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In this paper, we are concerned with the numerical solution of the time-dependent Gross–
Pitaevskii Equation (GPE) involving a quasi-harmonic potential. Primarily, we consider dis-
cretisations that are based on spectral methods in space and higher-order exponential
operator splitting methods in time. The resulting methods are favourable in view of accu-
racy and efficiency; moreover, geometric properties of the equation such as particle num-
ber and energy conservation are well captured.

Regarding the spatial discretisation of the GPE, we consider two approaches. In the
unbounded domain, we employ a spectral decomposition of the solution into Hermite basis
functions; on the other hand, restricting the equation to a sufficiently large bounded
domain, Fourier techniques are applicable. For the time integration of the GPE, we study
various exponential operator splitting methods of convergence orders two, four, and six.

Our main objective is to provide accuracy and efficiency comparisons of exponential
operator splitting Fourier and Hermite pseudospectral methods for the time evolution of
the GPE. Furthermore, we illustrate the effectiveness of higher-order time-splitting meth-
ods compared to standard integrators in a long-term integration.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

In the present paper, we are concerned with the numerical solution of the time-dependent Gross–Pitaevskii Equation (GPE)
[14,21]
i�h@twðx; tÞ ¼ ð� �h2

2mDþ VðxÞ þ gjwðx; tÞj2Þwðx; tÞ; ð1Þ
describing the wave function w : Rd � RP0 ! C of a Bose–Einstein condensate. Our main objective is to compare space and
time discretisations that are based on Hermite and Fourier spectral methods and exponential splitting methods of
orders two, four, and six; moreover, we illustrate the effectiveness of higher-order splitting methods compared to stan-
dard integrators in a long-term integration. In most cases, we use the ground state of the GPE as a reliable reference
solution, computed by employing the Hermite spectral decomposition and directly minimising the energy functional,
see [3,8].

Over the past years, numerous works were devoted to the discretisation of nonlinear Schrödinger equations; we mention
[1,2,4,10,11,20,24,25], where a particular emphasis is given to accuracy and the preservation of geometric properties. For the
spatial discretisation of the GPE, Hermite pseudospectral methods are used in [2,11]; on the other hand, restricting the
. All rights reserved.
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problem to a bounded domain, Fourier spectral methods are applicable, see Bao et al. [1]. The favourable behaviour of the
second-order Strang splitting and a fourth-order time-splitting scheme regarding accuracy, efficiency, and the conservation
of geometric properties is illustrated in [1,2]. For the cubic Schrödinger equation, numerical comparisons of different space
and time discretisations are provided by Pérez–García and Liu [20].

The present work is organised as follows. In Section 2, we restate the time-dependent d-dimensional GPE in a norma-
lised form. Further, we briefly discuss the special case of a harmonic potential and vanishing interaction that leads to the
time-dependent linear Schrödinger equation; in this situation, the ground and the excited states are given by the Hermite
functions. The linear Schrödinger equation also motivates the consideration of a Hermite spectral decomposition for the
nonlinear GPE. Sections 3 and 4 are devoted to numerical discretisations of the GPE based on Hermite and Fourier spec-
tral methods in space and exponential operator splitting methods in time; we note that an extension to systems of cou-
pled GPEs is straightforward, see also Caliari et al. [8]. In Section 5, we present several illustrations regarding accuracy,
efficiency, and the preservation of geometric properties. The numerical experiments are carried out for problems in two
space dimensions; however, in view of the tensor product structure of the spatial discretisation, we expect our conclu-
sions to be maintained in three space dimensions as well. In Section 6, we finally summarise our results and discuss open
questions.

The following notations are tacitly employed throughout. For a multi-index of integer numbers
m ¼ ðm1;m2; . . . ;mdÞ 2 Zd, the relation 6 is understood componentwise. For an element x ¼ ðx1; x2; . . . ; xdÞ 2 Rd, we denote
by jxj its Euclidean norm. As usual, the d-dimensional Laplacian is defined through D ¼ @2

x1
þ � � � þ @2

xd
. The Lebesgue space

L2ðXdÞ of square integrable complex-valued functions on Xd # Rd is endowed with scalar product ð�j�ÞL2ðXdÞ and associated
norm k � kL2ðXdÞ defined by
ðf jgÞL2ðXdÞ ¼
Z

Xd
f ðxÞgðxÞdx; kfkL2ðXdÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðf jf ÞL2ðXdÞ

q
; f ; g 2 L2ðXdÞ;
for notational simplicity, we omit the domain in the scalar product and norm.
2. Gross–Pitaevskii equation

In the present section, we state a normalisation of the d-dimensional GPE (1) that is obtained by a linear transformation of
the spatial variable and a rescaling of the wave function, see also Caliari et al. [8]; moreover, we introduce the ground and
excited state solutions of the GPE by means of a nonlinear eigenvalue problem. Existence and uniqueness results for time-
dependent Schrödinger equations are found in Cazenave [9, Chapters 4 and 6].
2.1. Time-dependent Gross–Pitaevskii equation

Henceforth, we consider the following normalisation of the time-dependent Gross–Pitaevskii equation (GPE):
i@twðx; tÞ ¼ ð� 1
2 Dþ VðxÞ þ #jwðx; tÞj2Þwðx; tÞ; t P 0; ð2aÞ
the equation is subject to asymptotic boundary conditions on the unbounded spatial domain Rd, i.e., we require wðx; tÞ ! 0 as
jxj ! 1. Without any loss of generality, we further suppose the initial value wð�;0Þ 2 L2ðRdÞ to satisfy the normalisation
condition
kwð�;0Þk2
L2 ¼ 1: ð2bÞ
In the present paper, we restrict ourselves to the case of a scaled harmonic potential V ¼ 1
2 VH where
VHðxÞ ¼
Xd

j¼1

c4
j x2

j ; cj > 0; 1 6 j 6 d; ð2cÞ
however, as indicated in Section 4, our approach extends to more general real-valued potentials V. Also, we assume the cou-
pling constant # to be non-negative, that is, we restrict ourselves to a defocusing condensate.

As proven in Cazenave [9, Thm 4.1.1], a fundamental property of (2) is the preservation of the particle number
kwð�; tÞk2
L2 ¼ kwð�;0Þk2

L2 ¼ 1; t P 0; ð3aÞ
see (2b). Moreover, the energy functional
Eðwð�; tÞÞ ¼ ðð�1
2Dþ V þ 1

2#jwð�; tÞj
2Þwð�; tÞjwð�; tÞÞL2 ð3bÞ
is time-independent, that is, it holds Eðwð�; tÞÞ ¼ Eðwð�;0ÞÞ for t P 0; we further require Eðwð�;0ÞÞ <1.
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2.2. Ground and excited states

The ground state solution of the GPE (2) is a solution of the form
wðx; tÞ ¼ e�ilt/ðxÞ; x 2 Rd; t P 0; ð4aÞ
with l 2 R and / a real-valued (positive) function that minimises the energy functional Eðwð�; tÞÞ ¼ Eð/Þ, see (3b). Inserting
(4a) into (2a) and using (3a) yields
ð�1
2Dþ V þ #/2Þ/ ¼ l/; l ¼ Eð/Þ þ 1

2#ð/
3j/ÞL2 : ð4bÞ
Further solutions of the GPE (2) that allow a decomposition (4a) and thus solve the nonlinear eigenvalue problem (4b) are
called excited state solutions.

We next consider the special case where the parameter # vanishes and the potential V is given by the scaled harmonic
potential VH, see (2c). In this situation, the GPE (2) reduces to the linear Schrödinger equation
i@twðx; tÞ ¼ 1
2 �Dþ VHðxÞð Þwðx; tÞ; t P 0;
and, as well known, the Hermite functions with associated eigenvalues
HmðxÞ ¼
Yd

j¼1

Hmj
ðxjÞe�

1
2ðcjxjÞ2

� �
; km ¼

Xd

j¼1

c2
j mj þ

1
2

� �
; ð5aÞ
solve (4b) for # ¼ 0, that is, for any m P 0 it holds
1
2 �Dþ VHð ÞHm ¼ kmHm; ð5bÞ
here, we let Hmj
denote the Hermite polynomial of degree mj, normalised with respect to the weight function wjðxjÞ ¼ e�ðcjxjÞ2 .

The Hermite functions ðHmÞ form an orthonormal basis of the function space L2ðRdÞ; in particular, it holds ðHkjHmÞL2 ¼ dkm

with Kronecker delta dkm.
3. Pseudospectral methods

In the following, we discuss two approaches for the spatial discretisation of the GPE that are based on Hermite and Fourier
spectral decompositions of the solution, respectively.
3.1. Hermite pseudospectral method

In this section, we let m 2 Zd be a multi-index with non-negative components, i.e., we suppose m P 0; hence, for a family ðamÞ
we write
X

m

am ¼
X
mP0

am
for short. Using that the Hermite functions ðHmÞ form an orthonormal basis of the function space L2ðRdÞ, the representation
wð�; tÞ ¼
X

m

wmðtÞHm; wmðtÞ ¼ wð�; tÞjHmð ÞL2 ; ð6aÞ
follows, see also Section 2.2; besides, due to Parseval’s equality, the identity
kwð�; tÞk2
L2 ¼

X
m

jwmðtÞj
2 ð6bÞ
is valid. Truncating the infinite sum in (6a) yields
wMð�; tÞ ¼
X

M
m

wmðtÞHm ¼
X

m6M�1

wmðtÞHm ð7aÞ
with coefficient vector wðtÞ ¼ ðwmðtÞÞm6M�1 given by (6a); the above relation (6b) implies
kwMð�; tÞk
2
L2 ¼ jwðtÞj2 ¼

X
M

m

jwmðtÞj
2
: ð7bÞ
Results on the approximation error of the Hermite spectral method are found in Boyd [6, Chapter 17.4]. For computing
numerically the coefficients wmðtÞ given by (6a), we apply the following approximation:
wmðtÞ ¼
Z

Rd
wðx; tÞHmðxÞdx �

X
M

k

xkejnk j2 wðnk; tÞHmðnkÞ ð8Þ
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with nk ¼ ðnk1
; . . . ; nkd

Þ and xk ¼ xk1 � . . . �xkd
; here, nkj

and xkj
denote the nodes and weights of the Gauss–Hermite quad-

rature formula relative to wjðxjÞ ¼ e�ðcjxjÞ2 .

3.2. Fourier pseudospectral method

In order to apply Fourier techniques for the spatial discretisation of (2), we restrict the unbounded domain to a bounded
set Xd; for simplicity, we assume X ¼ ½�a; a� to be a symmetric interval with a > 0 chosen sufficiently large. For the remain-
der of this section, we denote by m 2 Zd a multi-index of integer numbers; the Lebesgue space L2ðXdÞ is endowed with the
scalar product
ðf jgÞL2 ¼
Z

Xd
f ðxÞgðxÞdx; f ; g 2 L2ðXdÞ;
and corresponding norm. In contrast to (5b), we now employ the eigenvalue decomposition
�1
2DFm ¼ kmFm
involving the Fourier basis functions ðFmÞ and associated eigenvalues ðkmÞ that are given by
FmðxÞ ¼
Yd

j¼1

Fmj
ðxjÞ; Fmj

ðxÞ ¼ 1ffiffiffiffi
2a
p eimjp 1

axþ1ð Þ; km ¼ 1
2a2p2

Xd

j¼1

m2
j ;
in particular, it holds (FkjFmÞL2 ¼ dkm. Therefore, similarly to (6a), the representation
wð�; tÞ ¼
X

m

wmðtÞFm; wmðtÞ ¼ ðwð�; tÞjFmÞL2 ; ð9Þ
follows for elements in L2ðXdÞ; as before, the coefficients ðwmðtÞÞ satisfy (6b). For some integer M1 P 0 we henceforth set
M ¼ 2M1. Truncating the infinite sum in (9) yields
wMð�; tÞ ¼
X

M
m

wmðtÞFm ¼
X

�M16m6M1�1

wmðtÞFm; ð10Þ
the coefficient vector wðtÞ ¼ ðwmðtÞÞ�M16m6M1�1 fulfills relation (7b). Results on the favourable approximation behaviour of the
Fourier spectral method are found in Boyd [6, Chapter 2]. For computing numerically the coefficients wmðtÞ given by (9), we
apply the trapezoidal ruleZ
wmðtÞ ¼
Xd

wðx; tÞFmðxÞdx � x
X

M
k

wðnk; tÞFmðnkÞ; ð11Þ
here, we set nk ¼ ðnk1
; . . . ; nkd

Þ with equidistant grid points nkj
¼ 1

M1
akj and further x ¼ ð 1

M1
aÞd.

4. Time-splitting methods

In this section, we introduce exponential operator splitting methods for the time integration of evolutionary nonlinear
Schrödinger equations such as (2). For a detailed treatment of splitting and composition methods for ordinary differential
equations, we refer to [15,19]. In particular for the GPE, the favourable behaviour of a second-order Strang type splitting
and a fourth-order splitting scheme regarding accuracy, efficiency, and the preservation of geometric properties is confirmed
by numerical experiments given in [1,2]; a convergence analysis for Strang type splitting methods is provided by Caliari et al. [7],
see also Lubich [17].

In order to state the considered numerical method class, it is convenient to formulate the partial differential equation (2a)
as an abstract ordinary differential equation; more precisely, suppressing the spatial variable in the equation and setting
uðtÞ ¼ wð�; tÞ, we obtain an initial value problem of the form
u0ðtÞ ¼
�

Aþ BðuðtÞÞ
�

uðtÞ; t P 0; uð0Þ given: ð12Þ
Exponential operator splitting methods rely on a decomposition of the right-hand side of the differential equation into two
parts in such a way that the resulting differential equations
v 0ðtÞ ¼ AvðtÞ; t P 0; vð0Þ given; ð13aÞ
w0ðtÞ ¼ B wðtÞð ÞwðtÞ; t P 0; wð0Þ given; ð13bÞ
are solvable in a favourable way. Regarding the Hermite and Fourier pseudospectral methods, we distinguish the following
approaches:
Hermite : A ¼ 1
2iðD� VHÞ; BðuðtÞÞ ¼ �i V � VH þ #juðtÞj2

� �
;

Fourier : A ¼ 1
2iD; BðuðtÞÞ ¼ �i V þ #juðtÞj2

� �
;
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see also (2).
On the one hand, the solution of the initial value problem (13a) equals
Table 1
Expone

Method

McLach
Strang
BM4-1
BM4-2
M4
S4
Y4
BM6-1
BM6-2
BM6-3
KL6
S6
Y6
vðtÞ ¼ etAvð0Þ; t P 0: ð14aÞ
The evaluation of v relies on the representation of the initial value with respect to the Hermite and Fourier basis functions,
see Section 3; more precisely, provided that vð0Þ can be decomposed into the basis functions ðBmÞ, where Bm ¼Hm or
Bm ¼Fm, respectively, the exact solution value at time t P 0 is given by
vðtÞ ¼
X

m

vme�itkmBm; t P 0; vð0Þ ¼
X

m

vmBm: ð14bÞ
For the numerical evaluation of vðtÞ, we collocate (13a) at the nodes ðnkÞ and approximate the coefficients ðvmÞ by means of
the Gauss–Hermite or the trapezoid quadrature formula, respectively, see (8) and (11). Clearly, the numerical approximation
to vðtÞ can be evaluated at any x; however, much less computational effort is required when vðtÞ is evaluated numerically at
the quadrature nodes. In fact, for the Hermite pseudospectral method the values HmðnkÞ can be stored; for the Fourier
pseudospectral method the Fast Fourier Transform is applicable. On the other hand, regarding the initial value problem
(13b), the exact solution is available; namely, due to the fact that the differential equation for w leaves jwðtÞj invariant, it
follows BðwðtÞÞ ¼ Bðwð0ÞÞ and thus
wðtÞ ¼ etBðwð0ÞÞwð0Þ; t P 0; ð14cÞ
see also Caliari et al. [7]. In the numerical computation, we again collocate the equation at the quadrature nodes ðnkÞ; then,
the approximate solution is obtained by a rapid componentwise multiplication.

The basic idea of exponential operator splitting methods is to compose the solutions of (13) in a suitable way. A widely
used scheme is based on the second-order Strang [22] or symmetric Trotter [27] splitting; for a step size h > 0 and an initial
value u0 � uð0Þ, approximations un to the exact solution values uðnhÞ, n P 0, are given by the recurrence formula
un ¼ e
1
2hBðUnÞUn; Un ¼ ehAe

1
2hBðun�1Þun�1; or ð15aÞ

un ¼ e
1
2hAe

1
2hBðUnÞUn; Un ¼ e

1
2hAun�1; ð15bÞ
respectively. We note that for the Fourier spectral method the solution (14a) satisfies the periodic boundary conditions im-
posed implicitly by the spectral approximation; therefore, this is also true for the auxiliary stage Un and the numerical solu-
tion value un in (15b).

Higher-order exponential operator splitting methods for (12) can be cast into the following form:
un ¼ ebshBðUn;sÞUn;s;

Un;1 ¼ ea1hAun�1; Un; j ¼ eajhAebj�1hBðUn; j�1ÞUn; j�1; 2 6 j 6 s;
ð16Þ
with real coefficients aj; bj 2 R, 1 6 j 6 s. Example methods were proposed in [5,16,18,23,28], e.g. see also [15,19]. In
Section 5, we include numerical experiments for the splitting schemes of orders two, four, and six, respectively, that are
collected in Table 1.

As shown in Thalhammer [26], any splitting method retains its classical convergence order for time-dependent linear
Schrödinger equations, provided that the initial value and the potential fulfill suitable regularity requirements. The numer-
ical experiments presented in Section 5.2 and the theoretical analysis for the second-order Strang type splitting (15) given in
[7,17] indicate that this result is also true for nonlinear Schrödinger equations with sufficiently regular solutions; however,
extending the convergence analysis to general exponential operator splitting methods is out of the scope of the present
work.
ntial operator splitting methods of order p involving s compositions.

Order #Compositions

lan McLachlan [15, V. 3.1, (3.3), pp. 138–139] p = 2 s = 3
Strang (15a) p = 2 s = 2
Blanes and Moan [5, Table 2, PRKS6] p = 4 s = 7
Blanes and Moan [5, Table 3, SRKNb

6] p = 4 s = 7
McLachlan [15, V. 3.1, (3.6), p. 140] p = 4 s = 6
Suzuki [15, II. 4, (4.5), p. 41] p = 4 s = 6
Yoshida [15, II. 4, (4.4), p. 40] p = 4 s = 4
Blanes and Moan [5, Table 2, PRKS10] p = 6 s = 11
Blanes and Moan [5, Table 3, SRKNb

11] p = 6 s = 12
Blanes and Moan [5, Table 3, SRKNa

14] p = 6 s = 15
Kahan and Li [15, V. 3.2, (3.12), pp. 144] p = 6 s = 10
Suzuki [15, II. 4, (4.5), pp. 41] p = 6 s = 26
Yoshida [15, V. 3.2, (3.11), pp. 144] p = 6 s = 8
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Fig. 1. Spatial error of the Hermite (left picture) and Fourier (right picture) spectral method.
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We finally note that the total particle number (3a) is preserved by exponential operator splitting methods (16) applied to
the GPE (2); this follows from the conservation of the L2-norm when solving the differential equations in (13).

5. Numerical experiments

In this section, we present several numerical experiments comparing time-splitting spectral methods when applied to the
two-dimensional GPE (2) involving a harmonic potential. Our experiments mainly rely on the computation of the ground
state and its propagation, see Caliari et al. [8]. Consequently, making use of the fact that the solutions are even functions,
it would be possible to reduce the number of required basis functions for the Hermite and Fourier spectral methods; how-
ever, in our presentation, we did not take into account this reduction. For the Fourier spectral method, we henceforth set
X ¼ ½�15;15�.

The numerical experiments were implemented in MATLAB; the code is available from the authors on request. In the
Hermite case, we compute and store once and for all the values HmðnkÞ; in two space dimensions, it is then possible to
evaluate each of the double sums in (7a) and (8) by two matrix–matrix multiplications at a cost of OðM3Þ. For the Fou-
rier transforms (10) and (11) the MATLAB–functions ifft2 and fft2 of cost OðM2 log MÞ are used. The long-term com-
putations were carried out on the Opteron cluster.1 of the High Performance Computing Consortium at the University of
Innsbruck.

5.1. Spatial error

In order to illustrate the accuracy of the Hermite and Fourier spectral methods, we use the ground state solution of the
two-dimensional GPE (2) computed with 256� 256 degrees of freedom as reference solution w, see (4a); we choose
VðxÞ ¼ VHðxÞ ¼ 1

2 ðx2
1 þ x2

2Þ. For the Hermite spectral method, we evaluate wðx;0Þ at the Gauss–Hermite quadrature points
corresponding to M ¼ 2i, 4 6 i 6 8. We then compute an approximation ewMðx;0Þ to wMðx;0Þ by means of (7a), where the
spectral coefficients are obtained from (8). Finally, the difference kwMð�;0Þ � wð�;0ÞkL2 is computed through (7b). The same
approach is employed for the Fourier spectral method. First, the reference solution wðx;0Þ is evaluated at 256� 256
equidistant grid points in the square ½�15;15� � ½�15;15�; then, an approximation corresponding to M ¼ 2i, 4 6 i 6 8, is
determined by (10) and (11), and, finally, the error is computed through (7b).

The results displayed in Fig. 1 show that for M 6 128 and # 6 100 the Hermite spectral error is smaller than the Fourier
spectral error. Further, for the Hermite spectral method it is possible to retain the original solution only up to a Hermite trans-
form error of about 10�14, even using the same degree of freedom 256� 256, whereas the Fourier transform error is of the
magnitude of the machine precision.

The Gauss–Hermite quadrature nodes and weights are obtained as solutions of an eigenvalue problem, see Gautschi
[12,13] and references therein; furthermore, the Hermite functions are computed through a recurrence relation. Numerical
experiments showed that it would be possible to reduce the Hermite transform error by using variable precision arithmetic for
the computation of the quadrature nodes and weights; however, due to the additional computational effort required, we did
not further exploit this approach.

We finally note that the artificial boundary conditions introduced by the Fourier spectral method seem to have no effect
on the approximation of the ground state.
1 See http://unix-docu.uibk.ac.at/zid/systeme/unix-hosts/hc-cluster/.

http://unix-docu.uibk.ac.at/zid/systeme/unix-hosts/hc-cluster/
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5.2. Temporal order

We next determine the convergence orders of various exponential operator splitting methods listed in Table 1 when ap-
plied to the two-dimensional GPE (2) with harmonic potential VðxÞ ¼ VHðxÞ.

To this purpose, we consider the time evolution of the ground state wðx;0Þ up to a final time T ¼ 1, see also (4a). First of
all, we verified the reliability of our code comparing the two numerical reference solutions obtained for 128� 128 Hermite
and Fourier basis functions, respectively, and the time step size h ¼ 2�11 with the exact solution given by
wðx; TÞ ¼ e�ilTwðx;0Þ. We then computed the temporal convergence orders in a standard way for different time step sizes
ranging from 2�9 to 1. An accuracy comparison of different time-splitting spectral methods with respect to a common ref-
erence solution will be given in Section 5.3.

The results obtained for # ¼ 1 and # ¼ 100, respectively, are displayed in Figs. 2 and 3; the slope of the dashed-dotted line
reflects the expected classical order. We refer to the fourth- and sixth-order splitting schemes by the initials of the authors
and their orders of convergence, see also Table 1. In particular, the partitioned Runge–Kutta methods PRKS6 and PRKS10 as
well as the Runge–Kutta–Nyström methods SRKNb

6, SRKNb
11, and SRKNa

14 by Blanes and Moan [5, Tables 2 and 3] are denoted
by BM4-1, BM6-1 and BM4-2, BM6-2, BM6-3, respectively; we note that the schemes SRKNb

6 (BM4-2) and SRKNa
14 (BM6-3)

are claimed to be favourable in view of their small error constants.
The Hermite and Fourier space discretisations show a similar behaviour. As expected, for # ¼ 1 the temporal convergence

order is clearly obtained for each splitting method. As soon as the nonlinear part increases, i.e. for # ¼ 100, the error in-
creases; furthermore deflections in the temporal order might occur for larger time step sizes.

In order to illustrate the efficiency of the considered splitting methods, we further include the temporal error versus the
total number of the spectral transformations reflecting the principal computational cost in the time integration, see Figs. 4
and 5; the displayed results confirm the favourable behaviour of the schemes BM4-2 and BM6-3. Although the cost of the
Fast Fourier Transform in two space dimensions is OðM2 log MÞ compared with a cost of OðM3Þ for the Hermite transform,
in the present situation, for values M 6 128, the latter turns out to be comparable or even faster; this behaviour is well
known, see Boyd [6, Chapter 10] and also observed in Fig. 6 (right picture), where the mean computational cost of a single
spectral transform in two space dimensions is given.

5.3. Long-term integration

In order to illustrate the effectiveness of higher-order time-splitting Fourier and Hermite spectral methods in long-term
integrations, we consider the two-dimensional time-dependent GPE (2) with harmonic potential VðxÞ ¼ 2VHðxÞ and # ¼ 1 on
the time interval ½0; T� where T ¼ 400; as initial value we choose the ground state of the GPE with harmonic potential
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Fig. 2. Temporal orders of various time-splitting Hermite (first row) and Fourier (second row) spectral methods when applied to the two-dimensional GPE
(2) with # ¼ 1.
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Fig. 3. Temporal orders of various time-splitting Hermite (first row) and Fourier (second row) spectral methods when applied to the two-dimensional GPE
(2) with # ¼ 100.
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Fig. 4. Efficiency of various time-splitting Hermite (first row) and Fourier (second row) spectral methods when applied to the two-dimensional GPE (2) with
# ¼ 1.
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VðxÞ ¼ VHðxÞ at t ¼ 0. Following Dion and Cancès [11] we call this experiment breathing; for 0 6 t 6 13 the solution is dis-
played in Fig. 7.

Among the previously considered time-splitting methods, we select the widely used Strang splitting as well as the meth-
ods SRKNb

6 (BM4-2) and SRKNa
14 (BM6-3) by Blanes and Moan [5]. A reference solution is computed by means of the scheme
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Fig. 5. Efficiency of various time-splitting Hermite (first row) and Fourier (second row) spectral methods when applied to the two-dimensional GPE (2) with
# ¼ 100.
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SRKNa
14 with 128� 128 degrees of freedom and a temporal step size corresponding to N ¼ 217 time steps. For different com-

binations of degrees of freedom and temporal step sizes, constrained to be equal to powers of two, we compute the global
error in the L2-norm and the total number of spectral transformations; further, we measure the particle number (3a) and
energy (3b) conservation with respect to the initial values. Prescribing certain tolerances for the global discretisation error,
the optimal performances corresponding to the smallest values of the required degrees of freedom and the number of spec-
tral transformations are displayed in Table 2.

In the present situation, for any time integration method, the number of basis functions required for the Hermite spectral
method is always smaller than the number of basis functions required for the Fourier spectral method; moreover, in many
cases, the number of Hermite spectral transformations is smaller than the number of Fourier spectral transformations. This
observation is in accordance with Figs. 2 and 4 showing that the Hermite spectral method is slightly more accurate. Com-
paring the time-splitting methods, the fourth and sixth-order schemes, which behave in a similar manner, require less spec-
tral transformations than the second-order Strang splitting and thus are more efficient; moreover, for the Strang splitting, it
was not possible to reach a tolerance smaller than 10�4 within the maximal number of 215 timesteps. For each time-splitting
spectral method, the particle number and the energy are well preserved.
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Table 2
Time integration of the GPE (‘‘breathing”) with # ¼ 1 up to T ¼ 400. For a tolerance (Tol.), the degree of freedom (D.o.f.), the number of transformations
(#Transf.), the particle number conservation error (Dpn ¼ jkwð�;0Þk2

L2 � kwð�; TÞk2
L2 j), and the energy conservation error (DE ¼ jEðwð�;0ÞÞ � Eðwð�; TÞÞj) are reported.

Tol. M D.o.f. #Transf. Dpn DE

< 10�2 Hermite 2 32� 32 16384 2:6 � 10�11 4:2 � 10�6

< 10�2 Fourier 2 64� 64 32768 3:6 � 10�13 1:6 � 10�6

< 10�2 Hermite 4 32� 32 6144 9:7 � 10�12 1:1 � 10�5

< 10�2 Fourier 4 64� 64 12288 1:7 � 10�13 9:1 � 10�7

< 10�2 Hermite 6 32� 32 14337 2:3 � 10�11 3:2 � 10�8

< 10�2 Fourier 6 64� 64 7169 1:1 � 10�13 6:8 � 10�6

< 10�2 Hermite rk4 32� 32 65532 2:1 � 10�5 1:2 � 10�4

< 10�2 Fourier rk4 64� 64 524284 6:4 � 10�10 3:7 � 10�9

< 10�2 Hermite ode45 32� 32 208376 2:6 � 10�8 1:5 � 10�7

< 10�2 Fourier ode45 64� 64 1132436 5:6 � 10�12 3:1 � 10�11

< 10�4 Hermite 4 32� 32 12288 1:9 � 10�11 2:6 � 10�9

< 10�4 Fourier 4 128� 128 12288 1:6 � 10�12 1:8 � 10�9

< 10�4 Hermite 6 32� 32 14337 2:3 � 10�11 3:2 � 10�8

< 10�4 Fourier 6 128� 128 14337 2:0 � 10�12 2:5 � 10�8

< 10�4 Hermite rk4 32� 32 131068 6:5 � 10�7 3:8 � 10�6

< 10�4 Fourier rk4 128� 128 524284 6:4 � 10�10 3:7 � 10�9

< 10�4 Hermite ode45 32� 32 208376 2:6 � 10�8 1:5 � 10�7

< 10�4 Fourier ode45 128� 128 1411226 1:3 � 10�9 9:4 � 10�7

< 10�6 Hermite 4 64� 64 24576 1:0 � 10�10 1:1 � 10�10

< 10�6 Fourier 4 128� 128 49152 6:7 � 10�12 1:2 � 10�11

< 10�6 Hermite 6 64� 64 28673 1:2 � 10�8 2:1 � 10�10

< 10�6 Fourier 6 128� 128 28673 4:2 � 10�12 8:7 � 10�12

< 10�6 Hermite rk4 64� 64 524284 6:4 � 10�10 3:7 � 10�9

< 10�6 Fourier rk4 128� 128 524284 6:4 � 10�10 3:7 � 10�9

< 10�6 Hermite ode45 64� 64 509816 3:6 � 10�10 2:1 � 10�9

< 10�6 Fourier ode45 128� 128 1411448 2:2 � 10�12 1:1 � 10�11
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We also performed this long-term integration using two standard explicit methods; we chose a constant step size Runge–
Kutta method of order four, see also Dion and Cancès [11], and further the adaptive Runge–Kutta method by Dormand and
Prince implemented in the MATLAB-routine ode45. As the stiffness of the problem restricts the maximal temporal step size,
the time-splitting methods outperform the explicit Runge–Kutta methods.
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For larger values of #, additional experiments not reported here showed that the Fourier spectral method becomes favour-
able; moreover, smaller time step sizes are required in order to reach the prescribed tolerances, see also Section 5.1. The
influence of # on the convergence behaviour of time-splitting spectral methods should be investigated further.

6. Conclusions and future work

We devoted the present paper to high-accuracy discretisations of the time-dependent GPE (2), based on Hermite and Fou-
rier pseudospectral methods and exponential operator splitting methods. In particular, we presented numerical comparisons
regarding accuracy and efficiency. In most of our experiments, we used the ground state solution of (2) as a reliable reference
solution.

As expected, our numerical experiments showed that the spectral methods perform well regarding accuracy, efficiency,
and the preservation of geometric properties. For the time integration we compared the second order Strang splitting with
fourth and sixth-order splitting methods given in Blanes and Moan [5]; the higher-order schemes proved to be superior
when low tolerances are required or a long-term integration is carried out. Furthermore, each time-splitting method outper-
formed the explicit Runge–Kutta methods in the ‘‘breathing” experiment.

Following [17,26], it remains open to provide a stability and convergence analysis for high-order exponential operator
splitting methods when applied to the time-dependent GPE (2). Furthermore, it is of interest to investigate the accuracy
of time-splitting methods when the nonlinear part increases.
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