and Palencia [4]. On the other hand, the case
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apg =...=ai_s =0 and G = 0 generalising the classical Adams—Bashforth
methods is covered by the analysis given in [9].

In the following, we derive the order conditions for the exponential k-
step method. We note that the arguments given below extend to semilinear
problems u'(t) = Au(t) + F(t,u(t)) by setting f(t) = F(t,u(t)). As usual,
the numerical method (7) is said to be consistent of order p, if the local error

k k

d(t,h) = ag(hA)u(t+th) — hY_ Be(hA) f(t + th) (8)

£=0 =0

is of the form d(t,h) = O(h**!) for h — 0, provided that the function f is
sufficiently smooth, see Hairer, Norsett, and Wanner [5, Chap. ITL.2].

In order to determine the leading h-term in d(¢,h), we make use of the
variation-of-constants formula

th
u(t + h) = e u(t) + / =4 £(t 4 1) dr,
0

see also (3). We expand all occurrences of f in Taylor series at ¢ and apply the
definition of the ¢-functions (6). A comparison in powers of A finally yields
the following result.

Lemma 5. The order conditions for exponential multistep methods (7) are

k
> ag(hA)e =0, (9a)
k - k Zq—l
;ag(hA) (4, (thA) = ;ﬁg(m) PR 1<qg<p, (9b)

where by definition £° =1 for £ = 0.

The first condition corresponds to the requirement that the exponential mul-
tistep method (7) is exact for the homogeneous equation u'(t) = Awu(t). By
setting A = 0 in (9), the usual order conditions

k
D0 =0, D> a0) =g B(0)¢r7", 1<g<p
£=0 =1 £=0

for a linear multistep method with coefficients a,(0) and 5,(0) follow, see
also [5, Chap.III1.2].

4 Positivity and order barrier

In this section, we derive an order barrier for positive exponential multistep
methods. According to Bolley and Crouzeix [3], the numerical method (7) is
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said to be positive, if the numerical solution values u,, remain positive for all
n > k, provided that the semigroup (etA) +>0 the function f, and further the
starting values ug, U1, ..., us—1 are positive. We note that the requirement of
positivity implies that the coefficients operators ay(hA) satisfy

—ap(hA) >0, 0<t¢<k-1. (10)
We next give the main result of the paper.

Theorem 6. The order of a positive exponential k-step method is two at most.

Proof. Our main tools for the proof of Theorem 6 are the representation (7b)
of the coefficient functions as Laplace-Stieltjes transforms and further the
characterisation of positivity given in Section 2. We note that due to Corol-
lary 3, it is justified to work with the complex variable z instead of the linear
operator hA. For the characteristic function of the interval [r, s), we henceforth
employ the abbreviation

1 if r<t<s,
Yirs) () = {0 else.

(i) We first show that the validity of the first order condition (9a) together
with the requirement (10) imply that the coefficient functions oy are of the
form

op(z) = — fig—s elk=0z pr—¢ >0, 0<(<k-1, (11)

or, equivalently, that the associated functions a, are given by
ar(t) = — pte—e Yjr—r,00) (1), pg—e > 0, 0<l¢<Ek-1 (12)

Inserting (7b) into (9a) and applying a(z) = 1, we get

k—1 k=1 .00
ek = — ZOZ[(Z) e = — Z/ " Vg 00 () day(t — £)
£=0 =070
and furthermore conclude
k-1
Vik,oo) (t) = = ) ae(t — £) Yi,00) (t)- (13)
=0

From (10) and Remark 4 we deduce that the function —ay is absolutely
monotonic and thus Theorem 2 shows that — ay is non-decreasing. Due to the
fact that as(0) = 0, we finally obtain (12). For the following considerations,
accordingly to our choice ay(z) = 1, it is useful to define pg = —1. As a
consequence, inserting (11) into (9a) we have

k

> pe=—po=1 (14)

(=1
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(ii) We next reformulate the order conditions in terms of the functions ay
and b, given by (7b). Inserting (11) into (9b), we have

a1
(g—1)V

k k
=Y et o (02) = 3 Bi(2) 1<g<p.
=1 =0

Moreover, making use of the fact that

_0): L[, (k—t)!
eh=02 0 (02) = 7 /O et ﬁ Vi oy (t) dt,

see (6) for the definition of ¢,, we obtain

k k
— (k=0T o Yioom () = > 97 be(t),  1<g¢<p.  (15)
/=1 £=0

For the following considerations, it is convenient to employ the abbreviation

Xi () = Yion () = > 1 Yie ) (1), (16)
=1

Obviously, the support of the function x; is contained in the interval [0, j).

(iii) Exploiting the relations given above, we now show that the assump-
tion p > 3 and the requirement of positivity, that is, the assumptions pp > 0
for 1 < ¢ <k and be(t) >0 for any ¢t € R and 0 < £ < k, lead to a contradic-
tion. Regarding the order conditions (15), we introduce the following relations
for the functions b,

k
> bo(t) = x; (1), (17a)
=0
k
S (45— k) be(t) = (5 — ) x;(1), (17b)
=0
k
S C+5—k)2be(t) = (5 — t)* x;(8), (17¢)
=0

see also (16). Clearly, when setting j = k, we retain (15) with p = 3. Using
that the functions b, are positive, we infer from (17c) that the values? at t = j
fulfil by(j) = 0 for £ # k— j. Consequently, the derivatives satisfy b} (j) < 0 for
¢ # k—j. Taking the derivative of (17c) implies b}(j) = 0 for £ # k—j. Further,
differentiating (17b) yields p; = 0 and thus x; = x;j—1. Finally, taking suitable
linear combinations of (17) shows that the order conditions (17) also hold for
j — 1 in place of j. By induction, we therefore conclude p1; =0 for 1 < j <k
which contradicts (14). O

2 Here and henceforth, all function evaluations are understood as left-sided limits.
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Remark 7. The order two barrier of Theorem 6 is sharp in the sense that
there exist positive second-order schemes. A simple example is given by the
exponential trapezoidal rule where k = 1, ap(2) = — €%, a1 = 1, By = 1 — 2,
and 1 = @s.

For analytic semigroups it is well-known that the order conditions (9b)
can be weakened, see e.g. [9]. Following the lines of [10] it can be shown that
an order two barrier holds in this case, too. For instance, the exponential
midpoint rule with k = 2, ag(z) = —e?*, a; =0, aa = 1, B1(2) = 2p1(22),
and By = (B2 = 0 has weak order two and preserves positivity.
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