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Abstract
A general model for the description of, e.g., an extensible beam is studied,
incorporating weak, viscous and strong as well as Balakrishnan–Taylor
damping. Convergence of a sequence of approximate solutions, resulting from
a time discretization scheme, towards a weak solution is shown. This also
proves the existence of a weak solution.

Mathematics Subject Classification: 74B20, 47J35, 74H20, 74K10, 74K20,
65M12, 35Q72

1. Introduction

1.1. Statement of the problem

A variety of problems in elastodynamics require to take into account nonlinear as well
as nonlocal phenomena. In this paper, we study a model involving a spatially nonlocal
semilinearity and (nonlinear) damping terms for a scalar quantity (e.g. the mathematical
description of the transverse motion of a viscoelastic, extensible beam in a viscous medium).
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The class of equations we shall consider reads as

utt + α�2u −
(

β + γ

∫
�

|∇u|2 dx + δ

∣∣∣∣∫
�

∇u · ∇ut dx

∣∣∣∣q−2 ∫
�

∇u · ∇ut dx

)
�u

+ ζu + κut − λ�ut + µ�2ut = f in � × (0, T ), (1.1)

where � ⊂ R
d (d ∈ N) is a bounded domain, T > 0 the time under consideration, and

u : � × [0, T ] → R the unknown. Moreover, α (elasticity coefficient) and γ (extensibility
coefficient) are positive parameters, whereas δ (Balakrishnan–Taylor damping coefficient), λ

(viscous damping coefficient) and µ (strong damping coefficient) are nonnegative. For the
real parameters β (axial force coefficient), ζ , and κ (weak damping coefficient), however, no
sign conditions are imposed. The exponent q is in [2, ∞). The term with δ is known to be a
damping of Balakrishnan–Taylor type, which appears in the context of the control of a flexible
structure (see [4]).

We shall study (1.1) in the presence of viscous (λ > 0) and strong (µ > 0) damping.
Furthermore, the analysis includes the more intrigued case λ = µ = 0 under the restriction
q = 2. At first reading, it might be difficult to keep track of the different terms incorporated in
the considered class of problems. We, therefore, recommend to at first disregard the distinction
of the parameter ranges, which is needed in certain parts of the manuscript, and to focus on
the case λ, µ > 0.

For (1.1), we shall consider the following types of boundary conditions:

• hinged boundary described by the condition

u = �u = 0 on ∂� × (0, T ), (1.2)

• clamped boundary described by the condition

u = n · ∇u = 0 on ∂� × (0, T ), (1.3)

where n denotes the outer normal. For a discussion of several types of boundary conditions, we
also refer to Timoshenko and Woinowsky-Krieger [32]. Hinged boundary conditions describe,
e.g. an edge of a plate that is simply supported such that the deflection and the bending moments
along the edge are zero, whereas clamped means a built-in edge (see [32, p 83]).

Note that boundary conditions prescribed for second order spatial derivatives are natural
boundary conditions whereas the other conditions (Dirichlet or Neumann boundary conditions)
here are essential boundary conditions since spatial derivatives of fourth order occur in the
equation. One may also consider mixed boundary conditions with the above conditions on
parts of ∂� only. For readability, we only focus on the two cases above.

We, finally, supplement the equation by initial conditions

u(·, 0) = u0, ut (·, 0) = v0 in �. (1.4)

1.2. Literature survey

Equation (1.1) is a model for the description of vibrations of an extensible (viscoelastic)
beam. The equation also arises in connection with other applications such as axial flow-
induced oscillations, fluttering pipes conveying a fluid, the fluttering of a panel (see [25]) or
the dynamic buckling of imperfect viscoelastic shallow arches (see [19]).

The first reference to (1.1) but without damping terms is Woinowsky-Krieger [33].
The main idea was to assume a nonlinear dependence of the strain on the gradient of the
displacement. (For a derivation of (1.1) but with weak damping only, we also refer to
Mettler and Weidenhammer [26]. For a readable derivation of the related equations for
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thin plates, together with an exposition of the corresponding mathematical theory, see also
Langenbach [21].) The first mathematical studies, dealing with the question of well-posedness
(in the sense of weak solutions) and regularity, are due to Dickey [10] and Ball [1]. The long-
term behaviour of solutions to (1.1) (with weak damping only, i.e. with δ = λ = µ = 0
but κ > 0) and the existence of exponential attractors has been considered in Eden and
Milani [12], see also Taboada and You [29]. The case of weak damping has also been
considered in Clark et al [9] (existence and uniqueness of strong solutions in the case of
moving boundary conditions). Well-posedness (in the sense of weak solutions), regularity,
and asymptotic behaviour of solutions in the case of strong damping (µ > 0, κ �= 0) as well
as damping of Balakrishnan–Taylor type (δ > 0, q = 2) has been studied in Ball [2]. For
the analysis of a numerical method such as a finite difference method for this equation, see
also Choo and Chung [8] and the references cited therein. Damping with λ > 0 but µ = 0
and damping of Balakrishnan–Taylor type (δ > 0, q � 2) has been analysed in You [34],
where existence and uniqueness of mild solutions as well as the existence of absorbing sets
and inertial manifolds is shown. For the model equations with Balakrishnan–Taylor damping
with exponent (δ > 0, q � 2), see also Bass and Zes [4]. For δ = λ = 0 but µ > 0,
the existence of inertial manifolds has been studied in Bianchi and Marzocchi [5]. In Giorgi
et al [17], a modification of the equations (without damping) leading to a time-delay equation
has been considered in order to incorporate viscoelastic effects, see also Zaraı̈ and Tatar [35]
for a similar nonlocal-in-time generalization.

All the afore-mentioned contributions deal with the one-dimensional case only. In
Biler [6], the exponential decay in the case of weak damping has been shown for
(1.1) in an abstract setting, allowing also the multi-dimensional case. A similar type
of equations (including the extensibility term and including a semilinear friction term
but excluding other damping terms) has been studied, in the multi-dimensional case, in
Kouémou-Patcheu [20].

1.3. Objective

Our aim in this paper is a twofold: On the one hand, we wish to generalize the known existence
results. On the other, we want to prove convergence of a simple temporal semi-discretization,
which is a modification of the well-known leap-frog scheme. Indeed, we prove convergence
of a sequence of approximate solutions and show that the limit is a weak solution.

In Ball [1], the case δ = ζ = κ = λ = µ = 0 has been treated in one spatial dimension
for both, hinged and clamped boundary conditions. Existence of weak solutions (in the sense
of definition 2.1) has been proven via proving (weak and weak*) convergence of a Galerkin
approximation (using monotonicity arguments). Moreover, continuous dependence on the
initial data and thus uniqueness has been shown. In Ball [2], the case ζ = λ = 0 is dealt with.
The Balakrishnan–Taylor damping term is now incorporated but with exponent q = 2 in the
case of strong damping (µ > 0). The Balakrishnan–Taylor damping with arbitrary exponent
q � 2 in the case of viscous damping (λ > 0) with ζ = κ = µ = 0 has been studied in
You [34], where, in particular, existence of a mild solution is shown in the case of hinged
boundary conditions.

In this work, we prove existence of weak solutions incorporating the Balakrishnan–Taylor
damping with arbitrary q ∈ [2, ∞) even if λ > 0 or if µ > 0. If λ = µ = 0, we are only able
to incorporate the Balakrishnan–Taylor damping term with exponent q = 2.

Furthermore, we are able to prove strong convergence results, which are of interest from
the numerical point of view. In contrast to Ball [1, 2], we do not investigate the question of
regularity or existence of classical solutions and thus do not derive any error estimates.
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The interpretation of the Balakrishnan–Taylor damping term is somewhat intrigued if
λ = µ = 0 since ut (·, t) (t ∈ (0, T )) can only be shown to take values in L2(�). If λ > 0
or µ > 0, we obtain additional regularity of the solution such that the term is well defined. If
λ = µ = 0, we may, at least in the case of clamped boundary conditions, carry out integration
by parts and interpret the term as

δ

∣∣∣∣∫
�

�u ut dx

∣∣∣∣q−2 ∫
�

�u ut dx �u.

Unfortunately, we are not able to prove existence if λ = µ = 0 and q > 2. If q = 2, the
Balakrishnan–Taylor damping term can be written as

− δ

2

(
d

dt

∫
�

|∇u|2 dx

)
�u, (1.5)

which can be understood in the weak sense with respect to both, d/dt and � (see below).
For the analysis (and numerical analysis) of abstract evolution equations of second order

with damping, we also refer to [3, 13–15, 23, 28, 36]. However, the equations considered there
do not cover the present problem. In particular, in the case λ = µ = 0, the a priori estimates
and thus the proof of convergence differ from that of Emmrich and Thalhammer [13, 14].
Moreover, the argumentation with respect to the nonlinearity here is much different from that
of [13, 14] since here the damping term (except for the Balakrishnan–Taylor damping) is linear
but the operator B is a nonlinear (in general non-convex) potential operator.

1.4. Outline

The outline of the paper is as follows: in section 2, we provide the functional analytic setting for
the treatment of the problem under consideration together with some preliminary results about
the operators appearing. The time discretization is then introduced in section 3, where we also
prove existence of solutions to the time discrete problem as well as a priori estimates. Finally,
in section 4, we state the main result and prove existence of a weak solution via convergence
of (prolongations of) the time discrete solutions.

2. Time continuous problem and preliminaries

In this section, we introduce auxiliary notation and results employed later in sections 3 and 4.
In particular, we are concerned with deriving estimates for the operators defining the time
continuous problem. These bounds are essential ingredients in the proofs of theorem 3.2 and
proposition 4.2, in order to obtain a priori estimates for time discrete solutions and to prove
convergence of prolongations of time discrete solutions.

2.1. Standard notation

Let � ⊂ R
d (d ∈ N) be a bounded domain with sufficiently smooth boundary (see below) and

let T > 0.
We rely upon the standard notation for Lebesgue and Sobolev spaces and spaces of

continuous or continuously differentiable functions (see, e.g. [7]). For a Banach space X, we
denote by ‖ · ‖X its norm. Inner product and norm in L2(�), however, will be denoted by (·, ·)
and ‖ · ‖, respectively. By Lp(0, T ; X) (p ∈ [1, ∞]), we denote the usual Bochner–Lebesgue
space, equipped with the standard norm. By H 1(0, T ; X), we denote the usual Sobolev
space of functions in L2(0, T ; X) which possess a distributional time derivative that also is in
L2(0, T ; X). We always associate with a function u = u(x, t) the abstract function u = u(t)
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via [u(t)](x) = u(x, t). With this, we have in particular L2(0, T ; L2(�)) = L2(� × (0, T )).
ByAC ([0, T ]; X), C ([0, T ]; X) andCw([0, T ]; X), we denote the spaces of abstract functions
mapping [0, T ] into X, which are absolutely continuous on [0, T ], continuous on [0, T ] with
respect to the strong and weak topology of X, respectively. Finally, 〈·, ·〉 denotes the duality
pairing. For a number η ∈ R, we set

η− := max(0, −η) =
{

0 if η � 0,

|η| if η < 0.

By c > 0, we denote a generic constant.

2.2. Auxiliary definitions and results

2.2.1. Underlying function space and basic estimates. In the case of hinged boundary
conditions (1.2), let V := H 1

0 (�) ∩ H 2(�). Let ∂� ∈ C 1,1 or let � be a convex polygonal
domain in R

2 or a convex polyhedral domain in R
3. Then ‖� · ‖ is equivalent to ‖ · ‖H 2(�),

and we equip V with the norm ‖ · ‖V = ‖� · ‖. This follows from the classical regularity
results of Agmon, Douglis and Nirenberg (see Gilbarg and Trudinger [16, theorem 9.15, p 241;
lemma 9.17, p 242]) and of Grisvard [18, theorem 2.4.3, p 57; corollary 2.6.8, p 80].

In the case of clamped boundary conditions (1.3), let V := H 2
0 (�). We assume that

∂� ∈ C 0,1 and again equip V with the norm ‖ · ‖V = ‖� · ‖.
We recall the Friedrichs inequality: there is a constant cF > 0 such that

‖u‖ � cF ‖∇u‖ for all u ∈ H 1
0 (�). (2.1)

Moreover, with integration by parts and the Cauchy–Schwarz inequality, there holds

‖∇u‖2 � ‖u‖ ‖�u‖ for all u ∈ H 1
0 (�) ∩ H 2(�), (2.2)

which immediately implies

‖∇u‖ � cF ‖�u‖ for all u ∈ H 1
0 (�) ∩ H 2(�). (2.3)

Since ‖u‖2 = (u, u) � ‖u‖H−1(�)‖∇u‖ for u ∈ H 1
0 (�), we also obtain

‖∇u‖3 � ‖u‖H−1(�) ‖�u‖2 for all u ∈ H 1
0 (�) ∩ H 2(�). (2.4)

Identifying L2(�) with its dual, we see that V ⊂ L2(�) ⊂ V ∗ (with V ∗ denoting the dual
of V ) forms a Gelfand triple.

2.2.2. Abstract formulation. The weak formulation of (1.1), equipped either with hinged
(1.2) or with clamped (1.3) boundary conditions and supplemented by the initial conditions
(1.4) can be shown, in the standard way, to be equivalent to the abstract evolution problem

u′′ + Au′ + Bu + C(u, u′) = f in (0, T ), (2.5)

u(0) = u0, u
′(0) = v0, (2.6)

where the prime denotes the time derivative in the distributional sense. This, however, requires
δ = 0 if λ = µ = 0. The case δ > 0 with q = 2 if λ = µ = 0 will be dealt with below (see
definition 2.1).

Operator A. The operator A is given by

〈Av, w〉 =
∫

�

(κ vw + λ ∇v · ∇w + µ �v �w) dx, v, w ∈ V,
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and is a linear bounded mapping of V into V ∗. If µ = 0 then A is, indeed, a linear bounded
mapping of H 1

0 (�) into H−1(�), and if λ = µ = 0 then A is a linear bounded mapping of
L2(�) into L2(�). This shows that for all v ∈ V

‖Av‖V ∗ � c


‖v‖ if λ = µ = 0,

‖∇v‖ if µ = 0,

‖�v‖ otherwise.
(2.7)

By standard arguments, we know that A extends to a linear bounded operator mapping
L2(0, T ; X) into L2(0, T ; V ∗) with X = L2(�) if λ = µ = 0, X = H 1

0 (�) if λ > 0,
µ = 0 and X = V if λ > 0, µ > 0. Moreover, there holds

〈Av, v〉 = κ ‖v‖2 + λ ‖∇v‖2 + µ ‖�v‖2. (2.8)

Operator B. The operator B : V → V ∗ is given by

〈Bu, w〉 = α (�u, �w) +
(
β + γ ‖∇u‖2

)
(∇u, ∇w) + ζ (u, w), u, w ∈ V.

Occasionally, we employ the obvious decomposition B = α B1 +β B2 +γ B3 +ζ B4. It is clear
that B1 : V → V ∗, B2 : H 1

0 (�) → H−1(�) and B4 : L2(�) → L2(�) are linear bounded
operators. With respect to B3 : V → V ∗, we see that for all u, w ∈ V

|〈B3u, w〉| = ‖∇u‖2|(u, �w)| � ‖u‖ ‖∇u‖2 ‖�w‖
such that (with (2.2))

‖B3u‖V ∗ � ‖u‖2 ‖�u‖,
which shows that for all u ∈ V

‖Bu‖V ∗ � c (1 + ‖u‖2) ‖�u‖. (2.9)

Moreover, B3 : V → V ∗ fulfils for all u, u, w ∈ V the relation

〈B3u − B3u, w〉 = (‖∇u‖2 − ‖∇u‖2
)
(∇u, ∇w) + ‖∇u‖2(∇(u − u), ∇w)

= − (‖∇u‖ − ‖∇u‖) (‖∇u‖ + ‖∇u‖) (u, �w) − ‖∇u‖2(u − u, �w).

This implies by the triangle and Cauchy–Schwarz inequality the estimate

‖B3u − B3u‖V ∗ � ‖∇(u − u)‖ (‖∇u‖ + ‖∇u‖) ‖u‖ + ‖∇u‖2‖u − u‖
� ccF

(‖∇u‖2 + ‖∇u‖2
) ‖∇(u − u)‖

� cc4
F

(‖�u‖2 + ‖�u‖2
) ‖�(u − u)‖, (2.10)

which shows that B3 : V → V ∗ is Lipschitz continuous on bounded subsets and thus
continuous. Since V is compactly embedded in H 1

0 (�) and L2(�), the above estimate also
shows that B3 : V → V ∗ is strongly continuous, i.e. maps weakly convergent sequences into
strongly convergent sequences. With standard arguments, we may show that Bi : V → V ∗

(i = 1, 2, 4) extends to a linear bounded mapping of L2(0, T ; V ) into L2(0, T ; V ∗),
B3 : V → V ∗ extends to a (nonlinear) bounded mapping of L∞(0, T ; L2(�)) ∩ L2(0, T ; V )

into L2(0, T ; V ∗), and thus B : V → V ∗ extends to a bounded mapping of L∞(0, T ; L2(�))∩
L2(0, T ; V ) into L2(0, T ; V ∗). Note that the Bochner measurability of the image of a Bochner
measurable function under B follows from the continuity of B : V → V ∗.

Let us introduce the following functionals: For w ∈ V , let

�1(w) = 1
2 ‖�w‖2, �2(w) = 1

2 ‖∇w‖2 ,

�3(w) = 1
4 ‖∇w‖4, �4(w) = 1

2 ‖w‖2.



Integro-differential equations in nonlinear elastodynamics 2529

Note that these functionals are convex, continuous as mappings of V into R, and thus weakly
sequentially lower semicontinuous (see, e.g. [7, corollary 3.9, p 61]). Moreover, due to the
compact embedding of V in H 1

0 (�) and L2(�), the functionals �2, �3, �4 are also strongly
continuous as mappings of V into R.

It is important to observe, however, that the total functional

� = α�1 + β�2 + γ�3 + ζ�4

need not be convex. Indeed, if β < 0 (which is the more interesting case) then the functional
β�2 + γ�3 is a double-well potential in ∇u. Since z → β

2 z2 + γ

4 z4 (z ∈ R) is bounded from
below by −β2

−/(4γ ), we find for all w ∈ V

β �2(w) + γ �3(w) � −β2
−

4γ

and thus

�(w) � α

2
‖�w‖2 +

ζ

2
‖w‖2 − β2

−
4γ

= α �1(w) + ζ �4(w) − β2
−

4γ
. (2.11)

Remember here that α and γ are positive but β and ζ might be negative. Furthermore, we find
with (2.2) and Young’s inequality for all w ∈ V

�2(w) � α

4|β| ‖�w‖2 +
|β|
4α

‖w‖2

= α

2|β| �1(w) +
|β|
2α

�4(w). (2.12)

Finally, the definition of the total potential, together with (2.1) and (2.2), immediately
shows that for all w ∈ V

�(w) � 1
2

(
α + c2

F |β| + c4
F |ζ |) ‖�w‖2 +

γ

4
‖∇w‖4. (2.13)

It can easily be shown that Bi : V → V ∗ is the Gâteaux derivative of the potential
�i : V → R (i = 1, . . . , 4), i.e.

〈Biu, w〉 = 〈�′
i (u), w〉 = lim

θ→0

1

θ
(�i(u + θw) − �i(u))

for all u, w ∈ V . Since the operators Bi : V → V ∗ (i = 1, . . . , 4) are continuous, we find for
any function u ∈ C 1([0, T ]; V )

〈Biu(t), u′(t)〉 = 〈�′
i (u(t)), u′(t)〉 = d

dt
�i(u(t)) in (0, T ), (2.14)

see also Gajewski et al [15, lemma 4.1, p 90]. Later we will employ a time discrete analogue of
(2.14) for the total potential, which results from the following observations: For all u, w ∈ V

there holds

〈Bu, u − w〉 = 〈�′(u), u − w〉
= α (�u, �(u − w)) +

(
β + γ ‖∇u‖2

)
(∇u, ∇(u − w)) + ζ (u, u − w).

With the algebraic relations

a(a − b) = 1
2 a2 − 1

2 b2 + 1
2 (a − b)2, a, b ∈ R (2.15)
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and

a3(a − b) = 1

4
a4 − 1

4
b4 +

1

12
(a − b)4 +

2

3

(
a +

1

2
b

)2

(a − b)2

� 1

4
a4 − 1

4
b4 +

1

12
(a − b)4, a, b ∈ R,

we then obtain (employing (2.12))

〈Bu, u − w〉 � α (�1(u) − �1(w) + �1(u − w)) + β (�2(u) − �2(w) + �2(u − w))

+ γ

(
�3(u) − �3(w) +

1

3
�3(u − w)

)
+ ζ (�4(u) − �4(w) + �4(u − w))

� �(u) − �(w) +

(
α �1(u − w) + β �2(u − w)

+
γ

3
�3(u − w) + ζ �4(u − w)

)
� �(u) − �(w) +

α

2
�1(u − w) +

γ

3
�3(u − w) +

(
ζ − β2

−
2α

)
�4(u − w).

(2.16)

Operator C. With respect to the operator C, we recall the discussion on the interpretation
of the Balakrishnan–Taylor damping term from the introduction. We firstly may define C, at
least in the case of clamped boundary conditions, as a mapping of V × L2(�) into V ∗ via

〈C(u, v), w〉 = δ |(�u, v)|q−2(�u, v) (u, �w), u, w ∈ V, v ∈ L2(�). (2.17)

It follows that

‖C(u, v)‖V ∗ � δ ‖�u‖q−1‖v‖q−1‖u‖. (2.18)

If the second argument is at least in H 1
0 (�), we can define C via

〈C(u, v), w〉 = δ |(∇u, ∇v)|q−2(∇u, ∇v) (∇u, ∇w), u, w ∈ V, v ∈ H 1
0 (�), (2.19)

and obtain (2.17) with integration by parts from (2.19).
We emphasize that in our applications later, namely in the time discrete case as well as in

the continuous case with λ > 0 or µ > 0, we will always have that the second argument is in
H 1

0 (�).
Commencing with (2.17), we observe that for all u, u, w ∈ V , v, v ∈ L2(�)

〈C(u, v) − C(u, v), w〉 = δ
(|(�u, v)|q−2(�u, v) − |(�u, v)|q−2(�u, v)

)
(u, �w)

+ δ |(�u, v)|q−2(�u, v)(u − u, �w).

With ∣∣|a|q−2a − |b|q−2b
∣∣ � (q − 1) max(|a|, |b|)q−2 |a − b|, a, b ∈ R,

for q ∈ [2, ∞) we thus come up with

‖C(u, v) − C(u, v)‖V ∗ � c max(‖�u‖‖v‖, ‖�u‖‖v‖)q−2|(�u, v) − (�u, v)|
+ c ‖�u‖q−1‖v‖q−1‖u − u‖,

� c max(‖�u‖‖v‖, ‖�u‖‖v‖)q−2 (|(�u, v − v)| + |(�(u − u), v)|)
+ c ‖�u‖q−1‖v‖q−1‖u − u‖

� c max(‖�u‖‖v‖, ‖�u‖‖v‖)q−2 (‖�u‖‖v − v‖ + ‖∇(u − u)‖‖∇v‖)
+ c ‖�u‖q−1‖v‖q−1‖u − u‖, (2.20)
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where, in the last step, we have again employed integration by parts which requires v ∈ H 1
0 (�).

This also shows, together with

|(�u, v) − (�u, v)| � ‖�u‖ ‖v − v‖ + ‖�(u − u)‖ ‖v‖,
that C : V × L2(�) → V ∗ is Lipschitz continuous on bounded subsets and thus continuous.

It is now clear from the continuity (ensuring that images of Bochner measurable functions
are Bochner measurable) and (2.18) that C : V × L2(�) → V ∗ extends to a (nonlinear)
mapping of L∞(0, T ; V ) × L∞(0, T ; L2(�)) into L∞(0, T ; V ∗) that is bounded on bounded
subsets. Estimate (2.20) moreover shows for a sequence {z�}�∈N that Cz� → Cz in
L1(0, T ; V ∗) as � → ∞ if z�, z ∈ L∞(0, T ; V ) × L∞(0, T ; L2(�)) ∩ L2(0, T ; H 1

0 (�)),
{z�}�∈N is bounded in L∞(0, T ; V ) × L∞(0, T ; L2(�)) and z� → z in L2(0, T ; H 1

0 (�)) ×
L2(� × (0, T )) as � → ∞ (see also the proof of theorem 4.1).

Finally, there holds (recalling that δ � 0) for all u ∈ V , v ∈ H 1
0 (�)

〈C(u, v), v〉 � 0. (2.21)

Operator C̃. Let us now turn to the more delicate case that δ > 0 with q = 2 but λ = µ = 0.
The starting point is (1.5). For deriving a weak formulation, we may multiply (1.1) by a smooth
function in (x, t) with compact support and carry out integration by parts for the Balakrishnan–
Taylor damping term (1.5) with respect to both, the time derivative and the Laplacian. This
leads to the following definition of an operator C̃, which acts on time dependent functions and
which replaces C in the abstract formulation (2.5): for u ∈ L∞(0, T ; H 1

0 (�)) ∩ L2(0, T ; V ),
v ∈ L2(� × (0, T )) and w ∈ L2(0, T ; V ) ∩ H 1(0, T ; L2(�)) ⊂ C ([0, T ]; L2(�)) with
w(0) = w(T ) = 0, let

〈C̃(u, v), w〉 := δ

2

∫ T

0
‖∇u(t)‖2

(
(v(t), �w(t)) + (�u(t), w′(t))

)
dt.

It is easy to see that C̃ is well defined as a mapping of L∞(0, T ; H 1
0 (�)) ∩ L2(0, T ; V ) ×

L2(�× (0, T )) into the dual of L2(0, T ; V )∩H 1(0, T ; L2(�)). Moreover, if u is sufficiently
smooth then integration by parts shows

〈C̃(u, u′), w〉 = −δ

∫ T

0
(∇u(t), ∇u′(t)) (�u(t), w(t)) dt,

which is the original term in (1.1).

2.2.3. Weak solution. We are now ready to define an appropriate notion of weak solution to
the problem under consideration.

Definition 2.1. Let u0 ∈ V , v0 ∈ L2(�) and f ∈ L2(� × (0, T )).

(i) Let δ = 0. A function u ∈ Cw([0, T ]; V ) with u′ ∈ Cw([0, T ]; L2(�)) and u′′ ∈
L2(0, T ; V ∗) is said to be a weak solution to (1.1) under the boundary conditions (1.2)
or (1.3), respectively, and subject to the initial conditions (1.4) iff (2.5) holds in the sense
of L2(0, T ; V ∗) and (2.6) holds in the sense of V and L2(�), respectively.

(ii) Let δ > 0 with λ > 0 or µ > 0. In addition to the case (i), u′ ∈ L2(0, T ; H 1
0 (�)) is

required.
(iii) Let δ > 0 with q = 2 but λ = µ = 0. A function u ∈ Cw([0, T ]; V ) with

u′ ∈ Cw([0, T ]; L2(�)) and u′′ ∈ L2(0, T ; V ∗) is then said to be a weak solution iff
for all w ∈ V and ϕ ∈ C ∞

c (0, T )

〈u′′ + Au′ + Bu + C̃(u, u′), wϕ〉 = 〈f, wϕ〉 (2.22)

and (2.6) holds in the sense of V and L2(�), respectively.
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Note that a function in Cw([0, T ]; V ) is weakly measurable and thus, in view of the
separability of V and the theorem of Pettis (see, e.g. [11, theorem 2, p 42]) also Bochner
measurable. Moreover, by the uniform boundedness principle, functions in Cw([0, T ]; V )

are norm bounded on [0, T ]. The same argumentation shows that Cw([0, T ]; L2(�)) ⊂
L∞(0, T ; L2(�)).

The initial conditions (1.4) are satisfied at least in the sense of weak convergence,

u(t) ⇀ u0 in V, u′(t) ⇀ v0 in L2(�) as t → 0.

If µ > 0 then the weak convergence can be replace by strong convergence.
With respect to (iii) in the definition above, note that

〈u′′ + Au′ + Bu + C̃(u, u′), wϕ〉 =
∫ T

0
〈u′′(t) + Au′(t) + Bu(t), w〉 ϕ(t) dt

+
δ

2

∫ T

0
‖∇u(t)‖2

(
(u′(t), �w) ϕ(t) + (�u(t), w) ϕ′(t)

)
dt. (2.23)

We should emphasize that even in the case δ > 0 with q = 2 but λ = µ = 0 the starting
point for the numerical scheme is (2.5) (with the original Balakrishnan–Taylor damping term)
rather than (2.22).

3. Time discrete problem: existence and a priori estimates

In this section, we state the considered time discretization and prove solvability of the numerical
scheme by means of a result by Brézis on pseudomonotone operators. Furthermore, we derive
an a priori estimate for the time discrete solution, which is later utilized in the proof of
proposition 4.2.

3.1. Time discretization

Let N ∈ N be given and set τ = T/N , tn = nτ (n = 0, 1, . . . , N). We look for approximations
un ≈ u(tn) to (2.5) and (2.23), respectively, given by the fully implicit scheme

un+1 − 2un + un−1

τ 2
+ A

un+1 − un

τ
+ Bun+1 + C

(
un+1,

un+1 − un

τ

)
= f n+1,

n = 1, 2, . . . , N − 1, (3.1)

where {f n+1} is a suitable approximation of f and where u0 ≈ u0, v0 ≈ v0 are given
approximations of the initial values; we set u1 := u0 + τv0.

In the following, we often use

vn := un+1 − un

τ
, n = 0, 1, . . . , N − 1. (3.2)

The above scheme can then be rewritten as

vn − vn−1

τ
+ Avn + Bun+1 + C(un+1, vn) = f n+1, n = 1, 2, . . . , N − 1. (3.3)
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3.2. Solvability

The following theorem ensures solvability of the numerical scheme.

Theorem 3.1. Let u0, v0 ∈ V (with u1 := u0 + τv0) and {f n+1}N−1
n=1 ⊂ V ∗. If τ > 0 is

sufficiently small such that

2τκ− + τ 2

(
3ζ− +

β2
−

2α

)
� 1 (3.4)

then there is a solution {un}Nn=2 ⊂ V to (3.1).

Proof. We prove existence of a solution step by step by employing the main theorem on
pseudomonotone operators. So let un−1, un ∈ V be given. We then have to find un+1 ∈ V .
Since un+1 = un + τvn, this is equivalent to finding vn ∈ V , which is a solution of the operator
equation

Dv = f n+1 in V ∗, (3.5)

where

Dv := v − vn−1

τ
+ Av + B(un + τv) + C(un + τv, v), v ∈ V. (3.6)

In view of the definition and properties of the operators A, B, C studied in the previous
section, it is clear that D defined by (3.6) maps V into V ∗ and is continuous. Moreover, the
operator D : V → V ∗ is coercive if τ is sufficiently small. This is a consequence of the sign
conditions on the parameters of the problem together with (2.15) applied to the discrete time
derivative, (2.8), (2.16) (with w = un and then dividing by τ ), (2.21), and (2.11), which show
for sufficiently small τ (see (3.4)) that for all v ∈ V

〈Dv, v〉 � 1

2τ
‖v‖2 − 1

2τ
‖vn−1‖2 + κ ‖v‖2 +

1

τ
�(un + τv) − 1

τ
�(un)

+
α

2τ
�1(τv) +

1

τ

(
ζ − β2

−
2α

)
�4(τv)

� ατ

4
‖�v‖2 +

1

2τ

(
1 − 2τκ− − τ 2

(
ζ− +

β2
−

2α

))
‖v‖2 − ζ−

2τ
‖un + τv‖2

− 1

2τ
‖vn−1‖2 − 1

τ
�(un) − β2

−
4γ τ

� ατ

4
‖�v‖2 +

1

2τ

(
1 − 2τκ− − τ 2

(
3ζ− +

β2
−

2α

))
‖v‖2

− ζ−
τ

‖un‖2 − 1

2τ
‖vn−1‖2 − 1

τ
�(un) − β2

−
4γ τ

� ατ

4
‖�v‖2 − ζ−

τ
‖un‖2 − 1

2τ
‖vn−1‖2 − 1

τ
�(un) − β2

−
4γ τ

.

We can split D into the sum of two operators D0 : V → V ∗ and D1 : V → V ∗ defined by

D0v := v − vn−1

τ
+ Av − κv + α B1(u

n + τv),

D1v := Dv − D0v , v ∈ V.
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Recalling the definition of A and B1, it is obvious that D0 : V → V ∗ is monotone. Furthermore,
we obtain especially from (2.10) and (2.20) that for all v, v ∈ V

‖D1v − D1v‖V ∗ � c(1 + τ) ‖v − v‖ + cτ
(
1 + ‖∇(un + τv)‖2 + ‖∇(un + τv)‖2

) ‖∇(v − v)‖
+ c max(‖�(un + τv)‖‖v‖, ‖�(un + τv)‖‖v‖)q−2

× (‖�(un + τv)‖‖v − v‖ + τ ‖∇(v − v)‖‖∇v‖)
+ cτ ‖�(un + τv)‖q−1‖v‖q−1‖v − v‖.

Since V is compactly embedded in H 1
0 (�) and L2(�), this shows that D1 : V → V ∗ is

strongly continuous.
Finally, Brézis’ theorem on pseudomonotone operators (see, e.g. [36, theorem 27A])

provides existence of a solution v =: vn to (3.5) for any f n+1 ∈ V ∗. �

3.3. A priori estimate

The following result is an essential prerequisite for the proof of convergence.

Theorem 3.2. Let u0, v0 ∈ V and {f n+1}N−1
n=1 ⊂ L2(�) and let {un}Nn=2 ⊂ V be any solution

to (3.1). If

τ < τ0 :=
(

1 + 2κ− + 3T ζ− +
Tβ2

−
2α

)−1

(3.7)

then there holds for all n = 1, 2, . . . , N − 1

‖vn‖2 +
n∑

j=1

‖vj − vj−1‖2 + 2τλ

n∑
j=1

‖∇vj‖2 + 2τµ

n∑
j=1

‖�vj‖2 + α ‖�un+1‖2

+
α

2

n∑
j=1

‖�(uj+1 − uj )‖2 +
γ

6

n∑
j=1

‖∇(uj+1 − uj )‖4

� c
(
‖u0‖2 + ‖v0‖2 + ‖�(u0 + τ v0)‖2 + ‖∇(u0 + τ v0)‖4 + τ

n∑
j=1

‖f j+1‖2 + 1
)
,

where c only depends on cF , T , τ0, and the coefficients of the problem. Furthermore, there
holds

τ

n∑
j=1

∥∥∥∥vj − vj−1

τ

∥∥∥∥2

V ∗
� C,

where C > 0 depends on the right-hand side of the first a priori estimate and is bounded on
bounded subsets.

Proof. We test (3.3) with vn = (un+1 − un)/τ . It is important to take into account that,
by construction, vn ∈ V (n = 0, 1, . . . , N − 1). With (2.15), (2.8), (2.16) and (2.21), we
immediately find for n = 1, 2, . . . , N − 1
1

2τ

(‖vn‖2 − ‖vn−1‖2 + ‖vn − vn−1‖2
)

+ κ ‖vn‖2 + λ ‖∇vn‖2 + µ ‖�vn‖2

+
1

τ
�(un+1) − 1

τ
�(un)

+
1

τ

(
α

2
�1(u

n+1 − un) +
γ

3
�3(u

n+1 − un) +

(
ζ − β2

−
2α

)
�4(u

n+1 − un)

)
� (f n+1, vn) � 1

2
‖f n+1‖2 +

1

2
‖vn‖2.
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Multiplying by 2τ , summing up, and recalling the definition of the potentials leads to

‖vn‖2 +
n∑

j=1

‖vj − vj−1‖2 + 2τκ

n∑
j=1

‖vj‖2 + 2τλ

n∑
j=1

‖∇vj‖2 + 2τµ

n∑
j=1

‖�vj‖2 + 2�(un+1)

+
α

2

n∑
j=1

‖�(uj+1 − uj )‖2 +
γ

6

n∑
j=1

‖∇(uj+1 − uj )‖4

+

(
ζ − β2

−
2α

) n∑
j=1

‖uj+1 − uj‖2

� ‖v0‖2 + 2�(u1) + τ

n∑
j=1

‖f j+1‖2 + τ

n∑
j=1

‖vj‖2.

Remember here again that there is no sign condition for β, ζ, κ and that λ, µ may vanish.
With (2.11), we obtain

‖vn‖2 +
n∑

j=1

‖vj − vj−1‖2 + 2τλ

n∑
j=1

‖∇vj‖2 + 2τµ

n∑
j=1

‖�vj‖2 + α ‖�un+1‖2

+
α

2

n∑
j=1

‖�(uj+1 − uj )‖2 +
γ

6

n∑
j=1

‖∇(uj+1 − uj )‖4

� ‖v0‖2 + 2�(u1) + τ

n∑
j=1

‖f j+1‖2 +
β2

−
2γ

+ τ

(
1 + 2κ− + τ

(
ζ− +

β2
−

2α

)) n∑
j=1

‖vj‖2 + ζ− ‖un+1‖2.

For �(u1) = �(u0 +τv0), we employ estimate (2.13). For the term with un+1 on the right-hand
side of the foregoing estimate, we use the relation

un+1 = u0 + τ

n∑
j=1

vj ,

which gives

‖un+1‖2 � 2‖u0‖2 + 2τ 2

∥∥∥∥∥∥
n∑

j=1

vj

∥∥∥∥∥∥
2

� 2‖u0‖2 + 2τT

n∑
j=1

‖vj‖2.

Finally, a discrete Gronwall-type argument proves the first assertion.
With respect to the second estimate asserted, we obtain from (3.3) together with the

definition of A, (2.9) and (2.18) (recalling that vn ∈ V for all n = 0, 1, . . . , N − 1 and thus
both the interpretations of C(·, ·) coincide)∥∥∥∥vn − vn−1

τ

∥∥∥∥
V ∗

� ‖f n+1‖V ∗ + ‖Avn‖V ∗ + ‖Bun+1‖V ∗ + ‖C(un+1, vn)‖V ∗

� c
(
‖f n+1‖ + ‖vn‖ + λ ‖∇vn‖ + µ ‖�vn‖ +

(
1 + ‖un+1‖2

) ‖�un+1‖

+ ‖un+1‖‖�un+1‖q−1‖vn‖q−1
)
,
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which yields

τ

n∑
j=1

∥∥∥∥vj − vj−1

τ

∥∥∥∥2

V ∗
� c

(
τ

n∑
j=1

‖f j+1‖2 + max
j=1,...,n

‖vj‖2 + τλ

n∑
j=1

‖∇vj‖2 + τµ

n∑
j=1

‖�vj‖2

+ max
j=1,...,n

‖�uj‖6 + max
j=1,...,n

‖�uj‖2q max
j=1,...,n

‖vj‖2(q−1) + 1
)
.

This, together with the first assertion, proves the second one. �

Remark. The requirement (3.7) on the time increment used in theorem 3.2 is more restrictive
than assumption (3.4) of theorem 3.1.

4. Convergence towards and existence of a weak solution

In this section, we state the main result on the existence of a weak solution to the time continuous
problem via convergence of piecewise constant and linear prolongations of the time discrete
solutions. The proof of theorem 4.1 is divided into two steps: first, convergence of sequences
of time discrete solutions is proven, and, second, it is shown that the limits are indeed weak
solutions of the evolution equation.

4.1. Prolongations of time discrete solutions and notation

In the following, we consider a sequence of time grids with constant step sizes τ� = T/N�

corresponding to a sequence {N�}�∈N of natural numbers with N� → ∞ as � → ∞. We
assume that

sup
�∈N

τ� < τ0 (4.1)

with τ0 given by (3.7). For readability, we often omit writing out the dependence of a quantity
on the actual time grid, e.g. we often only write tn and un instead of tn,� and un

� .
With the time discrete solutions {un}N�

n=0 and {vn}N�−1
n=0 (recall here (3.2)) corresponding to

the time grid with step size τ�, we associate the following prolongations on [0, T ]:

u�(t) :=


0 if t ∈ [0, τ�/2],
un+1 if t ∈ ((n − 1/2)τ�, (n + 1/2)τ�] (n = 1, 2, . . . , N� − 1),

0 if t ∈ (T − τ�/2, T ];

v�(t) :=


0 if t ∈ [0, τ�/2],
vn if t ∈ ((n − 1/2)τ�, (n + 1/2)τ�] (n = 1, 2, . . . , N� − 1),

0 if t ∈ (T − τ�/2, T ];

v̂�(t) :=


v0 if t ∈ [0, τ�/2],
vn − vn−1

τ�

(t − (n + 1/2)τ�) + vn if t ∈ ((n − 1/2)τ�, (n + 1/2)τ�]

(n = 1, 2, . . . , N� − 1),

vN�−1 if t ∈ (T − τ�/2, T ].

Whereas the functions u�, v� are piecewise constant, the function v̂� is piecewise linear and
continuous and thus differentiable in the weak sense. By construction, we have u�, v�, v̂� ∈
L∞(0, T ; V ).
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For the right-hand side f ∈ L2(� × (0, T )), we restrict our considerations to the
approximation

f n+1 := 1

τ�

∫ (n+1/2)τ�

(n−1/2)τ�

f (t) dt, n = 1, 2, . . . , N� − 1 (4.2)

and define

f�(t) :=


0 if t ∈ [0, τ�/2] ,

f n+1 if t ∈ ((n − 1/2)τ�, (n + 1/2)τ�] (n = 1, 2, . . . , N� − 1) ,

0 if t ∈ (T − τ�/2, T ] .

For an integrable function w = w(t), we introduce the antiderivative

(Kw)(t) :=
∫ t

0
w(s) ds.

Obviously, K maps, in particular, L2(0, T ; V ) into C ([0, T ]; V ).
We recall that Y is an intermediate space of class K η(L

2(�), V ) with η ∈ (0, 1) in
the sense of Lions and Peetre (following [22, pp 27ff] or, equivalently, of class Jη following
Lunardi [24, pp 27f], see also Tartar [30, pp 123ff]) if V ↪→ Y ↪→ L2(�) and

‖w‖Y � c ‖�w‖η‖w‖1−η for all w ∈ V. (4.3)

An example is given by Y = H 1
0 (�) with (2.2).

4.2. Existence

The main result of this work reads as follows:

Theorem 4.1. Let u0 ∈ V , v0 ∈ L2(�) and f ∈ L2(� × (0, T )). Then there is a weak
solution u to (1.1), supplemented by (1.2) or (1.3) and by (1.4), in the sense of definition 2.1,
if δ = 0 as well as if δ > 0 and λ > 0 as well as if δ > 0 and µ > 0 as well as if δ > 0 and
q = 2 but λ = µ = 0. In the case that µ > 0, the weak solution u is in C ([0, T ]; V ) with
u′ ∈ C ([0, T ]; L2(�)) ∩ L2(0, T ; V ).

Consider the time discretization (3.1) on a sequence of time grids with step sizes τ� (� ∈ N,
τ� → 0 as � → ∞) satisfying (4.1), with approximation (4.2) and with approximations
{u0

�}�∈N, {v0
� }�∈N such that

u0
� ∈ V, u0

� → u0 in V as � → ∞, (4.4)

v0
� ∈ V, v0

� → v0 in L2(�), τ� ‖�v0
�‖ → 0 as � → ∞. (4.5)

If δ = 0 as well as if δ > 0 and q = 2 but λ = µ = 0 then there is a subsequence (denoted
by �′) such that u�′ converges weakly* in L∞(0, T ; V ) and strongly in Lr(0, T ; Y ) for any
r ∈ [1, ∞) and any intermediate space Y ∈ K η(L

2(�), V ) with η ∈ (0, 1) towards u as
� → ∞, v�′ and v̂�′ converge weakly* in L∞(0, T ; L2(�)) and strongly in Ls(0, T ; Z) for any

s ∈ [1, ∞) and any Banach space Z with L2(�)
c

↪→ Z ↪→ V ∗ towards u′, and v̂′
�′ converges

weakly in L2(0, T ; V ∗) towards u′′.
If λ > 0 then, in addition, v�′ and v̂�′ converge weakly in L2(0, T ; H 1

0 (�)) and strongly
in L2(� × (0, T )) towards u′.

If µ > 0 then, in addition, v�′ and v̂�′ converge weakly in L2(0, T ; V ) and strongly in
L2(0, T ; H 1

0 (�)) towards u′.

Remark. A better approximation of the initial value v0 ∈ L2(�) fulfilling condition (4.5) is
always possible, since V is dense in L2(�). Moreover, we may choose, e.g. Y = H 1

0 (�) and
Z = H−1(�).
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4.2.1. Auxiliary result. The proof of the preceding theorem will be prepared by the following
proposition.

Proposition 4.2. Under the assumptions of theorem 4.1, there is a subsequence (denoted
by �′) and an element u ∈ L∞(0, T ; V ) ∩ C ([0, T ]; L2(�)) ⊂ Cw([0, T ]; V ) with u′ ∈
L∞(0, T ; L2(�)) ∩ C ([0, T ]; V ∗) ⊂ Cw([0, T ]; L2(�)) and u′′ ∈ L2(0, T ; V ∗) as well as
with u(0) = u0 and u′(0) = v0 such that, as � → ∞,

u�′
∗

⇀ u in L∞(0, T ; V ),

u�′ → u in Lr(0, T ; Y ) for any r ∈ [1, ∞)

and any intermediate space Y ∈ K η(L
2(�), V ) with η ∈ (0, 1),

u� − u0 − Kv� → 0 in L2(0, T ; V ),

v�′
∗

⇀ u′ and v̂�′
∗

⇀ u′ in L∞(0, T ; L2(�)),

v�′ → u′ and v̂�′ → u′ in Ls(0, T ; Z) for any s ∈ [1, ∞)

and any Banach space Z with L2(�)
c

↪→ Z ↪→ V ∗,

v� − v̂� → 0 in L2(� × (0, T )), Kv� − Kv̂� → 0 in C ([0, T ]; L2(�)),

v̂′
�′ ⇀ u′′ in L2(0, T ; V ∗).

Moreover, if λ > 0 then there holds u′ ∈ L2(0, T ; H 1
0 (�)) and

v�′ , v̂�′ ⇀ u′ in L2(0, T ; H 1
0 (�)), v�′ , v̂�′ → u′ in L2(� × (0, T )).

If µ > 0 then u ∈ C ([0, T ]; V ), u′ ∈ L2(0, T ; V ) ∩ C ([0, T ]; L2(�)) and

v�′ ⇀ u′ in L2(0, T ; V ), v�′ → u′ in L2(0, T ; H 1
0 (�)).

Proof. We firstly observe that the right-hand sides in the a priori estimates of theorem 3.2 are
uniformly bounded in view of (4.4), (4.5) (together with (2.3)) and since (with (4.2))

τ�

N�−1∑
j=1

‖f j+1‖2 � ‖f ‖2
L2(�×(0,T )).

By construction, we find

‖u�‖L∞(0,T ;V ) = sup
n=2,...,N�

‖�un‖,

and we obtain the boundedness of {u�} in L∞(0, T ; V ) from the first estimate in theorem 3.2.
By standard arguments (corollary of the theorem of Banach–Alaoglou–Bourbaki, see
[7, corollary 3.30, p 76], together with the separability of L1(0, T ; V )), there is thus an
element u ∈ L∞(0, T ; V ) and a subsequence (denoted by �′) such that u�′ converges weakly*
in L∞(0, T ; V ) towards u.

Similarly, the sequences {v�} and {v̂�} are bounded in L∞(0, T ; L2(�)). Hence, we
have elements v, v̂ ∈ L∞(0, T ; L2(�)) and can take a common subsequence of the previous
subsequence (still denoted by �′) such that v�′ and v̂�′ converge weakly* in L∞(0, T ; L2(�))

towards v and v̂, respectively.
Since

‖v� − v̂�‖2
L2(�×(0,T )) =

∫ τ�/2

0
‖v0‖2 dt +

N�−1∑
j=1

∫ (j+1/2)τ�

(j−1/2)τ�

∥∥∥∥vj − vj−1

τ�

∥∥∥∥2

(t − (j + 1/2)τ�)
2 dt

+
∫ T

T −τ�/2
‖vN�−1‖2 dt = τ�

2
‖v0‖2 +

τ�

3

N�−1∑
j=1

‖vj − vj−1‖2 +
τ�

2
‖vN�−1‖2,
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assumptions (4.4), (4.5) together with the first a priori estimate in theorem 3.2 show that
v� − v̂� converges strongly in L2(�× (0, T )) towards zero. Therefore, the limits v and v̂ must
coincide.

It immediately follows that

‖Kv� − Kv̂�‖C ([0,T ];L2(�)) � c ‖v� − v̂�‖L2(�×(0,T )) → 0.

Since (with the usual convention
∑0

j=1 ≡ 0)

(Kv�)(t) =



0 if t ∈ [0, τ�/2] ,

τ�

n−1∑
j=1

vj + (t − (n − 1/2)τ�)v
n if t ∈ ((n − 1/2)τ�, (n + 1/2)τ�]

(n = 1, 2, . . . , N� − 1),

τ�

N−1∑
j=1

vj if t ∈ (T − τ�/2, T ]

=


0 if t ∈ [0, τ�/2],

un − u1 + (t − (n − 1/2)τ�)
un+1 − un

τ�

if t ∈ ((n − 1/2)τ�, (n + 1/2)τ�]

(n = 1, 2, . . . , N� − 1),

uN� − u1 if t ∈ (T − τ�/2, T ],

we find (using u1 − u0 = τ�v
0)

‖u� − u0 − Kv�‖2
L2(0,T ;V ) =

∫ τ�/2

0
‖�u0‖2 dt

+
N�−1∑
j=1

∫ (j+1/2)τ�

(j−1/2)τ�

∥∥∥∥�

(
u0 − u0 + τ�v

0 − t − (j + 1/2)τ�

τ�

(uj+1 − uj )

)∥∥∥∥2

dt

+
∫ T

T −τ�/2

∥∥�
(
u0 − u0 + τ�v

0 − uN�
)∥∥2

dt

� cτ� ‖�u0‖2 + c
∥∥�

(
u0 − u0 + τ�v

0
)∥∥2

+ cτ�

N�−1∑
j=1

‖�(uj+1 − uj )‖2 + cτ� ‖�uN�‖2.

Assumptions (4.4), (4.5) and the first a priori estimate in theorem 3.2 now show that the
right-hand side of the foregoing estimate tends to zero as � → ∞.

In order to prove u = u0 + Kv, we consider the relation between Kv� and Kv. Let
g ∈ L1(0, T ; L2(�)). We then observe that∫ T

0
(g(t), (Kv�)(t) − (Kv)(t)) dt =

∫ T

0

∫ t

0
(g(t), v�(s) − v(s)) ds dt

=
∫ T

0

∫ T

s

(g(t), v�(s) − v(s)) dt ds =
∫ T

0
(G(s), v�(s) − v(s)) ds,

where G(s) := ∫ T

s
g(t) dt ∈ L∞(0, T ; L2(�)). Since v�′ converges weakly* in

L∞(0, T ; L2(�)) towards v, the last term of the foregoing identity, passing to the subsequence
if necessary, tends to zero. This shows, however, that also Kv�′ converges weakly*
in L∞(0, T ; L2(�)) towards Kv. This, together with the weak* convergence of u�′ in
L∞(0, T ; V ) ⊂ L∞(0, T ; L2(�)) towards u and the strong convergence of u� − u0 − Kv� in



2540 E Emmrich and M Thalhammer

L2(0, T ; V ) ⊂ L2(� × (0, T )) towards zero, immediately shows∫ T

0
(g(t), u(t) − u0 − (Kv)(t)) dt = 0 for all g ∈ L1(0, T ; L2(�)).

We, therefore, have u = u0 + Kv. Since v ∈ L∞(0, T ; L2(�)), this also shows that at
least u ∈ L∞(0, T ; V ) ∩ AC ([0, T ]; L2(�)) and that u′ = v almost everywhere in (0, T ) as
well as in the weak sense. Moreover, if u is in L∞(0, T ; V ) as well as in C ([0, T ]; L2(�)),
one can easily prove (employing the reflexivity of V ⊂ L2(�)) that then u ∈ Cw([0, T ]; V ).

With respect to the convergence of the time derivatives (in the weak sense) of v̂�, we
observe that, because of the second a priori estimate in theorem 3.2,

‖v̂′
�‖2

L2(0,T ;V ∗) =
N�−1∑
j=1

∫ (j+1/2)τ�

(j−1/2)τ�

∥∥∥∥vj − vj−1

τ�

∥∥∥∥2

V ∗
dt

= τ�

N�−1∑
j=1

∥∥∥∥vj − vj−1

τ�

∥∥∥∥2

V ∗

is uniformly bounded. By standard arguments (see [7, theorem 3.18, p 69] and use the
reflexivity of L2(0, T ; V ∗)), we thus have an element w ∈ L2(0, T ; V ∗) and a subsequence (of
the previous subsequence and still denoted by �′) such that v̂′

�′ converges weakly inL2(0, T ; V ∗)
towards w. The definition of the weak derivative, together with the weak* convergence of
v̂� in L∞(0, T ; L2(�)) ⊂ L2(0, T ; V ∗) towards v, shows that w = v′ = u′′. Since then
u′ = v = v0 + Kw ∈ C ([0, T ]; V ∗) but also u′ = v ∈ L∞(0, T ; L2(�)), we also get
u′ ∈ Cw([0, T ]; L2(�)).

With a generalization of the theorem of Lions–Aubin (see [28, lemma 7.7, p 194]), we
conclude from the boundedness of {v̂�} in L∞(0, T ; L2(�)) and of {v̂′

�} in L2(0, T ; V ∗) with
the strong convergence of v̂�′ in Ls(0, T ; Z) for any s ∈ [1, ∞) and for any Banach space Z

with L2(�) being compactly embedded in Z and Z being continuously embedded in V ∗. The
limit can only be u′.

Since the difference v� − v̂� converges strongly in L2(� × (0, T )) towards zero and since
{v�}, {v̂�} are bounded in L∞(0, T ; L2(�)), we also conclude with the strong convergence of
v�′ in Ls(0, T ; Z) towards u′.

It immediately follows that Kv�′ (as well as Kv̂�′ ) converges strongly in C ([0, T ]; Z)

towards Kv = Ku′ = u − u0. For proving the strong convergence of u�′ , let us take
Z = H−1(�). Since L2(�) ∈ K 1/2(H

−1(�), H 1
0 (�)), we see that

‖u� − u‖2
L2(�×(0,T )) � ‖u� − u‖L2(0,T ;H 1

0 (�))‖u� − u‖L2(0,T ;H−1(�)),

where the first factor on the right-hand side is uniformly bounded because of the boundedness
of {u�} in L∞(0, T ; V ) ↪→ L2(0, T ; H 1

0 (�)). For the second factor, we find

‖u� − u‖L2(0,T ;H−1(�)) � ‖u� − u0 − Kv�‖L2(0,T ;H−1(�)) + ‖u0 + Kv� − u‖L2(0,T ;H−1(�)),

where the first summand on the right-hand side vanishes as � → ∞ since u� − u0 − Kv�

converges strongly in L2(0, T ; V ) ↪→ L2(0, T ; H−1(�)) towards zero. The second summand
also vanishes in the limit because of u = u0 + Kv and, passing to a subsequence if necessary,
the strong convergence of Kv�′ in C ([0, T ]; Z) with Z = H−1(�) towards Kv, which has
just been shown.

The strong convergence of u�′ in L2(� × (0, T )) towards u, together with (4.3) and
V ↪→ Y , now implies (without loss of generality we consider r(1 − η) � 2)

‖u�′ − u‖r
Lr (0,T ;Y ) � c

∫ T

0
‖u�′(t) − u(t)‖r(1−η)‖�(u�′(t) − u(t))‖rη dt

� c‖u�′ − u‖2
L2(�×(0,T ))‖u�′ − u‖r−2

L∞(0,T ;V ),
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where the first factor on the right-hand side tends to zero as already shown and the second one
is uniformly bounded.

We now prove that u ∈ Cw([0, T ]; V ) and u′ ∈ Cw([0, T ]; L2(�)) satisfy the initial
conditions (1.4). Let g ∈ L2(�) be arbitrary and note that L2(�) is dense in V ∗. We then find
that

t → (g, u(t))
T − t

T
∈ C 1([0, T ])

and hence with the convergence properties already shown and the construction of the
prolongations

(g, u(0)) = −
∫ T

0

d

dt

(
(g, u(t))

T − t

T

)
dt = −

∫ T

0

(
(g, u′(t))

T − t

T
− (g, u(t))

)
dt

= − lim
�′→∞

∫ T

0

(
(g, v�′(t))

T − t

T
− (g, u�′(t))

)
dt

= − lim
�′→∞

∫ T

0

(
(g, v�′(t))

T − t

T
− (g, u0 + (Kv�′)(t))

)
dt

= − lim
�′→∞

∫ T

0

d

dt

(
(g, u0 + (Kv�′)(t))

T − t

T

)
dt

= lim
�′→∞

(g, u0 + (Kv�′)(0)) = (g, u0).

Similarly, we observe that for arbitrary w ∈ V
dense⊂ L2(�)

t → (u′(t), w)
T − t

T
∈ H 1(0, T ).

Using standard results on the distributional time derivative in Bochner–Lebesgue spaces (see,
e.g. [31, lemma 1.1, p 250]), we then obtain with (4.5)

(u′(0), w) = −
∫ T

0

d

dt

(
(u′(t), w)

T − t

T

)
dt = −

∫ T

0

(
〈u′′(t), w〉 T − t

T
− (u′(t), w)

)
dt

= − lim
�′→∞

∫ T

0

(
〈v̂′

�′(t), w〉 T − t

T
− (v̂�′(t), w)

)
dt

= − lim
�′→∞

∫ T

0

d

dt

(
(v̂�′(t), w)

T − t

T

)
dt = lim

�′→∞
(v̂�′(0), w)

= lim
�′→∞

(v0
�′ , w) = (v0, w).

The proof of the additional assertions in the particular cases that λ and µ do not vanish
can be carried out in a similar way: the first a priori estimate in theorem 3.2 yields the uniform
boundedness of ‖∇v�‖L2(�×(0,T )) if λ > 0 and of ‖�v�‖L2(�×(0,T )) if µ > 0. Recalling
here that, by construction, v�(t) ∈ V (t ∈ [0, T ]) and thus satisfies the boundary conditions
(1.2) and (1.3), respectively, this shows the boundedness of {v�} in L2(0, T ; H 1(�)) and
L2(0, T ; H 2(�)), respectively.

Moreover, since the Dirichlet trace operator is a linear bounded mapping of H 1(�) into
L2(∂�) and thus weak–weak continuous, we find from the weak convergence of (a subsequence
of) v� ∈ L2(0, T ; H 1

0 (�)) in L2(0, T ; H 1(�)) (λ > 0 or µ > 0) that the limit u′ is indeed in
L2(0, T ; H 1

0 (�)). In the case that µ > 0, an analogous argumentation for the Neumann trace
operator shows also that u′ fulfils (1.3) in the case of clamped boundary conditions such that
then u′ ∈ L2(0, T ; V ). We conclude with the asserted weak convergence in L2(0, T ; H 1

0 (�))

and L2(0, T ; V ), respectively.
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In the case λ > 0, we also have the boundedness of {v̂�} in L2(0, T ; H 1
0 (�)) because of

the first estimate in theorem 3.2 and assumption (4.5) since, in particular,

τ�‖∇v0
�‖2 � τ�‖v0

�‖ ‖�v0
�‖.

The generalized Lions–Aubin theorem (see again [28, lemma 7.7, p 194]) then yields the strong
convergence (again passing to a subsequence if necessary) of {v̂�′ } towards u′ in L2(0, T ; Z)

for any Banach space Z with H 1
0 (�)

c
↪→ Z ↪→ V ∗. In particular, we may choose Z = L2(�).

Together with the strong convergence of v� − v̂� in L2(� × (0, T )) towards zero, we thus find
the strong convergence of v�′ in L2(� × (0, T )) towards u′.

The additional regularity in the case µ > 0 follows from the continuous embedding
of H 1(0, T ; V ∗) ∩ L2(0, T ; V ) � u′ in C ([0, T ]; L2(�)) and of H 1(0, T ; V ) � u in
C ([0, T ]; V ). The asserted strong convergence follows from (2.4) since

‖v� − u′‖L2(0,T ;H 1
0 (�)) � ‖v� − u′‖1/3

L2(0,T ;H−1(�))
‖v� − u′‖2/3

L2(0,T ;V )
,

and the right-hand side tends to zero as � → ∞.
In the case µ > 0, however, we would need to assume in addition

τ�‖�v0
�‖2 � c

in order to prove the boundedness of {v̂�} in L2(0, T ; V ). �

4.2.2. Proof of theorem 4.1.

Proof. We commence with proving that the limit u of proposition 4.2 is indeed a solution in
the sense of definition 2.1. Since we have already shown in proposition 4.2 that u satisfies the
initial conditions, it remains to show that u satisfies the differential equation. For readability,
we tacitly pass to a subsequence if necessary and do not distinguish between � and �′.

With the definition of u�, v�, v̂�, f� and since A0 = B0 = C(0, 0) = 0, the numerical
scheme (3.1) (see also (3.3)) can be written in the following way as an operator-differential
equation on (0, T ),

v̂′
� + Av� + Bu� + C(u�, v�) = f� on (0, T ), (4.6)

which holds almost everywhere on (0, T ) as well as in the sense of equality in L2(0, T ; V ∗).
As � → ∞, proposition 4.2 shows that v̂′

� tends to u′′ in L2(0, T ; V ∗).
For the following, we recall that linear bounded operators are also weak–weak continuous

(see, e.g., Brézis [7, theorem 3.10, p 61]). Since A is a linear bounded mapping of L2(0, T ; X)

into L2(0, T ; V ∗) with X = L2(�) if λ = µ = 0, X = H 1
0 (�) if λ > 0, µ = 0 and

X = V if λ > 0, µ > 0 (see also (2.7)), proposition 4.2 shows that Av� converges weakly in
L2(0, T ; V ∗) towards Au′. The same argumentation shows that Biu� (i = 1, 2, 4) converges
weakly in L2(0, T ; V ∗) towards Biu.

With respect to B3, we recall the second inequality in (2.10), which yields

‖Bu� − Bu‖L2(0,T ;V ∗) � c ‖u� − u‖L2(0,T ;H 1
0 (�))

(
‖u�‖2

L∞(0,T ;H 1
0 (�))

+ ‖u‖2
L∞(0,T ;H 1

0 (�))

)
.

Proposition 4.2 with Y = H 1
0 (�) shows that the right-hand side of the foregoing estimate

tends to zero as � → ∞.
Moreover, strong convergence of f� in L2(� × (0, T )) towards f can easily be shown by

standard arguments.
If δ = 0 (no Balakrishnan–Taylor damping), we thus obtain from (4.6) the limit equation

u′′ + Au′ + Bu = f in L2(0, T ; V ∗),
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which shows that the limit u of proposition 4.2 satisfies the differential equation (1.1) in the
weak sense (see definition 2.1).

If δ �= 0 but λ > 0 or µ > 0, we can employ (2.20) together with the results of
proposition 4.2. Indeed, we find with the Cauchy–Schwarz inequality

‖C(u�, v�) − C(u, u′)‖L1(0,T ;V ∗)

� c max(‖u�‖L∞(0,T ;V )‖v�‖L∞(0,T ;L2(�)), ‖u‖L∞(0,T ;V )‖u′‖L∞(0,T ;L2(�)))
q−2

×
(
‖u�‖L2(0,T ;V )‖v� − u′‖L2(�×(0,T )) + ‖u� − u‖L2(0,T ;H 1

0 (�))‖u′‖L2(0,T ;H 1
0 (�))

)
+ c ‖u‖q−1

L∞(0,T ;V )‖u′‖q−1
L∞(0,T ;L2(�))

‖u� − u‖L1(0,T ;L2(�)),

and the right-hand side of the foregoing estimate tends to zero as � → ∞. Since {C(u�, v�)}
is bounded in L∞(0, T ; V ∗), we indeed get strong convergence also in L2(0, T ; V ∗) and we
thus obtain the limit equation

u′′ + Au′ + Bu + C(u, u′) = f in L2(0, T ; V ∗),

which shows that the limit u of proposition 4.2 satisfies the differential equation (1.1) in the
weak sense (see definition 2.1).

It remains to consider the case δ �= 0 with q = 2 but λ = µ = 0. So it remains to prove
that for all w ∈ V and ϕ ∈ C ∞

c (0, T )∫ T

0
〈C(u�(t), v�(t)), w〉 ϕ(t) dt → 〈C̃(u, u′), wϕ〉

= δ

2

∫ T

0
‖∇u(t)‖2

(
(u′(t), �w) ϕ(t) + (�u(t), w) ϕ′(t)

)
dt (4.7)

as � → ∞, see also (2.23).
In the following, we set tn−1/2 = (n−1/2)τ� for n ∈ Z. With the definition of the operator

C (recall here that q = 2) and the prolongations, we find (applying (3.2) and (2.15))∫ T

0
〈C(u�(t), v�(t)), w〉 ϕ(t) dt =

N�−1∑
j=1

〈C(uj+1, vj ), w〉
∫ tj+1/2

tj−1/2

ϕ(t) dt

= − δ

N�−1∑
j=1

(∇uj+1, ∇vj )(uj+1, �w)

∫ tj+1/2

tj−1/2

ϕ(t) dt

= − δ

2τ�

N�−1∑
j=1

(‖∇uj+1‖2 − ‖∇uj‖2 + ‖∇(uj+1 − uj )‖2
)

×(uj+1, �w)

∫ tj+1/2

tj−1/2

ϕ(t) dt

= − δ

2τ�

N�−1∑
j=1

‖∇uj+1‖2(uj+1, �w)

∫ tj+1/2

tj−1/2

ϕ(t) dt

+
δ

2τ�

N�−2∑
j=0

‖∇uj+1‖2(uj+2, �w)

∫ tj+1/2

tj−1/2

ϕ(t + τ�) dt

− δ

2τ�

N�−1∑
j=1

‖∇(uj+1 − uj )‖2(uj+1, �w)

∫ tj+1/2

tj−1/2

ϕ(t) dt =: S1,� − S2,� + S3,�.
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For S3,�, we find with (2.2) and (3.2) that

|S3,�| � c

τ�

N�−1∑
j=1

‖τ� vj‖‖�(uj+1 − uj )‖‖uj+1‖‖�w‖ τ�‖ϕ‖C ([0,T ])

� cτ�

N�−1∑
j=1

‖�(uj+1 − uj )‖ max
j=1,...,N�−1

(‖vj‖‖uj+1‖) ‖�w‖‖ϕ‖C ([0,T ])

� c

τ�

N�−1∑
j=1

‖�(uj+1 − uj )‖2

1/2

max
j=1,...,N�−1

(‖vj‖‖uj+1‖) ‖�w‖‖ϕ‖C ([0,T ]).

The first a priori estimate in theorem 3.2 (together with (2.1) and (2.3)) now shows that the
right-hand side of the foregoing estimate tends to zero as � → ∞, which shows that S3,�

vanishes as � → ∞.
We now come back to S1,� − S2,� and observe, after a simple but tedious calculation, that

S1,� − S2,� = − δ

2τ�

‖∇uN�‖2(uN�, �w)

∫ tN�−1/2

tN�−3/2

ϕ(t) dt +
δ

2τ�

‖∇u1‖2(u2, �w)

∫ t3/2

t1/2

ϕ(t) dt

+
δ

2

N�−2∑
j=1

‖∇uj+1‖2(vj+1, �w)

∫ tj+1/2

tj−1/2

ϕ(t) dt

+
δ

2τ�

N�−2∑
j=1

‖∇uj+1‖2(uj+2, �w)

∫ tj+1/2

tj−1/2

(ϕ(t +τ�)−ϕ(t)) dt =: S4,� + S5,� + S6,�.

With the first a priori estimate in theorem 3.2, assumptions (4.4), (4.5) (recall that
u1 = u0 + τ�v

0) and (2.2), we find

|S4,�| � c

τ�

∣∣∣∣∣
∫ tN�−1/2

tN�−3/2

ϕ(t) dt

∣∣∣∣∣ ‖�w‖ +
c

τ�

∣∣∣∣∣
∫ t3/2

t1/2

ϕ(t) dt

∣∣∣∣∣ ‖�w‖

→ c (|ϕ(T )| + |ϕ(0)|) ‖�w‖ = 0 as � → ∞.

Let v� : [0, T ] → V be piecewise constant with v�(t) = vj+1 if t ∈ (tj−1/2, tj+1/2]
(j = 1, 2, . . . , N� − 2) and v�(t) = 0 otherwise. The term S5,� can then be written as

S5,� = δ

2

∫ T

0
‖∇u�(t)‖2(v�(t), �w) ϕ(t) dt.

The first a priori estimate in theorem 3.2 immediately implies the boundedness of {v�} in
L∞(0, T ; L2(�)) and thus weak* convergence in L∞(0, T ; L2(�)) towards an element v.
Since

‖v� − v�‖2
L2(�×(0,T )) = τ�

N�−2∑
j=1

‖vj+1 − vj‖2 + τ� ‖vN�−1‖2

tends to zero as � → ∞ (see again theorem 3.2), v coincides with the weak*-limit of v�

such that v = u′. In view of proposition 4.2, we also know that u� converges strongly in
L2(0, T ; H 1

0 (�)) towards u as � → ∞, which implies

‖∇u�‖2�w ϕ → ‖∇u‖2�w ϕ in L1(0, T ; L2(�)) as � → ∞
for the sequence of functions t → ‖∇u�(t)‖2�w ϕ(t) (t ∈ [0, T ]). We, therefore, come up
with

S5,� → δ

2

∫ T

0
‖∇u(t)‖2(u′(t), �w) ϕ(t) dt as � → ∞.
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Finally, we define u� : [0, T ] → V as piecewise constant with u�(t) = uj+2 if
t ∈ (tj−1/2, tj+1/2] (j = 1, 2, . . . , N� − 2) and u�(t) = 0 otherwise. The term S6,� can
then be written as

S6,� = δ

2

∫ T

0
‖∇u�(t)‖2(�u�(t), w)

ϕ(t + τ�) − ϕ(t)

τ�

dt.

With similar arguments as employed for v�, it is straightforward to show that u� weakly*
converges in L∞(0, T ; V ) towards u. This, together with the strong convergence of u� in
L2(0, T ; H 1

0 (�)) towards u and the strong convergence of (ϕ(· + τ�) − ϕ(t))/τ� in C ([0, T ])
towards ϕ′ proves that

S6,� → δ

2

∫ T

0
‖∇u(t)‖2(�u(t), w) ϕ′(t) dt as � → ∞.

The foregoing observations have shown that (4.7) holds true.
The asserted convergence of the numerical scheme now follows immediately from

proposition 4.2. �
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