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Abstract

In this paper, we study time discretizations of fully nonlinear parabolic differential equations. Our analysis
uses the fact that the linearization along the exact solution is a uniformly sectorial operator. We derive smooth
and nonsmooth-data error estimates for the backward Euler method, and we prove convergence for stronglyA(ϑ)-
stable Runge–Kutta methods. For the latter, the order of convergence for smooth solutions is essentially determined
by the stage order of the method. Numerical examples illustrating the convergence estimates are presented. 2001
IMACS. Published by Elsevier Science B.V. All rights reserved.
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1. Introduction

The aim of the present paper is to derive existence and convergence results for Runge–Kutta time
discretizations of the abstract differential equation

u′(t)= f (t, u(t)), u(0)= u0. (1)

The precise assumptions on the nonlinearityf are given in Section 2 below. Our interest in this
abstract initial value problem stems from the fact that fully nonlinear parabolic initial-boundary value
problems can be cast in this form. Such problems arise in various fields of applications as for example in
combustion theory, differential geometry, and stochastic control theory. Moreover, semilinear problems
with free boundaries may be reduced to this form.
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The existence and regularity theory for fully nonlinear parabolic problems has been developed
in recent years and is summarized in the monograph [12]. Whereas the literature on numerical
discretizations of semilinear and quasilinear parabolic problems is quite rich, see, e.g., [1,8,10,11,14],
not that much is known for the fully nonlinear case. We are aware of the following two references
only: In [3] the convergence of a full discretization, based on the forward Euler method and standard
finite differences is studied. Due to the stiffness of the problem, this involves a severe restriction on
the admissible stepsizes. The second reference is our recent paper [6], where we took up the analytical
framework of [12] to obtain convergence results for variable stepsize backward Euler discretizations
of (1).

In the present paper, we consider a slightly different approach that avoids the complicated weighted
Hölder norms encountered in [12,6]. The main idea is to linearize the problem along the exact solution
u(t) to get

u′(t)=A(t)u(t)+ g(t, u(t)), u(0)= u0. (2)

Note that Runge–Kutta methods are invariant under this linearization. Since the Fréchet derivative ofg

with respect to the second variable vanishes along the exact solution, techniques from the semilinear case
like the variation-of-constants formula can be used. Consequently, stability bounds for discretizations of
the nonautonomous problem

w′(t)=A(t)w(t) (3)

are indispensable. For Runge–Kutta methods with constant stepsizes, such results have been provided
recently by [5].

The paper is organized as follows: In Section 2 we give the precise assumptions that render the
initial value problem (1) parabolic. We also present an example from detonation theory that fits into
this analytical framework.

Section 3 is devoted to the existence and convergence of backward Euler approximations. We show
that the expected order 1 is attained for smooth solutions on bounded time intervals. For nonsmooth initial
data, the order of convergence is still one on compact time intervals that are bounded away fromt = 0.
However, an order reduction takes place fort → 0, see Theorem 5 below. For the convenience of the
reader and for the sake of completeness, we have also included a new and short proof of the above
mentioned stability result.

In Section 4, we prove the convergence of stronglyA(ϑ)-stable Runge–Kutta discretizations under the
assumption that the exact solution is sufficiently smooth. The attained order of convergence turns out to
be min(p, q + 1), wherep andq denote the order and the stage order of the method, respectively. This
order reduction is expected, since it appears already for semilinear problems, see [10].

In Section 5, we explain how our results carry over to variable stepsizes.
A numerical experiment is finally presented in Section 6. We illustrate therein our convergence results

for the backward Euler method with constant stepsizes at the aforementioned detonation problem. We
have also performed more realistic calculations using the 3-stage Radau IIA method. This was partly
done to obtain a good approximation to the exact solution in the above experiment. We used the variable
stepsize implementationRADAU5 by Hairer and Wanner [7] that gave very reliable results in all tests.
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2. Problem class and example

In our subsequent analysis of time discretizations of (1), we use a simplified version of the analytical
framework given in [12]. For the convenience of the reader, we resume the precise hypotheses for (1) in
this section. More details are found in Lunardi’s monograph [12].

Let (X, | · |) and(D,‖ · ‖) be two Banach spaces withD densely embedded inX, and denote byD an
open subset ofD. We consider the abstract initial value problem

u′(t)= f (t, u(t)), t > 0, u(0)= u0 ∈D, (4)

where the right-hand side satisfies the following assumption.

Assumption 1. The functionf : [0, T ] × D→ X is twice continuously Fréchet differentiable and its
Fréchet derivativeD2f (t, v) with respect to the second variable is sectorial inX. Moreover, the graph-
norm ofD2f (t, v) is equivalent to the norm ofD for all 0� t � T and for allv ∈D.

We further impose the following condition on the initial value. For a definition of the real interpolation
space(X,D)α,∞, we refer to [12, Section 1.2] and [16].

Assumption 2. The initial valueu0 ∈D satisfiesf (0, u0) ∈ (X,D)α,∞ for some 0< α < 1.

Under these assumptions, the existence of a locally unique solution of (4) can be shown. Since the
regularity properties of this solution are essential for our analysis, we collect them in the following
lemma.

Lemma 3. Under the above assumptions and after a possible reduction ofT , problem(4) has a unique
solutionu which is twice differentiable on(0, T ] and satisfies

u ∈ Cα([0, T ],D)∩C1+α([0, T ],X),
t1−αu′ ∈ B([0, T ],D), and t1−αu′′ ∈ B([0, T ],X).

We note that the size ofT in general depends onu0.

As usual,Cα([0, T ],D) denotes the Banach space ofα-Hölder continuous functions on[0, T ] with
values inD, andB([0, T ],D) denotes the corresponding space of bounded functions. Both spaces are
endowed with the usual norms.

Proof of Lemma 3. The existence andα-Hölder continuity ofu and its derivative is proved in [12,
Theorem 8.1.3]. The boundedness oft1−αu′(t) in D is a consequence of [13, Theorem 2.2], and that of
t1−αu′′(t) in X finally follows from the identity

u′′(t)=D1f
(
t, u(t)

)+D2f
(
t, u(t)

)
u′(t), 0< t � T ,

together withD2f (t, u(t)) ∈ C([0, T ],L(D,X)). ✷
We close this section with an example of a nonlinear initial-boundary value problem from detonation

theory. More examples that fit into our framework can be found in [6,12] and references therein.
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Example 4 Displacement of a shock, see[4,12]. The following fully nonlinear problem arises in
detonation theory and describes the displacement of a shock

∂tU(t, x)= log

(
exp(aU(t, x)∂xxU(t, x))− 1

a∂xxU(t, x)

)
− 1

2

(
∂xU(t, x)

)2
,

∂xU(t,0)= ∂xU(t,1)= 0, U(0, x)=U0(x), 0< x < 1, t > 0.

(5)

Herea denotes a positive constant.
ChoosingX = C([0,1]) andD = {v ∈ C2([0,1]): v′(0) = v′(1) = 0} allows us to write (5) in the

abstract form (4) withu(t)=U(t, ·) and

f (t, v)= log

(
exp(avv′′)− 1

av′′

)
− 1

2

(
v′
)2
. (6)

Note that the right-hand side of (6) is analytic, if we restrict the domain to the set

D= {v ∈D: v(x) > 0 for 0� x � 1
}
.

It is verified in [12, Section 8.5.1] that problem (5) enters our framework forU0 ∈D.
We finally remark that in the present example

(X,D)α,∞ =
{
C2α

([0,1]), α < 1
2,

C2α
0

([0,1]), α > 1
2,

(7)

where

C
1+γ
0

([0,1])= {v ∈ C1+γ ([0,1]): v′(0)= v′(1)= 0
}

for γ � 0. This follows from [12, Theorem 3.1.30 and Proposition 2.2.2]. For a smooth function inD
that does not necessarily satisfy unnatural boundary conditions, we can thus take anyα smaller than 1/2.

3. Backward Euler discretization

In this section we give two convergence results for the backward Euler discretization of the initial
value problem (4). We decided to treat the backward Euler method separately from general Runge–
Kutta methods for the following two reasons: Firstly, this method is of great importance in applications
and secondly, the proofs are much less involved than for general Runge–Kutta methods. Therefore, the
underlying ideas can be perceived more easily.

Let h > 0 denote the stepsize. The backward Euler approximationun+1 to the exact solutionu of (4)
at tn+1= (n+ 1)h is given by the recursion

un+1− un
h

= f (tn+1, un+1), n� 0. (8)

Our first convergence result can be seen as an error bound in terms of the data. Note that the imposed
assumptions can easily be checked in applications.

Theorem 5 Error estimate in terms of the data.Under Assumptions1 and2, and forT as in Lemma3,
there existsH > 0 such that for all stepsizes0< h�H the following holds. The backward Euler solution
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of (4) is well-defined in a neighbourhood of the exact solution, and the difference between numerical and
exact solution is bounded by∥∥un − u(tn)∥∥� Ctα−1

n h
(
1+ | logh|), 0< nh� T . (9)

The constantC in general depends onT , but is independent ofn andh.

In situations where it is known in advance that the exact solution has more smoothness, the above bound
can be sharpened. We have the following result.

Theorem 6 Error estimate in terms of the solution.Let Assumption1 hold, and assume that the exact
solutionu of (4) satisfiesu ∈ Cβ([0, T ],D) for someβ > 0, andu′′ ∈ B([0, T ],X). Then, there exists
H > 0 such that for all stepsizes0< h �H the following holds. The backward Euler solution of(4) is
well-defined in a neighbourhood of the exact solution, and the difference between numerical and exact
solution is bounded by∥∥un − u(tn)∥∥� Ch

(
1+ | logh|), 0� nh� T . (10)

The constantC in general depends onT , but is independent ofn andh.

Our main technique for proving both theorems is to linearize (4) along the exact solution. Setting

A(t)=D2f
(
t, u(t)

)
and g(t, v)= f (t, v)−A(t)v, (11a)

we arrive at the formally semilinear problem

u′(t)=A(t)u(t)+ g(t, u(t)), t > 0. (11b)

Due to our assumptions and Lemma 3, we know that

A ∈Cα([0, T ],L(D,X)). (12)

Since the backward Euler method is invariant under the above linearization, we obtain from (8) the
following representation of the numerical solution

un+1− un
h

=A(tn+1)un+1+ g(tn+1, un+1), n� 0. (13)

In order to analyze this recursion, stability bounds are all-important. Henceforth, we writeAn = A(tn)
for short, and we use the following notation for the discrete evolution operators

R(tn, tj )= (I − hAn)−1 · · · (I − hAj+1)
−1, 0 � j < n,

with R(tn, tn)= I . Due to Assumption 1, these operators are well-defined and bounded forh sufficiently
small. Moreover, we have the following stability estimates.

Lemma 7. Under condition(12), there existsH > 0 such that for all stepsizes0< h�H we have∥∥R(tn, tj )∥∥D←X � C
(
t−1
n−j + | logh|tα−1

n−j
)
, 0< tj < tn � T . (14)

The constantC in general depends onT , but is independent ofn andh.
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A slightly stronger estimate that avoids the| logh| term follows from [5, Theorem 1.1]. In order to keep
this section self-contained, and since our proof of (14) is very short, we decided to give it at the end of
this section. We remark that under the condition∥∥Aε0(Aj+1−A0)A

−1−ε
0

∥∥� Ctαj+1 for someε > 0,

the | logh| term does not appear in our proof. This condition is often satisfied in applications.
We are now in the position to prove the two theorems.

Proof of Theorem 5. Inserting the exact solution̂un = u(tn) into the numerical scheme (13) gives

ûn+1− ûn
h

=An+1ûn+1+ g
(
tn+1, ûn+1

)+ δn+1. (15)

This recursion differs from (13) by the defects

δn+1=
1∫

0

(
u′(tn + τh)− u′(tn+1)

)
dτ.

As a direct consequence of Lemma 3, the defects are bounded by

|δ1|� Chα and |δn+1|� Chtα−1
n , n� 1, (16)

where the constants depend on the first and second derivatives ofu.
The backward Euler solution of (4) is constructed by fixed-point iteration. LetN be defined by

Nh� T < (N + 1)h, and let

Dh =
{
v = (vn)Nn=1 ∈DN : sup

1�n�N
t1−αn

∥∥vn − u(tn)∥∥� c0h
γ
}

(17a)

with suitably chosen constantsc0> 0 and 1− α < γ < 1. Forh sufficiently small, this is a closed subset
of the spaceDN , endowed with the weighted norm

‖v‖∞ = sup
1�n�N

t1−αn ‖vn‖, v ∈DN. (17b)

We consider the mappingΦ :Dh→DN , defined by

(
Φ(v)

)
n
=R(tn,0)u0+ h

n−1∑
j=0

R(tn, tj )g(tj+1, vj+1).

Our aim is to show thatΦ is a contraction onDh. By construction, the fixed-point ofΦ is the searched
backward Euler solution.

From the definition ofg, we deduce

g(tj , vj )− g(tj ,wj)=
1∫

0

(
D2f

(
tj , τvj + (1− τ)wj

)−Aj)dτ · (vj −wj),

which implies the bound∣∣g(tj , vj )− g(tj ,wj )∣∣� c0Lh
γ+α−1‖vj −wj‖. (18)
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Note that the Lipschitz constantL of D2f can be chosen here independently ofj . We next make use of
the relations

h

n−1∑
j=1

t
β−1
n−j t

α−1
j �

{
Ctα−1
n | logn|, β = 0,

Ct
α+β−1
n , 0< β < 1,

(19)

that are obtained in a standard way by comparing the sum with the corresponding integral. Together
with (14) and (18), we get

∥∥(Φ(v))
n
− (Φ(w))

n

∥∥ � h

n−1∑
j=0

∥∥R(tn, tj )∥∥D←X∣∣g(tj+1, vj+1)− g(tj+1,wj+1)
∣∣

� c0c1Lt
α−1
n

(
1+ | logh|)hγ+α−1‖v −w‖∞,

wherec1 is a constant that depends on the stability constant of Lemma 7, and onT . This proves thatΦ
is contractive∥∥Φ(v)−Φ(w)∥∥∞ � κ‖v −w‖∞
with anh-independent factorκ < 1 for h sufficiently small.

In order to verify thatΦ mapsDh ontoDh, we exploit∥∥Φ(v)− û∥∥∞ � κ
∥∥v − û∥∥∞ + ∥∥û−Φ(û)∥∥∞ � κc0h

γ + ∥∥û−Φ(û)∥∥∞.
It thus remains to show that∥∥û−Φ(û)∥∥∞ � (1− κ)c0h

γ . (20)

With the help of (14), (16), and (19), we obtain

tα−1
n

∥∥ûn −Φ(û)n∥∥= tα−1
n

∥∥∥∥∥h
n−1∑
j=0

R(tn, tj )δj+1

∥∥∥∥∥�Ch
(
1+ | logh|). (21)

The desired bound (20) can thus be achieved forγ < 1.
SinceΦ is a contraction onDh, the numerical solutionu∗ = (un)Nn=1 exists as the unique fixed-point

of Φ. Moreover, we have the preliminary convergence result∥∥un − u(tn)∥∥� c0t
α−1
n hγ , 0< nh� T .

In order to show the convergence estimate (9), we use again (21)

t1−αn

∥∥un − ûn∥∥ �
∥∥u∗ − û∥∥∞ �

∥∥Φ(u∗)−Φ(û)∥∥∞ + ∥∥û−Φ(û)∥∥∞
� κ

∥∥u∗ − û∥∥∞ +Ch(1+ | logh|).
Sinceκ < 1, this implies (9) and concludes our proof.✷
Proof of Theorem 6. This proof is very similar to the preceding one. It is essentially obtained by setting
α = 1 there. We omit the details.✷
Proof of Lemma 7. Since we are working on an equidistant grid, it is sufficient to consider the case
j = 0. The idea of the proof consists in comparing the time-dependent operatorR(tn,0) with the frozen



374 A. Ostermann, M. Thalhammer / Applied Numerical Mathematics 42 (2002) 367–380

operator(I −hA0)
−n. For the latter, stability estimates are well-established, see [9, Estimate (3.31)]. We

will use below that∥∥A0(I − hA0)
−n∥∥

X←X � Ct−1
n , 0< nh� T , (22)

holds with a constantC that depends onT , but not onn or h. Let

,j =A0
(
R(tn, tn−j )− (I − hA0)

−j), 1� j � n.
Expanding,n into a telescopic sum and using the resolvent identity

(I − hAj+1)
−1− (I − hA0)

−1= h(I − hAj+1)
−1(Aj+1−A0)(I − hA0)

−1

gives the recursion

,n = h
n−1∑
j=0

A0R(tn, tj )(Aj+1−A0)(I − hA0)
−j−1

= h
n−1∑
j=0

,n−j · (Aj+1−A0)A
−1
0 ·A0(I − hA0)

−j−1

+ h
n−1∑
j=0

A0(I − hA0)
j−n · (Aj+1−A0)A

−1
0 ·A0(I − hA0)

−j−1. (23)

Taking norms in (23), and using (22) and (19), we arrive at

‖,n‖X←X � Ch
n−1∑
j=0

tα−1
j+1 ‖,n−j‖X←X +Ctα−1

n

(
1+ | logh|).

Solving this Gronwall-type inequality and using once more (22) proves the desired result.✷

4. Runge–Kutta discretizations

In this section we generalize the convergence result of Theorem 6 to general Runge–Kutta methods.
We show below that, under certain smoothness assumptions on the exact solution and stability
requirements on the method, the convergence behaviour on finite time intervals is essentially governed
by the stage order of the numerical method.

An s-stageRunge–Kutta methodapplied to (4) with stepsizeh > 0, is given by the scheme

U ′ni = f (tn + cih,Uni), Uni = un + h
s∑
j=1

aijU
′
nj , 1� i � s,

(24)

un+1= un + h
s∑
i=1

biU
′
ni , n� 0,

whereaij , bi, ci ∈R are the coefficients of the method.
In the sequel we introduce the basic notions of order and stability. For details we refer to the

monograph [7]. Recall that the Runge–Kutta method (24) hasorder p if the error fulfills the relation
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un − u(tn)=O(hp) for h→ 0, uniformly on bounded time intervals, whenever the method is applied to
an ordinary differential equation with sufficiently smooth right-hand side; the method hasstage orderq
whenever the internal stages satisfyU0i − u(cih)=O(hq) ash→ 0 for all 1� i � s. We always assume
p � 1.

For specifying the stability requirements on the numerical method, it is useful to introduce the matrix
and vector notation

Oι= (aij )si,j=1, 1= (1, . . . ,1)T ∈R
s , b= (b1, . . . , bs)

T.

Then thestability functionof (24) is defined through

R(z)= 1+ zbT(I − zOι)−11.

The Runge–Kutta method isA(ϑ)-stableif I − zOι is invertible on the sectorMϑ = {z ∈C: |arg(−z)|�
ϑ} and if |R(z)|� 1 holds for allz ∈Mϑ ; the method is calledstronglyA(ϑ)-stableif additionally Oι is
invertible and the module ofR at infinity,R(∞)= 1− bTOι−11, is strictly smaller than one.

Our analysis is in the lines of Section 3 and uses the fact that the derivativeA(t)=D2f (t, u(t)) along
the exact solution is uniformly sectorial on[0, T ]. This follows from the Hölder continuity ofu. Thus
there are constantsM > 0, a ∈R and 0< ϕ < π/2 such that the resolvent estimate∣∣(λ−A(t))−1∣∣

X←X � M

|λ− a| for
∣∣arg(λ− a)∣∣� π − ϕ (25)

uniformly holds for 0� t � T .
Now we are ready to state the convergence result for Runge–Kutta methods.

Theorem 8 Error estimate in terms of the solution.Let Assumption1 hold and apply a Runge–Kutta
method of orderp and stage orderq to (4). Assume further that the exact solution has the regularity
propertiesu(r) ∈ B([0, T ],D) and u(r+1) ∈ B([0, T ],X) with r = min(p, q + 1), and that the method
is stronglyA(ϑ)-stable withϑ > ϕ, whereϕ is given by(25). Then there existsH > 0 such that for
0< h�H the numerical solutionun and the internal stagesUni of the Runge–Kutta method exist for all
n with 0� nh� T and satisfy∥∥un − u(tn)∥∥+ max

1�i�s

∥∥Uni − u(tn + cih)∥∥�Chr
(
1+ | logh|), 0 � nh� T .

The constant C in general depends onT , but not onn or h.

Although the requirement of strong stability excludes the Gauss–Legendre methods, the assumptions of
Theorem 8 are still satisfied by many interesting classes of Runge–Kutta methods: Thes-stage Radau IIA
methods satisfy the assumptions withp = 2s − 1 andq = s, the s-stage Lobatto IIIC methods with
p = 2s−2 andq = s−1. Both classes are stronglyA(π/2)-stable withR(∞)= 0, see [7, Chapter IV.5].

Proof of Theorem 8. For simplicity, we give the proof only for the case whereR(∞)= 0 and henceforth
supposeci ∈ [0,1] for all 1� i � s. For a more general proof, we refer to [15].

In order to write the Runge–Kutta scheme more compactly, it is useful to introduce some notation

Un = (Un1, . . . ,Uns)T, fn+1(Un)=
(
f (tn + cih,Uni)

)s
i=1, etc.

With the help of these abbreviations, (24) takes the form

U ′n = fn+1(Un), Un = 1un + hOιU ′n, un+1= un + hbTU ′n. (26)
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Here, the matrixOι is considered as a linear operator onXs and theith component ofOιU ′n is thus given
by
∑s
j=1aijU

′
nj .

Our analysis follows the ideas of Section 3 and relies on the consideration of the formally semilinear
equation (11). Let

An+1= diag
(
A(tn + c1h), . . . ,A(tn + csh)

)
.

Due to the resolvent condition (25) and theA(ϑ)-stability of the method, the operators

Jn+1= (I − hOιAn+1)
−1 and Kn+1= (I − hAn+1Oι)−1

are well-defined and bounded forh sufficiently small.
In this notation, the stages are given by

Un = Jn+11un + hJn+1Oιgn+1(Un), (27a)

and the Runge–Kutta solution has the representation

un+1=R(hAn+1)un + hbTKn+1gn+1(Un), n� 0,

with the stability function

R(hAn+1)= 1+ hbTAn+1(I − hOιAn+1)
−11.

Solving this recursion forun yields furthermore

un =R(tn,0)u0+ h
n−1∑
j=0

R(tn, tj+1)b
TKj+1gj+1(Uj), n� 0, (27b)

where

R(tn, tj )=R(hAn) · · ·R(hAj+1), 0 � j < n, R(tn, tn)= I
denote the discrete transition operators. Due to the validity of (12), they satisfy the stability estimate∥∥R(tn, tj )∥∥D←X � Ct−1

n−j , 0< tj < tn � T , (28)

for sufficiently small stepsizes 0< h�H , see [5, Theorem 1.1]. The constantC depends onT , but not
onh or n.

Inserting the exact solution̂un = u(tn) andÛn = (u(tn + cih))si=1 into the Runge–Kutta scheme (26)
yields

Û ′n = fn+1
(
Ûn
)
, Ûn = 1ûn + hOιÛ ′n +,n, ûn+1= ûn + hbTÛ ′n+ δn+1, (29)

where the defects are given by

δn+1= hk+1

1∫
0

(1− τ)k−1

k!

(
(1− τ)u(k+1)(tn + τh)− k

s∑
j=1

bj c
k
ju
(k+1)(τnj )

)
dτ,

,ni = hr
1∫

0

(1− τ)r−2

(r − 1)!

(
(1− τ)cri u(r)(τni)− (r − 1)

s∑
j=1

aij c
r−1
j u(r)(τnj )

)
dτ,
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with k = r − 1 or k = r andτni = tn + τcih. Consequently we have

|δn+1|� Chr+1, ‖δn+1‖� Chr, ‖,ni‖� Chr (30)

with constants depending on the method and the derivatives ofu of orderr andr + 1.
For the construction of the internal stages we use a fixed-point iterationΨ based on (27). It maps a

sequenceV = (Vn)Nn=0 in D to another sequenceΨ (V ) with components(
Ψ (V )

)
n
= Jn+11R(tn,0)u0+ hJn+1Oιgn+1(Vn)

+ h
n−1∑
j=0

Jn+11R(tn, tj+1)b
TKj+1gj+1(Vj). (31)

For somec0> 0 and 0< γ < 1 we choose the set

Dh =
{
V = (Vn)Nn=0 ∈D(N+1)s:

∥∥V − Û∥∥∞ � c0h
γ
}

as domain ofΨ and endow it with the norm

‖V ‖∞ = sup
0�n�N

‖Vn‖, where‖Vn‖ = max
1�i�s

‖Vni‖.
Here,N is defined through(N + 1)h� T < (N + 2)h.

We will show next thatΨ is contractive with contraction factorκ < 1 for sufficiently small stepsizes.
For this, we use the corresponding estimate to (18)∣∣gj+1(Vj )− g(tj+1,Wj )

∣∣� c0Lh
γ‖Vj −Wj‖. (32)

With the help of the stability result (28) and (32), we thus receive∥∥(Ψ (V ))
n
− (Ψ (W))

n

∥∥� c0c1L
(
1+ | logh|)hγ‖V −W‖∞,

with c1 depending on the quantityC from (28). This proves the contractivity ofΨ for sufficiently smallh.
From formula (29) and the definition ofΨ we further get∥∥Ûn − (Ψ (Û))n∥∥ �

n−1∑
j=0

∥∥Jn+11R(tn, tj+1)
∥∥
D←X|δj+1| + ‖Jn+1‖D←D‖,n‖

+ h
n−1∑
j=0

∥∥Jn+11R(tn, tj+1)b
TKj+1

∥∥
D←X|Aj+1,j |.

Applying the bounds (28) and (30) yields∥∥Û −Ψ (Û)∥∥∞ �Chr
(
1+ | logh|). (33)

An argument similar to that in the proof of Theorem 5 thus showsΨ (Dh)⊂Dh.
The convergence estimate for the internal steps now follows directly from the contractivity ofΨ

and (33)∥∥Un − Ûn∥∥�
∥∥U − Û∥∥∞ � 1

1− κ
∥∥Û −Ψ (Û)∥∥∞ �Chr

(
1+ | logh|). (34)

In order to estimate the error between the numerical and the exact solution, we use the relation

un+1− ûn+1=
(
1− bTOι−11

)(
un − ûn

)+ bTOι−1
(
Un− Ûn +,n

)− δn+1.

Due to our assumptionR(∞)= 0, the desired result follows at once from (30) and (34).✷
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5. Variable stepsizes

In order to keep the presentation as simple as possible, we have focused our attention in the previous
sections to constant stepsizes. This limitation, however, is not necessary and the results there hold for
variable stepsize sequences as well. The reason for this is quite simple: the techniques employed in our
proofs are either based on fixed-point iteration or rely on the comparison of Riemann-sums with their
corresponding integrals. Obviously, their use is not limited to constant stepsizes.

Although the generalization to variable stepsizes is straightforward, we briefly describe how the
variable stepsize version of our stability lemma comes about. For this, we need some additional notation.
Let t0= 0< t1< · · ·< tN be the given grid and denote by

hn = tn − tn−1, 1� n�N,
the corresponding stepsizes. As in Section 3, we define the discrete evolution operators

R(tn, tj )= (I − hnAn)−1 · · · (I − hj+1Aj+1)
−1, 0� j < n�N,

as well as their counterparts with frozen arguments

r(tn, tj )= (I − hnAj)−1 · · · (I − hj+1Aj)
−1, 0 � j < n�N.

Further, let

,nj =Aj
(
R(tn, tj )− r(tn, tj )

)
, 0 � j < n�N.

The main idea is again to compare the time-dependent operatorR(tn, tj )with the frozen operatorr(tn, tj ).
For the latter, we have the stability estimate [6, Lemma 5.1]∥∥Ajr(tn, tj )∥∥X←X �C(tn − tj )−1, 0� j < n�N,
where the constantC depends ontN , but not onn andj . In the same way as in the proof of Lemma 7, by
using the telescopic identity and the estimate

n−1∑
k=j
hk+1(tn − tk)−1(tk+1− tj )α−1 � C(tn − tj )α−1(1+ | loghn|

)
we arrive at

‖,nj‖X←X �C
n−1∑
k=j
hk+1(tk+1− tj )α−1‖,nk‖X←X +C(tn − tj )α−1(1+ | loghn|

)
.

Applying a discrete Gronwall lemma thus gives the desired result. For a similar Gronwall-type inequality,
we refer to [2, Lemma 4.4].

We finally remark that our variable stepsize estimates are valid without any additional condition on
the stepsize sequence.

6. Numerical examples

The numerical examples given below illustrate our convergence results for the backward Euler method.
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We consider again the nonlinear initial-boundary value problem (5). It is noteworthy that it has an
unstable equilibriumU = 1 which is hyperbolic under the generic conditionaπ2n2 �= 2 for all n ∈ N.
In the following we choosea = 1 and consider various initial values that satisfy the requirements of
Theorems 5 and 6.

Example 9. The smooth and positive function

U0(x)= x
3

3
− x

2

2
+ 1, 0� x � 1,

satisfies the Neumann boundary conditions and thus lies inD. Since the compositionf (0,U0) is
analytic, it further fulfillsf (0,U0) ∈ (X,D)α,∞ for every 0< α < 1/2, see (7). Therefore, Theorem 5 is
applicable.

Example 10. The polynomial

U0(x)=−20x7+ 70x6− 84x5+ 35x4+ 1

is positive for allx ∈ [0,1]. Moreover, the derivatives ofU0 up to order 3 vanish at the boundary, which
impliesU0 ∈D andf (0,U0) ∈D. Therefore, Theorem 8.1.1 of [12] applied to

u′′ =D1f (t, u)+D2f (t, u)u
′, u′(0)= f (0,U0)

guarantees thatu′ ∈ C([0, T ],D) and in particularu′′ ∈ B([0, T ],X). Thus the requirements of
Theorem 6 hold.

Example 11. For a constant initial value, the solutionU(t, x) depends ont only. Along such a solution,
problem (5) reduces to the simple ordinary differential equation

w′ = logw, w(0)=U0,

and we getU(t, x)=w(t). In our experiment, we integrated the original problem withU0= 5.

We discretized problem (5) in space by standard finite differences on an equidistant grid with meshwidth
,x = 10−4, and in time by the backward Euler method, respectively. For the different initial values, the
integration was performed up toT = 1 with stepsizesh = H/2j whereH = 0.2 and 0� j � 7. We
emphasize that the implementation of the right-hand side (6) as well as the approximation to its Jacobian
requires some care.

In order to determine the errors, we compared the results with more precise approximations that have
been obtained with the codeRADAU5. This code is a variable stepsize implementation of the 3-stage

Table 1
Numerically observed orders of convergence atT = 1

Stepsizeh 1/5 1/10 1/20 1/40 1/80 1/160 1/320

Example 9 1.167 1.074 1.036 1.018 1.009 1.005 1.002
Example 10 1.238 1.203 1.180 1.151 1.114 1.076 1.045
Example 11 1.008 1.004 1.002 1.001 1.001 1.000 1.000
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Radau IIA method, see [7]. From the quotients of the errors, the numerical orders of convergence were
computed in a standard way. The results are given in Table 1. As expected, the numbers approach one
ash decreases.
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