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In the present work, the error behaviour of the first-order Lie–Trotter splitting method for nonlinear evo-
lutionary problems is analysed. In particular, a local error representation that is suitable in the presence of
unbounded nonlinear operators and critical parameters is deduced. Such local error expansions together
with stability bounds are the basic ingredients in the derivation of convergence estimates. Essential tools
in the theoretical analysis are an abstract formulation of differential equations on function spaces and the
formal calculus of Lie derivatives. In order to illustrate the general approach, the application of the Lie–
Trotter splitting method to Schrödinger equations in the semiclassical regime is studied. From numerical
computations presented in the literature, it is expected that exponential operator splitting methods are
favourable for the time integration of nonlinear Schrödinger equations, provided that the time-step size
is suitably chosen depending on the magnitude of the critical parameter. For the least technical example
method, the first-order Lie–Trotter splitting method, this is substantiated by theoretical considerations for
the time-dependent Gross–Pitaevskii equation and confirmed by numerical examples. Numerical illustra-
tions for higher-order exponential operator splitting methods complement the considerations.

Keywords: nonlinear evolutionary problems; time-dependent nonlinear Schrödinger equations; semiclas-
sical regime; exponential operator splitting methods; Lie–Trotter splitting; local error; convergence.

1. Introduction

In this work, our concern is to contribute to the investigation of exponential operator splitting methods
for the time integration of abstract nonlinear evolutionary problems{

u′(t)= A(u(t))+ B(u(t)), 0 � t � T ,

u(0) given;
(1.1)

for detailed information on abstract evolution equations see Engel & Nagel (2000), Henry (1981), Hille
& Phillips (1957), Lunardi (1995); Pazy (1983), and for the investigation and application of splitting
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THE LIE–TROTTER SPLITTING FOR NONLINEAR SCHRÖDINGER EQUATIONS 723

methods see Bao, Jaksch & Markowich (2003), Bao & Shen (2005), Blanes & Moan (2002), Caliari
et al. (2009), Chin (2007), Descombes et al. (2007), Hairer et al. (2002), Iserles & Kropielnicka (2011),
Jahnke & Lubich (2000), Lubich (2008), McLachlan & Quispel (2002), Pérez-García & Liu (2003);
Thalhammer (2008). In particular, our objective is the derivation of a local error representation that is
well suited in the presence of unbounded nonlinear operators and critical parameters. A most useful
tool for this purpose is the formal calculus of Lie derivatives, which is suggestive of the less involved
linear case studied in Descombes & Schatzman (2002) and Descombes & Thalhammer (2010). In order
to elucidate the general mechanism, we focus on the least technical example method: the first-order
Lie–Trotter splitting method.

In comparison with other local error expansions for splitting methods that are based on the Baker–
Campbell–Hausdorff formula (see Iserles & Kropielnicka, 2011) or based on the techniques exploited
in Gauckler (2010), Jahnke & Lubich (2000), Lubich (2008) and Thalhammer (2008) in the context of
time-dependent Schrödinger equations, the approach presented allows us to capture correctly the error
behaviour of time-splitting methods for nonlinear evolutionary problems involving unbounded nonlin-
ear operators and critical parameters. In particular, our theoretical analysis applies to time-dependent
nonlinear Schrödinger equations in the semiclassical regime.

As a model problem, we consider the following time-dependent nonlinear Schrödinger equation for
ψ : R

d × [0, T]→C : (x, t) �→ψ(x, t):

{
iε∂tψ(x, t)=− 1

2ε
2Δψ(x, t)+ U(x)ψ(x, t)+ ϑ |ψ(x, t)|2ψ(x, t),

ψ(x, 0) given, x ∈R
d , 0 � t � T ,

(1.2)

with (small) parameter ε > 0, real-valued external potential U : R
d→R and coupling constant ϑ ∈R,

imposing asymptotic boundary conditions on the unbounded domain. The above problem is related to
the time-dependent Gross–Pitaevskii equation (see Gross, 1961; Pitaevskii, 1961) which arises in the
description of the macroscopic wave function of a Bose–Einstein condensate. Employing an abstract for-
mulation of ordinary differential equations on function spaces, the initial–boundary value problem (1.2)
takes the form (1.1) with unbounded linear operator A comprising the Laplacian (and part of the poten-
tial) and unbounded nonlinear multiplication operator B involving (part of) the potential and the cubic
nonlinearity.

The incentive for this work originates from the question of whether exponential operator splitting
methods are favourable for nonlinear evolutionary Schrödinger equations in the semiclassical regime;
our interest in this theme is inspired by theoretical and numerical investigations for the first-order Lie–
Trotter splitting method and the second-order Strang splitting method provided by Bao et al. (2002);
Bao, Jin & Markowich (2003) and Faou et al. (2009); see also the references given therein.

Numerical comparisons (e.g., given in Bao, Jaksch & Markowich, 2003; Pérez-García & Liu, 2003;
Bao & Shen, 2005; Caliari et al., 2009) for nonlinear Schrödinger equations such as (1.2) with ε= 1,
show that higher-order splitting schemes are superior to standard integrators when low tolerances are
required or long-term integrations are carried out. These numerical observations are also confirmed
by theoretical investigations. For instance, for an exponential operator splitting method of (nonstiff)
order p, applied to a linear evolutionary Schrödinger equation involving a sufficiently regular bounded
potential, the local error expansion exploited in Jahnke & Lubich (2000) and Thalhammer (2008) leads
to an error estimate of the form

‖uN − u(tN )‖L2 � C(‖u0 − u(0)‖L2 + hp‖u(0)‖Hp).

 at U
niversity Innsbruck on O

ctober 31, 2014
http://im

ajna.oxfordjournals.org/
D

ow
nloaded from

 

http://imajna.oxfordjournals.org/


724 S. DESCOMBES AND M. THALHAMMER

Here, as standard, we denote by (un)
N
n=0, the numerical approximation values at the equidistant grid

points tn = nh for 0 � n � N with time-step size h= T/N . As underlying function spaces, we consider
the Lebesgue space L2(Rd) and the Sobolev space Hp(Rd); for the definition of the associated norms,
see (1.5). In the context of nonlinear Schrödinger equations a seminal contribution is Lubich (2008),
where a convergence estimate for the second-order Strang splitting method is derived; main tools in the
error analysis are the formal calculus of Lie derivatives and bounds for Lie commutators of the involved
nonlinear operators.

However, for small parameter values 0< ε	 1, the above-mentioned approach is not appropriate
to provide optimal local and global error bounds with respect to ε. For instance, in the linear case, the
remainder arising in the local error expansion involves (p+ 1) applications of the operator B= (1/ε)U
implying dependence O(1/εp+1) on the critical parameter which is not in accordance with numerical
experiments. Thus, different techniques are needed for a better theoretical understanding of the error
behaviour of exponential operator splitting methods for evolutionary problems and the dependence of
the admissible time-step size on the critical parameter.

In our previous work, Descombes & Thalhammer (2010), which is concerned with a local error rep-
resentation for splitting methods applied to linear equations, we followed an alternative approach based
on the derivation of differential equations for splitting operators. In particular, for linear Schrödinger
equations and classical Wentzel–Kramers–Brillouin initial values that satisfy the condition εj‖u(0)‖Hj �
Mj with a constant Mj > 0 for 0 � j � p, the convergence estimate

‖uN − u(tN )‖L2 � ‖u0 − u(0)‖L2 + C
hp

ε

results with constant C> 0 depending on Mj, 0 � j � p, L∞ bounds for the partial derivatives of the
potential U (up to order 2p), and the end time tN ; this dependence O(hp/ε) of the global error on the
time-step size h and the critical parameter ε is also confirmed by numerical examples.

In the present paper, we extend the error analysis of Descombes & Thalhammer (2010) for linear
equations to nonlinear problems (1.1). In order to illustrate the general mechanism, we focus on the
least technical example: the first-order Lie–Trotter splitting method

{
un = ehDA ehDB un−1, 1 � n � N ,

u0 given.
(1.3)

Here, DF denotes the Lie derivative and etDF the nonlinear evolution operator associated with the
nonlinear differential equation u′(t)= F(u(t)), that is, u(t)= etDF u(0) (see below). In the case of the
Lie–Trotter splitting method, our approach will lead to a compact local error representation, which is
advantageous for further investigation with regard to nonlinear Schrödinger equations such as (1.2).
Indeed, the defect operator of the Lie–Trotter splitting method (1.3) possesses the representation

L (t, v)= etDA etDB v− eDA+B v=
∫ t

0

∫ τ1

0
eτ1DA eτ2DB [DA, DB] e(τ1−τ2)DB e(t−τ1)DA+B v dτ2 dτ1. (1.4)

In particular, for linear operators A and B the above formula reduces to

L (t, v)= (etB etA − et(A+B))v=
∫ t

0

∫ τ1

0
e(t−τ1)(A+B) e(τ1−τ2)B [B, A] eτ2B eτ1Av dτ2 dτ1.
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THE LIE–TROTTER SPLITTING FOR NONLINEAR SCHRÖDINGER EQUATIONS 725

Note that in the formal calculus of Lie derivatives, the sequence of the compositions of evolution opera-
tors and Lie derivatives is reversed. Local error representations such as (1.4) are an essential ingredient
in the derivation of a global error estimate for exponential operator splitting methods applied to nonlin-
ear evolution equations.

The structure of the present work and the main results are as follows: in a first part, we elucidate the
general approach, and, in a second part, we discuss the application to nonlinear Schrödinger equations
of the form (1.2). In Section 2, we state the abstract nonlinear evolutionary problem and introduce
the formal calculus of Lie derivatives. Furthermore, we specify the considered class of exponential
operator splitting methods. Section 3 is devoted to the derivation of a local error representation, suitable
in the presence of critical parameters; we give a detailed derivation involving marginal technicalities
for the first-order Lie–Trotter splitting method and indicate the generalization to high-order methods.
We first deduce the statement of Theorem 3.1 by employing standard techniques and notation and then
comment on a formal extension of the linear case using the calculus of Lie derivatives. Applications to
nonlinear Schrödinger equations in the semiclassical regime are the contents of Section 4. Theoretical
considerations, also confirmed by numerical illustrations, imply that the Lie–Trotter splitting method is
favourable for the time integration of the Gross–Pitaevskii equation, provided that the time-step sizes are
chosen sufficiently small; for a single time step, in the case of a regular initial condition with bounded
spatial derivatives, independent of the critical parameter 0< ε	 1, time-step sizes of the magnitude
of ε are needed, whereas for an initial condition in classical Wentzel–Kramers–Brillouin form, time-
step sizes sufficiently smaller than the critical parameter are required. For higher-order exponential
operator splitting methods, improved accuracy properties are observed.

Since in the present work, the focus is on the least technical example method (the first-order Lie-
Trotter splitting method), we occasionally favour standard notation to the formal calculus of Lie deriva-
tives. In Section 3, the formal calculations are carried out under the tacit requirement that the arising
unbounded operators and compositions thereof are well defined on suitably chosen domains and time
intervals. The specialization to the time-dependent Gross–Pitaevskii equation is then given in Section 4.
Throughout, we denote by C> 0 a generic constant, possibly taking different values at different occur-
rences. As usual, the Lebesgue space L2(Ω)= L2(Ω , C) of square-integrable complex-valued func-
tions f :Ω ⊂R

d→C is endowed with an inner product (·|·)L2 and the corresponding norm ‖ · ‖L2 ,
given by

(f |g)L2 =
∫
Ω

f (x)g(x) dx, ‖f ‖L2 =
√
(f |f )L2 , f , g ∈ L2(Ω). (1.5a)

The Sobolev space Hm(Ω) comprises all functions with partial derivatives up to order m � 0 contained
in L2(Ω), where, in particular, H0(Ω)= L2(Ω); the associated norm ‖·‖Hm is defined through

‖f ‖2
Hm =

∑
j=(j1,...,jd )∈Nd

j1+···+jd�m

‖∂ jf ‖2
L2 , f ∈Hm(Ω). (1.5b)

Detailed information on Sobolev spaces is found in the monograph of Adams (1978).

2. Splitting methods for nonlinear evolutionary problems

In this section, we state the abstract nonlinear evolutionary problem, and, for the convenience of the
reader, recall the defining relations for the Lie derivative; we point out that the evolution operator and the
associated Lie derivative are introduced in such a way that the formalism is appropriate in the context of
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726 S. DESCOMBES AND M. THALHAMMER

unbounded operators. Further, we state the general form of the considered exponential operator splitting
methods. For detailed information, we refer to the monographs of Engel & Nagel (2000), Hairer et al.
(2002), Henry (1981) and Sanz-Serna & Calvo (1994).

2.1 Nonlinear evolutionary problems

In the present work, we consider an initial value problem of the form

{
u′(t)= F(u(t)), 0 � t � T ,

u(0) given,
(2.1a)

where the structure of the unbounded nonlinear operator F : D(F)⊂ X→ X suggests a decomposition
into two parts with unbounded nonlinear operators A : D(A)⊂ X→ X and B : D(B)⊂ X→ X :

F(v)= A(v)+ B(v), v ∈D(A) ∩ D(B); (2.1b)

throughout, we tacitly require that the domains are suitably chosen subspaces of the underlying Banach
space (X , ‖ · ‖X ) such that D(F)=D(A) ∩ D(B) |= ∅.

The exact solution of the evolutionary problem (2.1) is (formally) given by

u(t)= EF(t, u(0)), 0 � t � T , (2.2a)

with evolution operator EF depending on the actual time and the initial value; as the differential equation
in (2.1a) is supposed to be autonomous, we may neglect the dependence on the initial time. Besides, we
employ the formal notation

u(t)= etDF u(0), 0 � t � T , (2.2b)

which is suggestive of the (less involved) linear case. Here, the evolution operator etDF and the Lie
derivative DF associated with F are given by

etDF Gv=G(EF(t, v)), 0 � t � T , DFGv=G′(v)F(v), (2.3a)

for any unbounded nonlinear operator G : D(G)⊂ X→ X with Fréchet derivative G′; whenever G is
the identity operator, we write

etDF v= EF(t, v), 0 � t � T , DFv= F(v) (2.3b)

for short. It is notable that the relation DF = (d/dt)|t=0 etDF holds since (d/dt)EF(t, v)= F(EF(t, v)) and
EF(0, v)= v and thus by the chain rule,

d

dt

∣∣∣∣
t=0

etDF Gv= d

dt

∣∣∣∣
t=0

G(EF(t, v))=G′(EF(t, v))F(EF(t, v))|t=0 =G′(v)F(v)=DFGv.

This is in accordance with the identity Lv= d/dt|t=0 etLv, which is valid, for instance, for any bounded
linear operator L : X→ X with the exponential function defined by the power series and also extendable
to the framework of unbounded linear operators generating a strongly continuous (semi)group.
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THE LIE–TROTTER SPLITTING FOR NONLINEAR SCHRÖDINGER EQUATIONS 727

2.2 Exponential operator splitting methods

For the time discretization of the nonlinear evolutionary problem (2.1), we consider the first-order
Lie–Trotter splitting method, or, more generally, an exponential operator splitting method of (nons-
tiff) order p � 1 involving s � 1 compositions (stages). We employ the following general formulation
that includes various example methods proposed in the literature.

For some integer N ∈N, we let h= T/N denote the time-step size and tn = nh for 0 � n � N the
associated equidistant time grid points. Starting from an initial value u0 ≈ u(0), numerical approxima-
tions un to the exact solution values u(tn) are determined through a recurrence relation of the form

{
un =S (h, un−1), 1 � n � N ,

u0 given;
(2.4a)

here, the splitting operator S is defined through

S (t, v)= ea1tDA eb1tDB · · · eastDA ebstDB v, 0 � t � T , (2.4b)

and involves the real method coefficients (aj, bj)
s
j=1; see also (2.3).

Low-order example methods that can be cast into the scheme (2.4) are the first-order Lie–Trotter
splitting method (1.3), where p= s= a1 = b1 = 1, and the widely used second-order symmetric Lie–
Trotter or Strang splitting method, where

p= s= 2, a1 = a2 = 1
2 , b1 = 1, b2 = 0; (2.5)

see Strang (1968) and Trotter (1959). Example methods of higher order that were proposed in the liter-
ature are reviewed in Hairer et al. (2002) and McLachlan & Quispel (2002); for numerical comparisons
of fourth- and sixth-order splitting methods in the context of Schrödinger equations, see also Caliari
et al. (2009) and the references given therein.

3. Local error of the Lie–Trotter splitting method

In the following, our concern is to deduce an appropriate local error expansion for exponential operator
splitting methods (2.4):

L (t, v)=S (t, v)− EF(t, v)= ea1tDA eb1tDB · · · eastDA ebstDB v− etDF v, 0 � t � T ; (3.1)

in view of applications to time-dependent nonlinear Schrödinger equations in the semiclassical regime,
it is essential that the local error representation remains valid for evolutionary problems (2.1) involv-
ing unbounded nonlinear operators and critical parameters. In Section 3.1, we give a detailed depiction
of the first-order Lie–Trotter splitting method (1.3) involving marginal technicalities and then indi-
cate the generalization to high-order methods utilizing a formal extension of the linear case studied
in Descombes & Thalhammer (2010) by the calculus of Lie derivatives; to keep the presentation tight,
several auxiliary results are collected in Section 3.2.

Below, we employ the following notation: recall that the Fréchet derivative of a nonlinear operator
G : D(G)⊂ X→ X is denoted by G′. The Lie bracket of the nonlinear operators G and H is defined
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728 S. DESCOMBES AND M. THALHAMMER

through
[G, H](v)=G′(v)H(v)− H ′(v)G(v); (3.2a)

clearly, for linear operators G and H , due to G′(v)=G as well as H ′(v)=H , the above relation reduces
to [G, H](v)= [G, H]v= (GH − HG)v. In accordance with (3.2a), we further set

[DG, DH ]v=DGDH v− DH DGv (3.2b)

(see (2.3) for the definition of the Lie derivative); note that [DG, DH ]v=−[G, H](v).

3.1 A compact local error representation

For the Lie–Trotter splitting method (1.3), the splitting operator (2.4b) simplifies to

S (t, v)= etDA etDB v= EB(t, EA(t, v)), 0 � t � T . (3.3)

With regard to the primal initial value problem⎧⎨
⎩

d

dt
EF(t, v)= F(EF(t, v)), 0 � t � T ,

EF(0, v)= v
(3.4)

(see also (2.1) and (2.2)), we determine the time derivative of (3.3) and rewrite it as

d

dt
S (t, v)= B(EB(t, EA(t, v)))+ ∂2EB(t, EA(t, v))A(EA(t, v))

= F(S (t, v))+ ∂2EB(t, EA(t, v))A(EA(t, v))− A(S (t, v));

consequently, we obtain the initial value problem⎧⎨
⎩

d

dt
S (t, v)= F(S (t, v))+ R(t, v), 0 � t � T ,

S (0, v)= v,
(3.5a)

which involves the time-dependent remainder

R(t, v)= ∂2EB(t, EA(t, v))A(EA(t, v))− A(S (t, v)), 0 � t � T . (3.5b)

In order to relate the solutions of the initial value problems (3.4) and (3.5), we apply the nonlinear
variation-of-constants formula (see Theorem 3.3); this yields the following relation for the defect oper-
ator:

L (t, v)=
∫ t

0
∂2EF(t − τ1, S (τ1, v))R(τ1, v) dτ1, 0 � t � T ;

see (3.1). Furthermore, by Lemma 3.4, we obtain the identity

R(τ1, v)= ∂2EB(τ1, EA(τ1, v))A(EA(τ1, v))− A(EB(τ1, EA(τ1, v)))

=
∫ τ1

0
∂2EB(τ1 − τ2, EA(τ1, v))[B, A](EB(τ2, EA(τ1, v))) dτ2, 0 � τ1 � t � T ;
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THE LIE–TROTTER SPLITTING FOR NONLINEAR SCHRÖDINGER EQUATIONS 729

see also (3.2) and (3.5b). Altogether, the above considerations imply the following local error repre-
sentation; for a justification of the compact formal notation, we apply Lemma 3.5 with G1 =H1 = A,
G2 =G3 =H2 = B, G4 = F, t	 = τ	, 	= 1, 2, t3 = τ1 − τ2 and t4 = t − τ1; see also (2.3).

Theorem 3.1 (Local error representation, Lie–Trotter splitting) For the nonlinear evolutionary prob-
lem (2.1) the defect operator (3.1) of the first-order Lie–Trotter splitting method (1.3) possesses the
integral representation

L (t, v)=
∫ t

0

∫ τ1

0
eτ1DA eτ2DB [DA, DB] e(τ1−τ2)DB e(t−τ1)DF v dτ2 dτ1

=
∫ t

0

∫ τ1

0
∂2EF(t − τ1, S (τ1, v))∂2EB(τ1 − τ2, EA(τ1, v))

× [B, A](EB(τ2, EA(τ1, v))) dτ2 dτ1, 0 � t � T .

Remark 3.2 (i) In accordance with Descombes & Thalhammer (2010), for initial value prob-
lems (2.1) involving unbounded linear operators, the local error representation of Theorem 3.1
reduces to

L (t, v)=
∫ t

0

∫ τ1

0
e(t−τ1)(A+B) e(τ1−τ2)B[B, A]eτ2B eτ1Av dτ2 dτ1, 0 � t � T .

Simplistically, replacing the operators A and B by the associated Lie derivatives DA and DB and
reversing the order, the result for the nonlinear case is obtained.

(ii) In Section 4.2, we study the local error representation for the Lie–Trotter splitting method
when applied to the nonlinear Schrödinger equation (1.2). In particular, we determine the first
Lie commutator [A, B](w), which, in general, depends on the argument w and its first- and
second-order spatial derivatives as well as on the first- and second-order spatial derivatives of
the potential U ; on the contrary, in the linear case the Lie commutator [A, B] reduces to a linear
differential operator of order one with coefficients involving the first- and second-order spatial
derivatives of the potential. In the context of nonlinear Schrödinger equations, it is natural to
choose the Lebesgue space L2(Ω) as the underlying function space; furthermore, the imposed
asymptotic (or periodic) boundary conditions onΩ =R

d (orΩ ⊂R
d a suitably chosen bounded

domain) facilitate the considerations.

(iii) A rigorous extension of the local error representation for the first-order Lie–Trotter splitting
method to higher-order splitting methods and the investigation for a particular application is left
for future work; in this case, it is indispensable to employ the formal calculus of Lie deriva-
tives. However, it is expected that the local error representation for a high-order exponential
operator splitting method formally resembles the relation for the linear case, which was deduced
in Descombes & Thalhammer (2010), replacing A and B by the associated Lie derivatives and
reversing the sequence of the involved operators.

3.2 Auxiliary results

In this section, we collect several auxiliary results that are needed for the derivation of our local error
representation for exponential operator splitting methods (2.4) applied to nonlinear evolutionary prob-
lems (2.1).
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730 S. DESCOMBES AND M. THALHAMMER

In the following, we let G : D(G)⊂ X→ X and H : D(H)⊂ X→ X denote unbounded nonlinear
operators (with suitably chosen domains). With regard to (2.1), we consider the evolutionary problem

{
v′(t)=G(v(t)), 0 � t � T ,

v(0)= v0,

with exact solution formally given by v(t)= EG(t, v0) for 0 � t � T ; see also (2.2). We recall that the
evolution operator EG and its derivative with respect to the initial value, which we denote by ∂2EG, fulfil
the initial value problems

⎧⎨
⎩

d

dt
EG(t, v0)=G(EG(t, v0)), 0 � t � T ,

EG(0, v0)= v0,⎧⎨
⎩

d

dt
∂2EG(t, v0)=G′(EG(t, v0))∂2EG(t, v0), 0 � t � T ,

∂2EG(t, v0)|t=0 = I.

(3.6)

Clearly, the evolution operator EG satisfies

EG(t + s, v0)= EG(s, EG(t, v0))= EG(t, EG(s, v0)), 0 � t + s � T ;

more generally, in the context of parabolic equations, the above relation holds true under the additional
restriction s, t � 0. As a consequence, the identity

∂2EG(t, v0)G(v0)= d

ds

∣∣∣∣
s=0

EG(t, EG(s, v0)) = d

ds

∣∣∣∣
s=0

EG(t + s, v0)

=G(EG(t, v0)), 0 � t � T (3.7)

follows.
An essential tool for the derivation of our local error representation is the nonlinear variation-of-

constants formula; see, for example, Sanz-Serna & Calvo (1994).

Theorem 3.3 (Gröbner–Alekseev formula) The analytical solutions of the initial value problems

{
v′(t)=H(t, v(t))=G(v(t))+ R(t, v(t)), 0 � t � T ,

v(0)= v0,{
v′(t)=G(v(t)), 0 � t � T ,

v(0)= v0

are related through the nonlinear variation-of-constants formula

EH(t, v0)= EG(t, v0)+
∫ t

0
∂2EG(t − τ , EH(τ , v0))R(τ , EH(τ , v0)) dτ , 0 � t � T .
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Proof. With the help of relation (3.7) we obtain

d

dτ
EG(t − τ , EH(τ , v0))=−G(EG(t − τ , EH(τ , v0)))

+ ∂2EG(t − τ , EH(τ , v0))H(τ , EH(τ , v0))

=−G(EG(t − τ , EH(τ , v0)))

+ ∂2EG(t − τ , EH(τ , v0))G(EH(τ , v0))

+ ∂2EG(t − τ , EH(τ , v0))R(τ , EH(τ , v0))

= ∂2EG(t − τ , EH(τ , v0))R(τ , EH(τ , v0)), 0 � τ � t � T ;

therefore, the desired result follows at once from

EH(t, v0)− EG(t, v0)= EG(0, EH (t, v0))− EG(t, EH(0, v0))

= EG(t − τ , EH (τ , v0))|tτ=0

=
∫ t

0

d

dτ
EG(t − τ , EH (τ , v0)) dτ

=
∫ t

0
∂2EG(t − τ , EH(τ , v0))R(τ , EH(τ , v0)) dτ , 0 � t � T .

We note that for the nonautonomous problem involving H , the associated evolution operator EH depends
on the actual time and the initial time, as well as on the initial value; in this case, we write EH(t, v0)=
EH(t, 0, v0) for short. �

In particular, if G is a time-independent (unbounded) linear operator that generates a semigroup
(etG)t�0, we retain the linear variation-of-constants formula

EH(t, v0)= etGv0 +
∫ t

0
e(t−τ)GR(τ , EH(τ , v0)) dτ , 0 � t � T

since EG(t, v0)= etGv0 and thus ∂2EG(t, ·)= etG; see also Engel & Nagel (2000), Henry (1981), Hille &
Phillips (1957), Lunardi (1995), Pazy (1983).

In order to further expand terms of the form (3.5b), we apply the following auxiliary result; we refer
to (3.2) for the definition of the Lie bracket.

Lemma 3.4 For unbounded nonlinear operators G and H , the identity

∂2EG(t, v)H(v)− H(EG(t, v))=
∫ t

0
∂2EG(t − τ , v)[G, H](EG(τ , v)) dτ , 0 � t � T

holds true.
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Proof. In accordance with (3.5b), we set R(t, v)= ∂2EG(t, v)H(v)− H(EG(t, v)) for a fixed element v
and 0 � t � T . Rewriting the time derivative of R as

d

dt
R(t, v)=G′(EG(t, v))∂2EG(t, v)H(v)− H ′(EG(t, v))G(EG(t, v))

=G′(EG(t, v))R(t, v)+ G′(EG(t, v))H(EG(t, v))− H ′(EG(t, v))G(EG(t, v)), 0 � t � T

(see (3.6)), and using R(0, v)= ∂2EG(0, v)H(v)− H(EG(0, v))= 0 thus yields the linear initial value
problem ⎧⎨

⎩
d

dt
R(t, v)=G′(EG(t, v))R(t, v)+ [G, H](EG(t, v)), 0 � t � T ,

R(0, v)= 0

(see also (3.2) and (3.6)); we note that the evolution operator of the associated homoge-
neous linear differential equation is given by ∂2EG(t, v) and that ∂2EG(t − τ , v) is understood as
∂2EG(t, v)(∂2EG(τ , v))−1. As a consequence, the (linear variant of the) variation-of-constants formula
implies the given result; see also Theorem 3.3. �

We next reformulate the composition that arises in the local error representation of the Lie–Trotter
splitting by utilizing the formal calculus of Lie derivatives; see (2.3).

Lemma 3.5 For nonlinear operators Gj, 1 � j � 4 and Hj, 1 � j � 2, the relation

et1DG1 et2DG2 [DH1 , DH2 ] et3DG3 et4DG4 v0

= ∂2EG4(t4, EG3(t3, v))∂2EG3(t3, v)[H2, H1](v)|v=EG2 (t2,EG1 (t1,v0))

is valid.

Proof. We consider the composition

L1(v)= et3DG3 et4DG4 v= EG4(t4, EG3(t3, v))

and determine its Fréchet derivative

L′1(v)= ∂2EG4(t4, EG3(t3, v))∂2EG3(t3, v).

Moreover, due to the fact that

L1+j(v)=DHj et3DG3 et4DG4 v= L′1(v)Hj(v), j= 1, 2,

L′1+j(v)= L′′1(v)Hj(v)+ L′1(v)H
′
j (v), j= 1, 2,

a straightforward calculation yields the relation

L4(v)= [DH1 , DH2 ] et3DG3 et4DG4 v= L′3(v)H1(v)− L′2(v)H2(v)= L′1(v)[H2, H1](v).

Using

L5(v)= et2DG2 [DH1 , DH2 ] et3DG3 et4DG4 v= L4(EG2(t2, v)),
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and as a consequence

et1DG1 et2DG2 [DH1 , DH2 ] et3DG3 et4DG4 v= L5(EG1(t1, v)),

the statement follows. �

4. Nonlinear Schrödinger equations in the semiclassical regime

In this section, we state a convergence estimate for the first-order Lie–Trotter splitting method (1.3)
when applied to time-dependent nonlinear Schrödinger equations in the semiclassical regime. In partic-
ular, we study the ability of our local error representation given in Theorem 3.1 to provide a local error
estimate which correctly captures the dependence on the critical parameter. In Section 4.1, we present
numerical examples for the Gross–Pitaevskii equation (1.2) to illustrate and confirm the theoretical
considerations of Sections 4.2 and 4.3. Numerical experiments for higher-order exponential operator
splitting methods complement our investigations.

In the following, we focus on the local error behaviour of splitting methods. We point out that this
is justified by the fact that global error estimates are obtained by a standard approach based on stability
bounds and local error estimates; more precisely, by means of a telescopic identity (Lady Windermere’s
fan argument), the global error is related to compositions of the splitting operator and local errors;
see Descombes & Thalhammer (2010), Gauckler (2010), Lubich (2008), and Thalhammer (2008). We
believe that in both the numerical example and the theoretical considerations, it gives insight to draw a
comparison with the less involved linear case, which was treated in our previous work (Descombes &
Thalhammer, 2010). In the following, in order to facilitate the considerations, we suppose the potential
to be sufficiently often differentiable with bounded derivatives; techniques exploited in Neuhauser &
Thalhammer (2009) allow us to incorporate unbounded potentials such as a scaled harmonic potential,
which is relevant in view of physical applications.

For simplicity, we henceforth focus on a model problem in a single space dimension; for our pur-
poses, this restriction is adequate and considerably facilitates the numerical computation as well as the
theoretical considerations. We point out that in the numerical example that it is essential to ensure a high
spatial resolution in order to observe the expected dependence on the critical parameter; for example,
for a one-dimensional problem using an implementation in MATLAB, the computation time of Fig. 1 on
a standard notebook1 amounts to a few seconds (only).

4.1 Numerical experiments

In the following, we illustrate the error behaviour of the first-order Lie–Trotter splitting method
when applied to the one-dimensional Gross–Pitaevskii equation under an initial condition in classi-
cal Wentzel–Kramers–Brillouin form and under a regular initial condition; in particular, we study the
dependence of the local error on the time-step size and the critical parameter. Moreover, for comparison,
we include the numerical results obtained for exponential operator splitting methods of (nonstiff) orders
p= 2, 3, 4; for our considerations, the choice of the higher-order splitting methods is not essential. Our
model problem conforms to Bao, Jin & Markowich (2003, Example 6).

Model problem (One dimension). We consider the time-dependent nonlinear Schrödinger equation⎧⎨
⎩i∂tψ(x, t)=

(
−1

2
ε∂xx + 1

ε
U(x)+ 1

ε
ϑ |ψ(x, t)|2

)
ψ(x, t),

ψ(x, 0)= 
0(x) eiσ0(x)/ε, x ∈Ω , 0 � t � T ,
(4.1a)

1 HP Compaq nc8430, Intel(R) Core(TM)2 CPU, T7200 @ 2 GHz, 1.99 GHz, 2 GB RAM.
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Fig. 1. Dependence of the local error on the critical parameter for different splitting methods applied to problem (4.1) with
M = 4096 Fourier basis functions. First row: equation under initial condition (4.2) with ω= 1 and ϑ = 1 (columns 1 and 2) or
ϑ = 0 (columns 3 and 4). Local error versus critical parameter for time step h= 10−2 (columns 1 and 3) and h= ε (columns 2
and 4). Second row: equation under initial condition (4.3) with ω= 1 and ϑ = 1 (columns 1 and 2) or ϑ = 0 (columns 3 and 4).
Local error versus critical parameter for time step h= 5× 10−2 (column 1) or h= 2× 10−1 (column 3) and time step h= ε
(columns 2 and 4). Third row: equation under initial condition (4.2) (columns 1 and 2) or (4.3) (columns 3 and 4), with ω= 0 and
ϑ = 1. Local error versus critical parameter for time step h= 5× 10−2 (columns 1 and 3) and h= ε (columns 2 and 4).

for a function ψ :Ω × [0, T]→C : (x, t) �→ψ(x, t), where Ω ⊂R denotes a (suitably chosen) bounded
interval. We assume the external real potential U :Ω→R and the functions 
0, σ0 :Ω→R defining
the initial condition to be sufficiently often differentiable with bounded derivatives. In particular, we
study (4.1a) under the scaled harmonic potential

U(x)= 1
2ω

2x2, x ∈Ω , (4.1b)

involving the positive weight ω> 0. In view of Section 4.2, we also consider the special case ϑ = 0
where (4.1a) reduces to a linear Schrödinger equation, and the cubic Schrödinger equation where ω= 0.

Numerical experiments (Local error). To study the local error behaviour of splitting methods, the
values of the critical parameter ε > 0 are chosen in the range 2−9 = 1.953125× 10−3 to 2−2 = 2.5×
10−1. Further, we set ω= 1 and ϑ = 1 as well as


0(x)= e−x2
, σ0(x)=− ln(ex + e−x), x ∈Ω . (4.2)
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With regard to space discretization by the Fourier–spectral method with M = 4096 degrees of freedom,
we impose periodic boundary conditions on the bounded interval Ω = [−a, a]; in the present situation,
a= 8 is sufficiently large that the artificial boundary conditions do not cause perturbations of the numer-
ical solution. For the time integration of (4.1), we apply different exponential operator splitting meth-
ods: the first-order Lie–Trotter splitting method (1.3), the second-order Strang splitting method (2.5), a
fourth-order splitting method by Yoshida, and, in addition, a third-order splitting method.2 On the one
hand, we choose the actual time-step size h= h0 independent of the parameter ε, and, on the other hand,
we set h= ε. Numerical reference solutions are computed by a favourable fourth-order Runge–Kutta–
Nyström splitting method proposed in Blanes & Moan (2002) with a finer time-step size h× 10−1.

In Fig. 1, the local errors errlocal(ε) versus the critical parameter values ε are displayed (see also (3.1)
for the definition of the local error); for comparison, we include the numerical results for the linear case
ϑ = 0 and a regular initial condition independent of ε, namely,


0(x)= e−(x−1/10)2 , σ0(x)= 0, x ∈Ω , (4.3)

as well as for the cubic Schrödinger equation where ω= 0. On a logarithmic scale, the slopes of the
lines correspond to the ratios of two subsequent local errors and parameters,

ratio(ε)= log

(
errlocal(ε)

errlocal(ε/2)

)/
log(2). (4.4)

For instance, for initial condition (4.2) and a time-step size independent of ε, it is observed that in all
cases, within the chosen range of h/ε, the ratios approach the value α =−1 which implies dependence
O(1/ε) of the dominant local error term with respect to the critical parameter. The numerical results
are summarized in Table 1 and analysed in Section 4.2; thereby, �x� denotes the integer part of x ∈R,
that is, α= 2�(p+ 1)/2� yields α = 2 if p= 1, 2 and α = 4 if p= 3, 4. We point out that it is crucial to
choose the number of Fourier basis functions M sufficiently large to avoid side effects from the spatial
approximation and to retain the expected behaviour.

Numerical experiments (Global error). The time evolution of the nonlinear Schrödinger
equation (4.1) with ϑ = 1 under initial condition (4.2) in classical Wentzel–Kramers–Brillouin form
is illustrated in Fig. 2. We display the solution values |ψ(x, t)|2, (x, t) ∈ [0, 1.5]× [0, 3] for parameter
values ε= 1, 10−2 and the values ω= 1, 2 of the constant in the confining potential; further, the figure
mirrors the rapid oscillations that arise for ε= 10−2 in the graph of ψ . We choose the spatial interval
[0, 1.5] since the solution is symmetric with respect to the origin and approaches zero outside; the per-
spective is such that the solution values at time t= 3 are visible. For the space integration, we apply the
Fourier–spectral method with M = 8192 degrees of freedom. The time integration is performed by the
above-mentioned fourth-order splitting method by Blanes & Moan (2002) with time-step size h= ε/20.
A comparison of the final solution values at time t= 3 illustrates that for smaller parameter values it
is essential to choose the time-step size sufficiently small; for ε= 10−2 and h= ε/20 the Lie–Trotter
splitting method does not capture the correct behaviour, whereas a satisfactory result is obtained for the
reduced time-step size h= ε/50.

2 The coefficients of a four-stage fourth-order splitting method by Yoshida are found in Hairer et al. (2002, p. 40, For-
mula (4.4)). For example, a seven-stage third-order splitting method results from a seven-stage fourth-order Runge–Kutta–
Nyström splitting method by Blanes & Moan (2002) when requiring the coefficients (ai, bi)

4
i=1 to coincide and further setting

b7 = 0.
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Table 1 Problem (4.1) with initial condition (4.2) (∂xσ0 |= 0) or (4.3) (σ0 = 0). Observed
dependence O(εα) of the local error on the critical parameter ε for splitting methods of
orders 1 � p � 4

ω= 1 ϑ = 1 ∂xσ0 |= 0 h= h0 α≈−1
ω= 1 ϑ = 1 ∂xσ0 |= 0 h= ε α≈ p
ω= 1 ϑ = 1 σ0 = 0 h= h0 α≈−1

ω= 1 ϑ = 1 σ0 = 0 h= ε α≈ 2

⌊
p+ 1

2

⌋
ω= 1 ϑ = 0 ∂xσ0 |= 0 h= h0 α=−1
ω= 1 ϑ = 0 ∂xσ0 |= 0 h= ε α= p
ω= 1 ϑ = 0 σ0 = 0 h= h0 α=−1

ω= 1 ϑ = 0 σ0 = 0 h= ε α= 2

⌊
p+ 1

2

⌋
ω= 0 ϑ = 1 ∂xσ0 |= 0 h= h0 α≈−1
ω= 0 ϑ = 1 ∂xσ0 |= 0 h= ε α≈ p

ω= 0 ϑ = 1 σ0 = 0 h= h0 α≈−1

ω= 0 ϑ = 1 σ0 = 0 h= ε α≈ 2

⌊
p+ 1

2

⌋

As a further illustration, the global errors errglobal(h) at final time T = 1 versus the (constant) time-
step sizes h= 2−j, 0 � j � 10, are displayed in Fig. 3 for the noncritical parameter value ε= 2−2 and
M = 256. As expected, the slopes

ratio(h)= log

(
errglobal(h)

errglobal(h/2)

)/
log(2)

perfectly reflect the convergence orders of the splitting methods, provided that the time-step sizes are
sufficiently small; this implies dependence O(hp+1) of the local error with respect to the time-step
size.

4.2 Local error estimate

In this section, we study the error behaviour of the Lie–Trotter splitting (1.3) method for the nonlin-
ear Schrödinger equation (4.1) in the semiclassical regime with initial condition chosen in classical
Wentzel–Kramers–Brillouin form (4.2) and a regular initial condition (4.3). In particular, we discuss the
ability of the local error representation of Theorem 3.1,

L (h, u0)=
∫ h

0

∫ τ1

0
∂2EF(h− τ1, S (τ1, u0))∂2EB(τ1 − τ2, EA(τ1, u0))

× [B, A](EB(τ2, EA(τ1, u0))) dτ2 dτ1, (4.5)

to explain the dependence of the dominant local error term upon the actual time-step size h> 0 and
the critical parameter 0< ε	 1 observed numerically in Section 4.1. For the theoretical analysis, we
first reconsider the linear case (Descombes & Thalhammer, 2010) and further the cubic Schrödinger
equation, since then the arguments can be extended to the Gross–Pitaevskii equation (4.1) without
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Fig. 2. Time evolution of the time-dependent nonlinear Schrödinger equation (4.1) under initial condition (4.2) with ϑ = 1.
First row: equation with (ε,ω)= (1, 1) (left), (ε,ω)= (1, 2) (middle) and (ε,ω)= (10−2, 2) (right). Solution profile |ψ(x, t)|2
for (x, t) ∈ [0, 1.5]× [0, 3]. Second row: equation with (ε,ω)= (10−2, 1). Solution profile |ψ(x, t)|2 (left) and �ψ(x, t) (middle)
for (x, t) ∈ [0, 1.5]× [0, 3] and section at time t= 3 (right). Third row: equation with ε= 10−2 and ω= 1 (columns 1 and 2) or
ω= 2 (columns 3 and 4). Comparison of the solution profiles |ψ(x, t)|2 for x ∈ [0, 1.5] at time t= 3, computed by the first-order
Lie–Trotter (p= 1) and a fourth-order splitting method by Blanes & Moan (2002) (p= 4). Time-step size h= ε/20 (columns 1
and 3) or h= ε/50 (columns 2 and 4), for p= 1. Time-step size h= ε/20 for p= 4.

significant difficulty. For suitable choices of the domains of the involved operators, the computation
of iterated Lie commutators and a possible extension to unbounded potentials in the context of the Her-
mite spectral method, we refer to Gauckler (2010), Lubich (2008), Neuhauser & Thalhammer (2009).

Abstract formulation. The nonlinear Schrödinger equation (4.1) may be cast into the form of an
abstract initial value problem (2.1) with linear operator A : D(A)⊂ X→ X and nonlinear operator B :
D(B)⊂ X→ X defined by

A= εÂ, Â= 1

2
i∂xx, B= 1

ε
B̂, B̂(v)=−i(U + ϑ |v|2)v; (4.6)
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Fig. 3. Numerical convergence orders of different splitting methods applied to problem (4.1) under initial condition (4.2) with
ε= 2−2, ω= 1, ϑ = 1, M = 256 and final time T = 1. Global error versus time-step size.

in accordance with the potential and the imposed boundary conditions on Ω ⊂R, the Sobolev embed-
ding H1(Ω)⊂ L∞(Ω) suggests suitably chosen subspaces D(Â)⊂H2(Ω) and D(B̂)⊂H1(Ω) on the
underlying Hilbert space X = L2(Ω).

Practical realization. With regard to the practical realization of a splitting method (2.4), it is
favourable to rely the numerical solution of the linear subproblem⎧⎨

⎩
d

dt
EA(t, v)= AEA(t, v), 0 � t � T ,

EA(0, v)= v,

on a spectral decomposition; see Section 4.1 and Caliari et al. (2009) for further details.
Since (d/dt)|EB(t, v)|2 = 2�(EB(t, v)(d/dt)EB(t, v))= 0, for any 0 � t � T , the invariance property
|EB(t, v)|2 = |v|2 follows; therefore, the analytical solution of the nonlinear subproblem⎧⎨

⎩
d

dt
EB(t, v)= B(EB(t, v)), 0 � t � T ,

EB(0, v)= v

is given in an explicit manner by

EB(t, v)= e−it(U+ϑ |v|2)/εv, 0 � t � T , (4.7)

realized numerically by a pointwise multiplication.
Basic properties. The Fréchet derivatives of the operators Â and B̂ equal

Â′(v)w= Âw= 1
2 i∂xxw, B̂′(v)w=−i(Uw+ 2ϑ |v|2w+ ϑv2w̄), (4.8)

and clearly, it holds that A′ = εÂ′ and B′ = (1/ε)B̂′; see also (4.6). Stone’s theorem (e.g., see Engel
& Nagel, 2000) ensures that the linear differential operator Â and the nonlinear multiplication opera-
tor B̂ generate unitary evolution operators on L2(Ω); moreover, the exact solution operator is unitary
on L2(Ω). Consequently, for any parameter value ε > 0, it holds that

‖EA(t, ·)‖L2←L2 = 1, ‖EB(t, ·)‖L2←L2 = 1, ‖EF(t, ·)‖L2←L2 = 1, 0 � t � T . (4.9)

Clearly, it holds that ∂2EA(t, v)= EA(t, ·) for 0 � t � T , which implies that the derivative of the evolution
operator EA with respect to the initial value is a unitary operator on L2(Ω). For linear Schrödinger
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equations, this is also valid for ∂2EB(t, u)= EB(t, ·) and ∂2EF(t, u)= EF(t, ·), 0 � t � T ; more generally,
for nonlinear problems the operators ∂2EF and ∂2EB satisfy the nonautonomous linear problems

⎧⎨
⎩

d

dt
∂2EF(t, v)= (A+ B′(EF(t, v)))∂2EF(t, v), 0 � t � T ,

∂2EF(t, v)|t=0 = I,⎧⎨
⎩

d

dt
∂2EB(t, v)= B′(EB(t, v))∂2EB(t, v), 0 � t � T ,

∂2EB(t, v)|t=0 = I,

with ∂2EB given explicitly by

∂2EB(t, v)w= e−it(U+ϑ |v|2)/εw− 2i
t

ε
ϑEB(t, v)�(v̄w), 0 � t � T ; (4.10)

see also (3.6) and (4.7).
Lie commutator. In the following, we study the decisive term

[A, B](w), w= EB(τ2, v)= e−iτ2(U+ϑ |v|2)/εv, v= EA(τ1, u0), (4.11)

in the local error representation (4.5). Due to the fact that

Â′(w)B̂(w)= 1
2∂xx(Uw+ ϑ |w|2w)

= 1
2 (U∂xxw+ 2∂xU∂xw+ ∂xxUw+ ϑ(w2∂xxw̄+ 4w|∂xw|2 + 2w̄(∂xw)2 + 2|w|2∂xxw)),

B̂′(w)Â(w)= 1
2 (U∂xxw+ 2ϑ |w|2∂xxw− ϑw2∂xxw̄)

(see (4.6) and (4.8)), the first Lie commutator of A and B is given by

[A, B](w)= A′(w)B(w)− B′(w)A(w)= Â′(w)B̂(w)− B̂′(w)Â(w)

= ∂xU∂xw+ 1
2∂xxUw+ ϑw2∂xxw̄+ 2ϑw|∂xw|2 + ϑw̄(∂xw)2

(see (3.2)); it is notable that in the nonlinear case the second spatial derivative of w arises, whereas for
a linear problem (4.1) with ϑ = 0 the Lie commutator reduces to [A, B]= ∂xU∂x + 1

2∂xxUI, a first-order
differential operator with coefficients involving the first and second derivative of the potential. A brief
calculation yields

∂xw= ∂x e−iτ2(U+ϑ |v|2)/εv+ e−iτ2(U+ϑ |v|2)/ε∂xv,

∂xxw= ∂xx e−iτ2(U+ϑ |v|2)/εv+ 2∂x e−iτ2(U+ϑ |v|2)/ε∂xv+ e−iτ2(U+ϑ |v|2)/ε∂xxv,
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involving the spatial derivatives

∂x e−iτ2(U+ϑ |v|2)/ε =−i
τ2

ε
e−iτ2(U+ϑ |v|2)/ε(∂xU + 2ϑ �(v̄∂xv)),

∂xx e−iτ2(U+ϑ |v|2)/ε = e−iτ2(U+ϑ |v|2)/ε
(
−τ

2
2

ε2
(∂xU + 2ϑ�(v̄∂xv))2

−i
τ2

ε
(∂xxU + 4ϑ |∂xv|2 + 4ϑ�(v̄∂xxv))

)
;

inserting the above relations into (4.11) thus gives

[A, B](w)= e−iτ2(U+ϑ |v|2)/ε
(

g1(v)+ i
τ2

ε
g2(v)

)
, v= EA(τ1, u0),

g1(v)= ∂xU∂xv+ 1

2
∂xxUv+ ϑ∂xxv̄v2 + 2ϑ |∂xv|2v+ ϑ(∂xv)2v̄,

g2(v)=−(∂xU)2v+ ϑ∂xxU |v|2v− 2ϑ∂xU�(v̄∂xv)v

+ 2ϑ2|∂xv|2|v|2v+ ϑ2∂xxv|v|4 + ϑ2∂xxv̄|v|2v2. (4.12a)

Provided that the linear operator A (with domain D(A) also including the imposed boundary conditions)
and the differential operators ∂x commute (on a suitably chosen subdomain), it follows that

∂ j
xv= EA(τ1, ∂ j

xu0), j � 0, (4.12b)

and further that ‖∂ j
xv‖L2 = ‖∂ j

xu0‖L2 for j � 0; see (4.9). In particular, for initial conditions in classical
Wentzel–Kramers–Brillouin form (4.2) with 
0 and σ0 sufficiently often differentiable, we obtain

u0 = 
0 eiσ0/ε, ∂xu0 = ∂x
0 eiσ0/ε + i

ε
∂xσ0u0,

∂xxu0 =
(
∂xx
0 + 2

i

ε
∂x
0∂xσ0

)
eiσ0/ε +

(
i

ε
∂xxσ0 − 1

ε2
(∂xσ0)

2

)
u0.

(4.12c)

In general, for ∂ j
xσ0 |= 0, this implies the estimate ‖∂ j

xu0‖L2 � (1/εj)Mj with constant Mj > 0 not depend-
ing on the critical parameter ε for j � 0; in particular, if σ0 = 0 it follows that ‖∂ j

xu0‖L2 � Mj for j � 0.

4.2.1 Linear Schrödinger equation. For a linear Schrödinger equation, that is, (4.1) with ϑ = 0, the
above considerations simplify to

[A, B](w)= e−iτ2U/ε
(

g1(v)+ i
τ2

ε
g2(v)

)
,

g1(v)= ∂xU∂xv+ 1

2
∂xxUv, g2(v)=−(∂xU)2v, v= EA(τ1, u0), ∂xv= EA(τ1, ∂xu0);

see (4.12). On the one hand, due to the fact that

‖g1(v)‖L2 � ‖∂xU‖L∞‖∂xv‖L2 + 1
2‖∂xxU‖L∞‖v‖L2 , ‖g2(v)‖L2 � ‖∂xU‖2

L∞‖v‖L2 ,
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for initial values (4.12c) with σ0 = 0 the bound

‖[A, B](w)‖L2 � ‖∂xU‖L∞‖∂xu0‖L2 +
(
‖∂xxU‖L∞ + τ2

ε
‖∂xU‖2

L∞

)
‖u0‖L2 (4.13)

follows, which implies the local error estimate

ϑ = 0, σ0 = 0 : ‖L (h, u0)‖L2 �
(

C0 + C1
h

ε

)
h2

with constants C0, C1 > 0 involving ‖∂xu0‖L2 , ‖u0‖L2 , ‖∂xU‖L∞ and ‖∂xxU‖L∞ ; see also (4.9). Evidently,
the Lie–Trotter splitting method has convergence order one; see Fig. 3. Moreover, for a fixed time-step
size h= h0 and critical parameter values 0< ε < h (or, more precisely, 0< ε < ch for some constant
c> 0), the dominant local error term is C1h3/ε and thus the ratio α=−1 results, whereas we obtain
α = 2 for h= ε (see (4.4)); this is in accordance with the numerical observations summarized in Table 1.
On the other hand, for initial values (4.12c) with first spatial derivative involving 1/ε (that is, ‖∂xu0‖L2 �
(1/ε)M1), the bound (4.13) yields

ϑ = 0, ∂xσ0 |= 0 : ‖L (h, u0)‖L2 �
(

C0h+ C1
h

ε

)
h

provided that 0< h< 1; similarly to before, for ratios h/ε where the local error term C1h2/ε dominates,
we retain α =−1 for h= h0, but α = 1 for h= ε, both confirming the numerical results given in Table 1.

4.2.2 Cubic Schrödinger equation. For the cubic Schrödinger equation it is more involved to deduce
a local error estimate.

Regular initial condition. With regard to the regular initial condition (4.3) (see also (4.12c) and let
σ0 = 0), we first suppose the initial value u0, and thus v= EA(τ1, u0), to be sufficiently regular with
derivatives bounded by a constant, independent of ε. We note that the considerations could be made rig-
orous and that sufficient regularity requirements on u0 are obtained by means of the Sobolev embedding
H1(Ω)⊂ L∞(Ω); however, as we are primarily concerned with the dependence of the local error on
the time-step size and the critical parameter, we do not specify the regularity assumptions on the initial
value or the precise form of the constants. Setting U = 0 in (4.1), the relations in (4.12) reduce to

(w)= e−iτ2ϑ |v|2/ε
(

g1(v)+ i
τ2

ε
g2(v)

)
,

g1(v)= ϑ∂xxv̄v2 + 2ϑ |∂xv|2v+ ϑ(∂xv)2v̄,

g2(v)= 2ϑ2|∂xv|2|v|2v+ ϑ2∂xxv|v|4 + ϑ2∂xxv̄|v|2v2,

v= EA(τ1, u0), ∂xv= EA(τ1, ∂xu0), ∂xxv= EA(τ1, ∂xxu0).

(4.14)

Therefore, assuming the initial value u0 to satisfy suitable regularity requirements such that the quanti-
ties g1(v) and g2(v) remain bounded in L2(Ω), the estimate

‖[A, B](w)‖L2 � C0 + C1
h

ε
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follows. The identity ∂2EB(t, v)z= e−itϑ |v|2/ε(z− 2i(t/ε)ϑ�(v̄z)v) (see (4.10)), yields

∂2EB(τ1 − τ2, v)[A, B](w)=G1(v)+ τ2

ε
G2(v)+ τ1 − τ2

ε
G3(v)+ (τ1 − τ2)τ2

ε2
G4(v),

G1(v)= e−iτ1ϑ |v|2/εg1(v), G2(v)= i e−iτ1ϑ |v|2/εg2(v),

G3(v)=−2iϑ e−i(τ1−τ2)ϑ |v|2/ε�(e−iτ2ϑ |v|2/εg1(v)v̄)v,

G4(v)=−2iϑ e−i(τ1−τ2)ϑ |v|2/ε�(i e−iτ2ϑ |v|2/εg2(v)v̄)v,

(4.15)

and further implies the estimate

‖∂2EB(τ1 − τ2, v)[A, B](w)‖L2 � C0 + C1
h

ε
+ C2

h2

ε2
.

With the help of the variation-of-constants formula (see also Theorem 3.3) and a Gronwall inequality,
the bound ‖∂2EF(t, v)‖L2←L2 � C(1+ h/ε) results and, as a consequence, we finally obtain the local
error estimate

U = 0, σ0 = 0 : ‖L (h, u0)‖L2 �
(

C0 + C1
h

ε
+ C2

h2

ε2
+ C3

h3

ε3

)
h2

with constants Cj > 0 for 0 � j � 3. The above bound shows that for a fixed time-step size h= h0 the size
of the ratio h/ε (as well as the size of the involved constants) determines the dominant local error term.
Indeed, for ratios h/ε relatively small the term C0h2 dominates, whereas for h/ε large the dominant
term is C3h5/ε3. Figure 1 and further numerical results given in Table 2 indicate that, in the present
example, for h/ε in a certain range the local error of the Lie–Trotter splitting method is dominated
by C1h3/ε which explains the ratio α≈−1 and that for h/ε exceeding a certain value the local error
becomes unsatisfactorily large. On the other hand, for time-step sizes h= ε the above considerations
for the Lie–Trotter splitting method imply ‖L (ε, u0)‖L2 � Cε2, that is, α ≈ 2, in accordance with the
numerical example; see Table 1.

Wentzel–Kramers–Brillouin (WKB) initial condition. At first glance, the numerical results obtained
for classical initial conditions (4.2), that is, for initial values (4.12c) with ∂xσ0 |= 0, are astonish-
ing. Indeed, with regard to (4.14) one would suppose that the estimate for the first Lie com-
mutator ‖[A, B](w)‖L2 � C0(1/ε2)+ C1(h/ε3) and the resulting bound ‖L (h, u0)‖L2 � C0(h2/ε2)+
C1(h3/ε3)+ C2(h4/ε4)+ C3(h5/ε5) capture the dependence on the critical parameter; however, this
is not consistent with the numerical experiments. Reconsiderations similar to before lead to the local
error bound

U = 0, ∂xσ0 |= 0 : ‖L (h, u0)‖L2 � Q(h/ε)h, Q(ξ)=
∞∑

j=0

Cjξ
j,

in accordance with the numerical results; see also Table 1. In fact, for a fixed time-step size h= h0 the
ratio h/ε determines the dominant local error term; in the numerical example, the dominant term is
Ch2/ε. On the other hand, for h= ε the ratio α≈ 1 is observed.

4.2.3 Gross–Pitaevskii equation. Altogether, the above considerations for the linear and the cubic
Schrödinger equation imply the following local error estimate for the Lie–Trotter splitting method (1.3)
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Table 2 Time integration of the cubic Schrödinger equation (4.1) with ϑ = 1 and ω= 0 under initial
condition (4.3) by the Lie–Trotter splitting method with h= 6.25× 10−2. Dependence of the local error
on the critical parameter ε

ε h/ε errlocal(ε) Ratio(ε)

5.00000000000e−1 1.250e−1 3.318314040129623e−3 −1.481542464484375e−002
2.50000000000e−1 2.500e−1 3.352566274062347e−3 −3.987567472693236e−002
1.25000000000e−1 5.000e−1 3.446522721795372e−3 −1.370712693825387e−001
6.25000000000e−2 1.000e+ 0 3.790039267831324e−3 −3.789477377625659e−001
3.12500000000e−2 2.000e+ 0 4.928540679180661e−3 −6.987314614573381e−001
1.56250000000e−2 4.000e+ 0 7.999401116445972e−3 −8.998641518757462e−001
7.81250000000e−3 8.000e+ 0 1.492600476861661e−2 −9.725874814930025e−001
3.90625000000e−3 1.600e+ 1 2.929014902784553e−2 −9.927998706142481e−001
1.95312500000e−3 3.200e+ 1 5.828866680385411e−2 −9.974626176915570e−001
9.76562500000e−4 6.400e+ 1 1.163724799946193e−1 −9.964577528699693e−001
4.88281250000e−4 1.280e+ 2 2.321742025889134e−1 −9.874763693867023e−001
2.44140625000e−4 2.560e+ 2 4.603349719843108e−1 −9.501733704707212e−001
1.22070312500e−4 5.120e+ 2 8.894154215722925e−1 −7.779601700474771e−001
6.10351562500e−5 1.024e+ 3 1.525084832985217e+ 0 4.144601950283195e−001
3.05175781250e−5 2.048e+ 3 1.144271421143380e+ 0 −4.118896129108623e−001
1.52587890625e−5 4.096e+ 3 1.522369868884755e+ 0 7.193399857950300e−003
7.62939453125e−6 8.192e+ 3 1.514798096013354e+ 0

when applied to the Gross–Pitaevskii equation (4.1) in the semiclassical regime; see also (2.1a). As
before, we require that the potential U is twice differentiable with bounded derivatives. For instance, in
the case of a regular initial condition (4.3), for time-step sizes 0< h< 1 and parameter values 0< ε < 1,
the following local error estimate is valid:

σ0 = 0 : ‖L (h, u0)‖L2 � P(h/ε)h2, P(ξ)=
3∑

j=0

Cjξ
j. (4.16)

The local error estimate is in accordance with the numerical experiments given in Section 4.1.

4.3 Global error estimate

As standard, a global error estimate for the Lie–Trotter splitting method is obtained by employing a
telescopic identity to relate the global error to local errors; see also Descombes & Thalhammer (2010),
Lubich (2008), Thalhammer (2008). Thus, essential ingredients are stability bounds such as (4.9) and
local error estimates such as (4.16); in particular, similar considerations to before yield bounds for
‖L (h, u(tj))‖L2 . We note that the local error estimates imply that time-step sizes sufficiently small,
depending on the critical parameter, are required in order to obtain a reasonable numerical approxima-
tion rate. In this noncritical regime, it is then evident that the convergence estimate

‖uN − u(tN )‖L2 � C‖u0 − u(0)‖L2 + Chp

holds with p= 1 for the first-order Lie–Trotter splitting method. This error behaviour is also confirmed
by numerical examples not reported here: for time-step sizes relatively large compared with the critical
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parameter the approximation is poor, whereas the full order of consistency is only retained for step sizes
sufficiently smaller than the critical parameter.

5. Conclusions

The present work is a further attempt to contribute to the study of exponential operator splitting methods
for nonlinear evolution equations; our main concern is to expose the derivation of a local error represen-
tation that is well suited in the presence of unbounded nonlinear operators as well as critical parameters
and its analysis within the context of nonlinear Schrödinger equations in the semiclassical regime. This
local error representation is an essential ingredient in the convergence analysis of splitting methods for
nonlinear evolution equations. Throughout, as we hoped to thereby enhance clarity, general comprehen-
sibility and readability, we focused on the first-order Lie–Trotter splitting method and considered as a
model problem the time-dependent Gross–Pitaevskii equation in a single space dimension (Bao, Jin &
Markowich, 2003, Example 6), involving marginal technicalities. Our central theme is to demonstrate
that, contrary to other approaches, our local error representation is in agreement with the error behaviour
observed in numerical experiments. Our conclusion is that in the case of a regular initial condition with
bounded spatial derivatives, independent of the critical parameter 0< ε	 1, time-step sizes of the mag-
nitude of ε are needed, whereas for an initial condition in classical Wentzel–Kramers–Brillouin form,
time-step sizes sufficiently smaller than the critical parameter are required. For comparison and as an
incentive for future work, we further included numerical experiments that confirm the expectation that
higher-order exponential operator splitting methods possess improved accuracy properties.

Acknowledgement

We wish to dedicate the present work to the memory of Michelle Schatzman. We thank the referees for
valuable comments.

Funding

We acknowledge the financial support of the Austrian Science Fund (FWF) under project P21620-N13
and of the Frankreich-Schwerpunkt (Le Pôle interdisciplinaire d’études françaises) of the University of
Innsbruck.

References

Adams, R. A. (1978) Sobolev Spaces. San Diego, CA: Academic Press.
Bao, W., Jaksch, D. & Markowich, P. (2003) Numerical solution of the Gross–Pitaevskii equation for Bose–

Einstein condensation. J. Comp. Phys., 187, 318–342.
Bao, W., Jin, S. & Markowich, P. (2002) On time-splitting spectral approximations for the Schrödinger equation

in the semiclassical regime. J. Comput. Phys., 175, 487–524.
Bao, W., Jin, S. & Markowich, P. (2003) Numerical study of time-splitting spectral discretisations of nonlinear

Schrödinger equations in the semiclassical regimes. SIAM J. Sci. Comput., 25, 27–64.
Bao, W. & Shen, J. (2005) A fourth-order time-splitting Laguerre–Hermite pseudospectral method for Bose–

Einstein condensates. SIAM J. Sci. Comput., 26, 2010–2028.
Blanes, S. & Moan, P. C. (2002) Practical symplectic partitioned Runge–Kutta and Runge–Kutta–Nyström meth-

ods. J. Comput. Appl. Math., 142, 313–330.
Caliari, M., Neuhauser, Ch. & Thalhammer, M. (2009) High-order time-splitting Hermite and Fourier spectral

methods for the Gross–Pitaevskii equation. J. Comput. Phys., 228, 822–832.

 at U
niversity Innsbruck on O

ctober 31, 2014
http://im

ajna.oxfordjournals.org/
D

ow
nloaded from

 

http://imajna.oxfordjournals.org/


THE LIE–TROTTER SPLITTING FOR NONLINEAR SCHRÖDINGER EQUATIONS 745

Chin, S. A. (2007) Higher-order splitting algorithms for solving the nonlinear Schrödinger equation and their
instabilities. Phys. Rev. E, 76, 056708, 1–8.

Descombes, S., Dumont, T., Louvet, V. & Massot, M. (2007) On the local and global errors of splitting approx-
imations of reaction–diffusion equations with high spatial gradients. Int. J. Comput. Math., 84, 749–765.

Descombes, S. & Schatzman, M. (2002) Strang’s formula for holomorphic semi-groups. J. Math. Pures Appl.,
81, 93–114.

Descombes, S. & Thalhammer, M. (2010) An exact local error representation of exponential operator splitting
methods for evolutionary problems and applications to linear Schrödinger equations in the semi-classical
regime. BIT Numer. Math., 50, 729–749.

Engel, K. J. & Nagel, R. (2000) One-Parameter Semigroups for Linear Evolution Equations. New York: Springer.
Faou, E., Gradinaru, V. & Lubich, Ch. (2009) Computing semi-classical quantum dynamics with Hagedorn

wavepackets. SIAM J. Sci. Comput., 31, 3027–3041.
Gauckler, L. (2010) Convergence of a split-step Hermite method for the Gross-Pitaevskii equation. IMA J. Numer.

Anal., doi:10.1093/imanum/drp041.
Gross, E. P. (1961) Structure of a quantized vortex in boson systems. Nuovo Cimento, 20, 454–477.
Hairer, E., Lubich, Ch. & Wanner, G. (2002) Geometric Numerical Integration. Structure-Preserving Algo-

rithms for Ordinary Differential Equations. Berlin: Springer.
Henry, D. (1981) Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics, vol. 840.

Berlin: Springer.
Hille, E. & Phillips, R. S. (1957) Functional Analysis and Semi-Groups. Providence: American Mathematical

Society.
Iserles, A. & Kropielnicka, K. (2011) Effective approximation for linear time-dependent Schrödinger equation.

Technical Report. DAMTP, Cambridge University NA2011/15, pp. 1–32.
Jahnke, T. & Lubich, Ch. (2000) Error bounds for exponential operator splittings. BIT, 40, 735–744.
Lubich, Ch. (2008) On splitting methods for Schrödinger–Poisson and cubic nonlinear Schrödinger equations.

Math. Comp., 77, 2141–2153.
Lunardi, A. (1995) Analytic Semigroups and Optimal Regularity in Parabolic Problems. Basel: Birkhäuser.
McLachlan, R. I. & Quispel, R. (2002) Splitting methods. Acta Numer., 11, 341–434.
Neuhauser, Ch. & Thalhammer, M. (2009) On the convergence of splitting methods for linear evolutionary

Schrödinger equations involving an unbounded potential. BIT, 49, 199–215.
Pazy, A. (1983) Semigroups of Linear Operators and Applications to Partial Differential Equations. New York:

Springer.
Pérez-García, V. M. & Liu, X. (2003) Numerical methods for the simulation of trapped nonlinear Schrödinger

systems. Appl. Math. Comp., 144, 215–235.
Pitaevskii, L. P. (1961) Vortex lines in an imperfect Bose gas. Sov. Phys. JETP, 13, 451–454.
Sanz-Serna, J. M. & Calvo, M. P. (1994) Numerical Hamiltonian Problems. London: Chapman & Hall.
Strang, G. (1968) On the construction and comparison of difference schemes. SIAM J. Numer. Anal., 5, 506–517.
Thalhammer, M. (2008) High-order exponential operator splitting methods for time-dependent Schrödinger equa-

tions. SIAM J. Numer. Anal., 46, 2022–2038.
Trotter, H. F. (1959) On the product of semi-groups of operators. Proc. Amer. Math. Soc., 10, 545–551.

 at U
niversity Innsbruck on O

ctober 31, 2014
http://im

ajna.oxfordjournals.org/
D

ow
nloaded from

 

http://imajna.oxfordjournals.org/

