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In this work, we introduce embedded exponential operator splitting methods for the
adaptive time integration of nonlinear evolution equations. In the spirit of embedded
Runge–Kutta methods, such pairs of related higher-order split-step methods provide
estimates of the local error with moderate additional computational effort as substeps of
the basic integrator are reused to obtain a local error estimator.
As illustrations, we construct a split-step pair of orders 4(3) involving real method
coefficients, tailored for nonlinear Schrödinger equations, and two order 4(3) split-step
pairs with complex method coefficients, appropriate for nonlinear parabolic problems.
Our theoretical investigations and numerical examples show that the splitting methods
retain their orders of convergence when applied to evolution problems with sufficiently
regular solutions. Furthermore, we demonstrate the ability of the new algorithms to serve
as a reliable basis for error control in the time integration of nonlinear evolution equations
by applying them to the solution of two model problems, the two-dimensional cubic
Schrödinger equation with focusing singularity and a three-dimensional reaction–diffusion
equation. Moreover, we demonstrate the advantages of our real embedded 4(3) pair of
splitting methods over a pair of unrelated schemes for the time-dependent Gross–Pitaevskii
equation.

© 2012 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

Over the years, it has become widely appreciated that adaptive time stepsize selection and error control based on reliable
a posteriori estimates of the local error is the key to large scale computations of evolution equations. In previous decades,
this understanding was still rather vague, see for instance [26, §15.2]:

A good ODE integrator should exert some adaptive control over its own progress, making frequent changes in its stepsize. Usually
the purpose of this adaptive stepsize control is to achieve some predetermined accuracy in the solution with minimum computa-
tional effort. Many small steps should tiptoe through treacherous terrain, while a few great strides should speed through smooth
uninteresting countryside. The resulting gains in efficiency are not mere tens of percents or factors of two; they can sometimes be
factors of ten, a hundred, or more.
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Recently, this intuitive understanding was also put on firm theoretical ground. In [19, Theorem 6] the efficiency of using
an adaptive procedure as compared to the solution on a uniform time grid is specified quantitatively. The gain is shown
to depend on the variation of the principal error function and is zero if the latter is a constant function on the interval
of integration. Algorithms implementing successful time stepsize selection based on control theory and methods of signal
processing are extensively discussed in [27–29], and even demonstrated to enhance computational stability. As the basis for
any successful adaptive time stepsize selection, an estimate for the local error is needed.

In the present work, we are concerned with the reliable time integration of nonlinear evolution equations by higher-
order exponential operator splitting methods [13,24] based on an adaptive time stepsize control. We employ a general
framework of nonlinear evolution equations

u′(t) = F
(
u(t)

) = A
(
u(t)

) + B
(
u(t)

)
, t0 � t � T , u(t0) given, (1)

on a finite or infinite dimensional Banach space which allows to incorporate a wide scope of applications, see for in-
stance [9,11,17,23,25]. Typically, problem (1) originates from an abstract formulation or spatial semi-discretisation of a
partial differential equation subject to initial and boundary conditions. As model problems, we consider the two-dimensional
cubic Schrödinger equation with focusing singularity, leading to a blowup-like behaviour and thus the need for an adap-
tive reduction of the time stepsizes when approaching the blowup time, a three-dimensional nonlinear reaction–diffusion
equation, where the dissipativity of the problem allows to increase the time stepsizes adaptively, and the Gross–Pitaevskii
equation modelling Bose–Einstein condensation. A fundamental presumption when applying a standard local error control
is that the solution to the problem under consideration is regular enough such that no order reductions occur; in the latter
case, error estimates cannot be expected to be asymptotically correct, but rather to display the same order as the basic
integrator as mandated by the lack of smoothness.

We introduce pairs of related split-step formulae which provide estimates of the local error with moderate additional
computational effort. Our methods are in the spirit of embedded Runge–Kutta methods, see for instance [6,14], where a pair of
Runge–Kutta methods of different orders is constructed such that several of the internal stages coincide, whence the number
of function evaluations is reduced accordingly. Comparison of the results computed by both formulae yields an estimate of
the local truncation error and hence a basis for time stepsize selection. We propose a similar procedure in the context of
splitting algorithms to obtain embedded exponential operator splitting methods for the approximate solution of (1),

un+1 = ea1hn D A eb1hn D B · · · eashn D A ebshn D B un ≈ u(tn+1) = ehn D A+B u(tn), (2a)

ûn+1 = eâ1hn D A eb̂1hn D B · · · eâŝhn D A eb̂ŝhn D B un ≈ u(tn+1) = ehn D A+B u(tn), (2b)

that is, pairs of splitting methods where some of the substeps coincide. We point out that it is essential with regard to
stability issues that both splitting methods, the integrator and the local error estimator, are given in multiplicative form
(and not in additive form). We further note that in the calculus of Lie derivatives the ordering of operators is formally
reversed, see also (6), and that in an implementation of (2a) the nonlinear evolution operator ea1hn D A will be applied first.
The formulae (2) are constructed such that the orders are not equal; thus, the difference between the two results computed
on a subinterval can be used as an estimate of the local error on that interval. As standard, the optimal time stepsize hopt
for a prescribed tolerance tol is then determined by a relation of the form (e.g. with αmax = 1.5, αmin = 0.2, α = 0.25 for
our computations)

hoptimal = h · min

(
αmax,max

(
αmin,

p+1

√
α · tol

errlocal

))
, (3)

involving the current time stepsize h, the local error estimate errlocal, the order of consistency p of the integrator, and,
possibly, additional constants chosen in accordance with the application under consideration, see [14,26]. The computational
advantage of embedded exponential operator splitting methods is obvious. When the first substeps of the two formulae
coincide, only the last steps have to be computed separately, while the coinciding steps are only computed once.

The construction of embedded exponential operator splitting methods requires the (numerical) solution of the (classical)
order conditions [13,21,32]. With a sufficient number of degrees of freedom for both schemes and the additional algebraic
constraints that some substeps for both methods should coincide, this yields a system of nonlinear algebraic equations
which can be solved numerically. To demonstrate the feasibility of this approach, we construct a pair of orders 4(3) with
real method coefficients based on an optimised fourth-order scheme by Blanes and Moan [4], where four of the seven
substeps coincide; the arising system of polynomial equations is reduced using Gröbner bases to a system which can readily
be solved numerically. The pair of orders 4(3) with real method coefficients is tailored for the time integration of nonlinear
Schrödinger equations. As an illustration, we apply this embedded split-step pair to the two-dimensional cubic Schrödinger
equation with focusing singularity, which features a blowup behaviour and implies the need for adaptive reduction of time
stepsizes when approaching the blowup time. Furthermore, two related pairs of orders 4(3) with complex coefficients are
constructed and applied to a nonlinear reaction–diffusion equation in three space dimensions where the dissipative nature
of the problem calls for an adaptive increase of the time stepsizes.

In the present work, we restrict ourselves to the construction of pairs of orders p(p − 1), which we consider to be the
most relevant case for practical purposes. In an adaptive time integration based on local error control, the higher-order time
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integration method serves as a local error estimator in order to determine the optimal time stepsize; nevertheless, the time
integration is usually performed by the higher-order method. Thus, in order to avoid underestimating the time stepsizes,
we focus on pairs of orders p(p − 1). Furthermore, we do not elaborate on the numerical aspects of the highly nontrivial
numerical solution of the associated algebraic equations and compute only pairs of moderate orders to illustrate the gen-
eral principle. In particular the construction of methods with minimal error constants [4] leading to a high-dimensional
optimisation problem is not in the scope of the present work.

The theoretical basis of the new algorithms in the context of (nonlinear) evolutionary equations, in particular in connec-
tion with (nonlinear) Schrödinger equations, is provided by the error analysis for higher-order exponential operator splitting
methods given in [21,32]. The latter works extend the techniques exploited in the fundamental contributions [20,22], see
also [10] for an alternative approach and [3,8,15] for split-step formulae involving complex coefficients. The theoretical in-
vestigations show that exponential operator splitting methods retain their orders of convergence when applied to evolution
problems with sufficiently regular solutions; this is also in accordance with numerical observations. We point out that it
is (rather) straightforward to carry out a theoretical (local) error analysis for the real order 4(3) split-step pair applied to
the cubic Schrödinger equation utilising the techniques developed in [21,22]. More precisely, it (only) remains to specialise
the local error expansion stated in [21, Theorem 2.1] for an abstract nonlinear evolution equation to the considered appli-
cation, which, in essence, reduces to the calculation of higher-order iterated Lie-commutators of the involved operators, see
also [21, Lemma 3.3]. Basic assumptions analogous to [21, Theorem 3.2] are certain regularity requirements on the analyt-
ical solution of the problem. Provided that these regularity requirements are satisfied, a favourable convergence behaviour
of the order 4(3) split-step pair is obtained for the cubic Schrödinger equation, but otherwise an order reduction is en-
countered. It should be noted that similar concepts are applicable for problems of parabolic type. However, as we explain
in Section 3.2, for this class of problems the effect of the imposed (for instance zero) boundary conditions, which are in
many cases unnatural conditions on space derivatives of the analytical solution, may cause a significant order reduction.
This negative influence on the good performance of splitting methods is in contrast to nonlinear Schrödinger equations such
as Gross–Pitaevskii systems, where also derivatives of the (physically relevant) solution satisfy the imposed (for example
asymptotic) boundary conditions.

The contents of this manuscript are as follows: Our main objective is the introduction of embedded exponential oper-
ator splitting methods for the reliable time integration of different types of nonlinear evolution equations, see Section 2.
In particular, the scope of applications ranges from time-dependent nonlinear Schrödinger equations to nonlinear parabolic
initial-boundary value problems. The general approach for the construction of new algorithms is illustrated on the basis
of order 4(3) split-step pairs involving real or complex coefficients, respectively. Theoretical investigations and numerical
examples for two model problems, the two-dimensional cubic Schrödinger equation and a three-dimensional nonlinear
reaction–diffusion equation are given in Section 3. Furthermore, we include numerical illustrations for the time-dependent
Gross–Pitaevskii equation to demonstrate good energy conservation by the use of an adaptive splitting method as well as a
comparison of our real embedded 4(3) pair with the alternative use of an unrelated three-stage third-order scheme as local
error estimator.

2. Embedded splitting methods for nonlinear evolutionary problems

2.1. Nonlinear evolutionary problems

In the following, we consider abstract initial value problems of the form

u′(t) = F
(
u(t)

)
, 0 � t � T , u(0) given, (4a)

for Banach space-valued functions u : [0, T ] → X , where the structure of the (unbounded) nonlinear operator F : D(F ) ⊂
X → X suggests a decomposition into two parts

F (v) = A(v) + B(v), v ∈ D(A) ∩ D(B), (4b)

with (unbounded) nonlinear operators A : D(A) ⊂ X → X and B : D(B) ⊂ X → X ; throughout, we tacitly require that the
domains are suitably chosen subspaces of the underlying Banach space (X,‖ · ‖X ) such that ∅ �= D(A) ∩ D(B) ⊆ D(F ).
Without loss of generality, we may restrict ourselves to autonomous differential equations, see for example [18].

Formally, the exact solution of the evolutionary problem (4) is given by

u(t) = EF
(
t, u(0)

)
, 0 � t � T , (5a)

with the evolution operator EF depending on time and the initial value. A most helpful tool in the statement and the
theoretical analysis of high-order exponential operator splitting methods for nonlinear evolution equations is the formal
calculus of Lie derivatives, where (5a) is recast as

u(t) = et D F u(0), 0 � t � T , (5b)

see [13,22] or [21] for a detailed exposition. More precisely, for an (unbounded) nonlinear operator G : D(G) ⊂ X → X (with
suitable domain), the evolution operator et D F and the Lie-derivative D F are given by
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et D F G v = G
(
EF (t, v)

)
, 0 � t � T , D F G v = G ′(v)F (v); (6)

if G is the identity operator, we write et D F v = EF (t, v) and D F v = F (v) for short.

2.2. Exponential operator splitting methods

The nonlinear evolutionary problem (4) is discretised in time by an exponential operator splitting method of (classical)
order p � 1 involving s � 1 compositions. We employ the following general formulation of a splitting method that includes
various example methods proposed in the literature.

Starting from an initial value u0 ≈ u(0), numerical approximations to the exact solution values at time grid points
0 = t0 < t1 < · · · < tN � T with associated time stepsizes hn = tn+1 − tn , 0 � n � N − 1, are determined through a recurrence
relation of the form

un+1 = ea1hn D A eb1hn D B · · · eashn D A ebshn D B un ≈ etn+1 D A+B u(0) = u(tn+1), (7)

with real or complex method coefficients (a j,b j)
s
j=1, see also (6). We assume the procedure (7) to be well-defined on a

suitably chosen function space.
To construct a splitting formula of a certain (classical) order p � 1, a system of algebraic equations for the method

coefficients has to be solved. In the context of linear evolutionary Schrödinger equations, these order conditions are deduced
in [32] and it is shown that they coincide with the well-known nonstiff order conditions, see also [21] for the nonlinear
case.

As an illustration and in view of the example methods under consideration, the order conditions up to order p = 3 are
given in formula (10) below.

Low-order example methods that can be cast into the scheme (7) are the first-order Lie–Trotter splitting method, where

s = 1, a1 = b1 = 1, or

s = 2, a1 = b2 = 0, a2 = b1 = 1, (8)

respectively, and the widely used second-order symmetric Lie–Trotter or Strang splitting method, where

s = 2, a1 = a2 = 1

2
, b1 = 1, b2 = 0, or

s = 2, a1 = 0, a2 = 1, b1 = b2 = 1

2
, (9)

respectively, see [30,34]. We note that the split-step formulae in (8) or (9), respectively, correspond to the same method
with exchanged rôles of A and B .

Various higher-order example methods that were proposed in the literature are reviewed in [13,24]. For orders p = 4,6,
splitting methods of the ilk of Runge–Kutta–Nystrøm methods that are particularly favourable for Hamiltonian systems and
Schrödinger equations are given in [4].

2.3. Embedded splitting methods

In order to estimate the local error of higher-order exponential operator splitting methods, we propose a computationally
cheap method in the spirit of embedded Runge–Kutta methods [14]. We consider embedded split-step pairs p(p̂) with
coefficients

(a j,b j)
s
j=1, (â j, b̂ j)

ŝ
j=1

where some of the compositions coincide. Thus, the difference between the two approximations

un+1 = ea1hn D A eb1hn D B · · · eashn D A ebshn D B un,

ûn+1 = eâ1hn D A eb̂1hn D B · · · eâŝhn D A eb̂ŝhn D B un,

is used as a local error estimate. For a pair p(p̂), we denote by p the order of the basic integrator and by p̂ the order of
the error estimator. Clearly, the rôles of p and p̂ can be exchanged.
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Table 1
Coefficients of a real embedded split-step pair of orders 4(3) based on a fourth-order scheme by Blanes and Moan [4].

j a j j b j

1 0 1, 7 0.0829844064174052
2, 7 0.245298957184271 2, 6 0.3963098014983680
3, 6 0.604872665711080 3, 5 −0.0390563049223486
4, 5 1/2 − (a2 + a3) 4 1 − 2(b1 + b2 + b3)

j â j j b̂ j

1 a1 1 b1

2 a2 2 b2

3 a3 3 b3

4 a4 4 b4

5 0.3752162693236828 5 0.4463374354420499
6 1.4878666594737946 6 −0.0060995324486253
7 −1.3630829287974774 7 0

Algorithm 1 (Pair 2(1)). A trivial embedded split-step pair is based on the second-order Strang splitting and the first-order
Lie–Trotter splitting

a1 = 0, a2 = 1, b1 = b2 = 1

2
,

â1 = b̂2 = 0, â2 = b̂1 = 1.

Algorithm 2 (Pair 4(3)). The coefficients of a split-step pair of orders 4(3) that is based on a fourth-order Runge–Kutta–
Nystrøm type method given in [4] are specified in Table 1. We note that the basic 4th-order split-step method is optimised
with regard to the effective error constant and shows favourable accuracy and efficiency when applied to the time-
dependent Gross–Pitaevskii equation [7].

The construction of the embedded third-order split-step formula relies on the following approach: The order conditions
to be satisfied for order p̂ = 3 are

ŝ∑
j=1

â j = 1,

ŝ∑
j=1

b̂ j = 1,

ŝ∑
j=1

b̂ j ĉ j = 1

2
,

ŝ∑
j=1

b̂ j ĉ
2
j = 1

3
,

1

2

ŝ∑
j=1

b̂2
j ĉ j +

ŝ∑
j=1

j−1∑
k=1

b̂ jb̂kĉ j = 1

3
, (10)

where ĉ j = ∑ j
i=1 âi for 1 � j � ŝ. With the help of the computer algebra system Maple, we compute a reduced Gröbner

basis of the above system of algebraic equations for ŝ = 7 (requiring b̂7 = 0) with respect to the pure lexicographic ordering
(â5, â6, â7, b̂5, b̂6). In the resulting system of algebraic equations, we substitute the coefficients â j = a j as well as b̂ j = b j ,

1 � j � 4. This yields a single quadratic equation for b̂6 and four linear equations for â5, â6, â7, b̂5, which can easily be
solved numerically.

Algorithm 3 (Complex pair 4(3)). Two split-step pairs of orders 4(3) with four compositions involving complex method
coefficients with non-negative real parts, suitable for the time integration of dissipative parabolic problems, are given in
Table 2. Their construction, inspired by Yoshida’s splitting formula of order four involving four compositions [13, p. 40,
Formula (4.4)], is in the lines of Algorithm 2. In the present case, two alternative third-order formulae are found under the
requirements â1 = a1, b̂1 = b1, and b̂4 = 0.

With the above example methods we intended to illustrate the general principle, but we do not claim to give formulae
which are optimal for instance in terms of accuracy and efficiency. While for the real pair 4(3), eight of the 13 coefficients
of the higher-order method also appear in the second formula, for the complex pair only two compositions are reused.
A comparison of our real embedded 4(3) pair versus a pair comprising the fourth-order scheme by Blanes and Moan [4]
and an unrelated three-stage third-order scheme is given in Section 3, which demonstrates that the embedded approach is
favourable. The computation of higher-order splitting schemes is a highly challenging optimisation problem, which would
exceed the scope of the present paper and is addressed by other authors, see for example the recent contribution [3].
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Table 2
Coefficients of two complex embedded split-step pairs of orders 4(3). Integrator (top) and two alternative error estimators (middle, bottom).

j a j j b j

1 0 1, 4 0.1621982020100856 + 0.0672931362454034i
2, 4 0.3243964040201712 + 0.1345862724908067i 2, 3 0.3378017979899144 − 0.0672931362454034i
3 0.3512071919596576 − 0.2691725449816134i

j â j j b̂ j

1 a1 1 b1

2 0.4157701540561051 + 0.2129482257474245i 2 0.4052251807333103 + 0.1988642124619028i
3 0.3855092282056243 − 0.1105557092016989i 3 0.4325766172566041 − 0.2661573487073062i
4 0.1987206177382706 − 0.1023925165457255i 4 0

j â j j b̂ j

1 a1 1 b1

2 0.3846692310454507 − 0.0071358558333693i 2 0.4325766172566041 − 0.2661573487073062i
3 0.3855092282056243 − 0.1105557092016989i 3 0.4052251807333103 + 0.1988642124619028i
4 0.2298215407489250 + 0.1176915650350683i 4 0

3. Numerical examples

In the following, we give three numerical examples which serve to demonstrate that local error control based on our
embedded splitting methods is feasible and generates a stepsize sequence which is commensurate with the solution be-
haviour. In all cases, the main computational task is the numerical integration of the linear part realised by pseudo-spectral
methods, whereas the numerical approximation of the nonlinearity involves cheap pointwise multiplications.

3.1. Cubic Schrödinger equation

As a first illustration, we consider the cubic Schrödinger equation

i∂tψ(x, t) = −1

2
�ψ(x, t) + ϑ

∣∣ψ(x, t)
∣∣2

ψ(x, t), x ∈ R2, t � 0, (11)

for the complex-valued function ψ : R2 × R�0 → C : (x, t) 
→ ψ(x, t). For negative interaction parameters ϑ < 0 a focusing
singularity occurs which leads to a blowup behaviour and resulting need for adaptive reduction of time stepsizes close to
the blowup time, where the solution becomes unbounded, see [31].

On the time interval where a regular solution to the cubic Schrödinger equation exists, a convergence result for higher-
order exponential operator splitting methods was established in [21] for three spatial dimensions; the result includes error
estimates in the Sobolev spaces L2(R3), H1(R3), and H2(R3). Since analogous Sobolev imbeddings H2(R2) in L∞(R2) and
H1(R2) in L4(R2), L6(R2) hold, see [1], the convergence analysis also applies to our test problem. In particular, Theorem 1
shows that high-order splitting methods retain their (nonstiff) orders of convergence, provided that the solution to (11) is
sufficiently regular.

Theorem 1. Suppose that the cubic nonlinear Schrödinger equation (11) possesses a uniquely determined and sufficiently regular
solution ψ : [0, T ] → C. Then, for any exponential operator splitting method (7) of order p � 2, the following error bounds hold.

(i) If ‖ψ(t)‖H2p−2 � M2p−2 for 0 � t � T , the estimate∥∥un − ψ(tn)
∥∥

H2 � Chp−2, 0 � n � N, tN � T ,

is valid with constant C depending on M2p−2 .
(ii) If ‖ψ(t)‖H2p−1 � M2p−1 for 0 � t � T , the estimate∥∥un − ψ(tn)

∥∥
H1 � Chp−1, 0 � n � N, tN � T ,

is valid with constant C depending on M2p−1 .
(iii) If ‖ψ(t)‖H2p � M2p for 0 � t � T , the estimate∥∥un − ψ(tn)

∥∥
L2 � Chp, 0 � n � N, tN � T ,

is valid with constant C depending on M2p .
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Fig. 1. Solution profile |ψ(x, t)| of the cubic Schrödinger equation (11) at initial time t = 0 and final time t = 10.

Fig. 2. Time integration of the cubic Schrödinger equation (11). Adaptive reduction of the time stepsizes for the split-step pair 2(1) (left) and the split-step
pair 4(3) (right), respectively.

Table 3
Empirical convergence orders of the fourth-order (left) and third-order (right) split-step methods given
in Table 1 applied to the cubic Schrödinger equation (11).

�t Global error Order �t Global error Order

2−5 1.15 · 10−2 4.98 2−5 8.02 · 10−2 2.57
2−6 3.64 · 10−4 5.49 2−6 1.35 · 10−2 3.11
2−7 8.11 · 10−6 5.07 2−7 1.57 · 10−3 3.20
2−8 2.41 · 10−7 4.47 2−8 1.71 · 10−4 2.99
2−9 1.09 · 10−8 4.13 2−9 2.16 · 10−5 2.96
2−10 6.20 · 10−10 3.89 2−10 2.78 · 10−6 3.13

For our numerical test, we use a spatial semi-discretisation based on the Fourier spectral method with 128 × 128 basis
functions on [−16,16] × [−16,16]; for the time integration on [0,10] the embedded split-step pair of orders 4(3) given
in Table 1 is applied, see also (3) for the selection of the optimal time stepsize. We note that the underlying fourth-order
method [4] is symmetric and may therefore be more suitable as the basic geometric integrator for Schrödinger equations.

In Fig. 1, the chosen initial value ψ(x,0) = 2π− 1
2 e− 1

2 |x|2 as well as the modulus of the numerical solution of (11) with
ϑ = −2 at final time t = 10 are given; note the typical blowup behaviour resulting in an increasing L∞-norm of the
solution, whereas the L2-norm remains conserved. To better resolve the singularity at the origin, spatial adaptivity would
be mandatory; on our fixed space grid the size of the solution which can be observed remains moderate.

The empirical convergence orders of the fourth-order and third-order split-step methods at time t = 1 are displayed in
Table 3; a reference solution is computed with constant time stepsize �t = 2−11.

For an absolute tolerance tol = 10−4, the adaptive selection of time stepsizes is shown in Fig. 2; for comparison, we
also include the result for the split-step pair of orders 2(1), see Algorithm 1. We observe that the time stepsizes are
commensurate with the evolution of the solution profile. As expected, the fourth-order splitting method is superior to the
low-order integrator when strict tolerances are imposed.
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Fig. 3. Solution u(x, t) of the parabolic problem (12) at initial time t = 0 and final time t = 1.

Fig. 4. Time integration of the parabolic problem (12). Adaptive growth of the time stepsizes for the complex split-step pair 4(3).

3.2. Parabolic problem

As our second illustration, we consider the reaction–diffusion equation

∂t u(x, t) = 1

2
�u(x, t) + u(x, t)

(
1 − u(x, t)

)
, x ∈ Ω, t � 0, (12)

for the real-valued function u : Ω × R�0 → R : (x, t) 
→ u(x, t), subject to homogeneous Dirichlet boundary conditions on a
bounded domain Ω ⊂ R3.

In order to establish a convergence result for higher-order splitting methods applied to evolutionary problems of
parabolic type, in principle, the approach is the same as for the cubic Schrödinger equation; but, as mentioned below,
the imposed boundary conditions will in general lead to order reduction phenomena. However, in the present test example,
we may neglect this effect; due to the Hölder and Sobolev inequalities [16,5], it follows∥∥u2

∥∥
L2 � ‖u‖2

L4 � C‖u‖2
H1 ,

and thus we can establish a convergence bound under the same regularity requirements on the solution as in Theorem 1.
Again, this shows that the (nonstiff) convergence order of splitting methods is retained.

In the numerical solution process, the dissipativity of the problem allows to increase the time stepsizes adaptively, see
Fig. 4.

We employ a spatial semi-discretisation based on the sine spectral method with 64×64×64 basis functions on [−8,8]×
[−8,8] × [−8,8]; for the time integration on [0,1] the embedded complex split-step pair of orders 4(3) given in Table 2
(top, middle) is applied.

In Fig. 3, the chosen initial value u(x,0) = π− 3
4 e− 1

2 |x|2 as well as the numerical solution of (12) at time t = 1 are given;
the figure displays the value of u(x, t) represented by the color code along slices defined by the three planes x1 = 1

2 , x2 = 1
2 ,

and x3 = − 1
2 .

The empirical convergence orders of the fourth-order and third-order complex split-step methods at time t = 1 are
illustrated in Table 4; a reference solution is computed with constant time stepsize �t = 2−7. Note that the initial value
and its higher derivatives satisfy the homogeneous boundary conditions on the considered spatial domain (to sufficient
accuracy); however, for a smaller domain this might be violated whence an order reduction would ensue.

For an absolute tolerance tol = 10−10, the adaptive growth of time stepsizes is shown in Fig. 4.
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Table 4
Empirical convergence orders of the fourth-order (left) and third-order (right) complex split-step methods
given in Table 2 (top, middle) applied to the parabolic problem (12).

�t Global error Order �t Global error Order

2−1 1.80 · 10−3 3.07 2−1 3.06 · 10−3 2.43
2−2 2.16 · 10−4 3.54 2−2 5.66 · 10−4 2.73
2−3 1.86 · 10−5 3.83 2−3 8.53 · 10−5 2.91
2−4 1.31 · 10−6 3.95 2−4 1.14 · 10−5 2.98
2−5 8.49 · 10−8 3.99 2−5 1.45 · 10−6 3.01
2−6 5.34 · 10−9 4.08 2−6 1.79 · 10−7 3.17

Fig. 5. Global errors at t = 1 of the Lie splitting (order 1), the Strang splitting (order 2), and the real embedded splitting pair (orders 3 and 4) applied to
the one-dimensional Gross–Pitaevskii equation with ε = 1.

Fig. 6. Time integration of the Gross–Pitaevskii equation (13) with ε = 1 by the real split-step pair 4(3). Energy versus time (left) and generated time steps
(right).

3.3. Gross–Pitaevskii equation

Finally, we consider the one-dimensional Gross–Pitaevskii equation⎧⎨
⎩ i∂tψ(x, t) = −1

2
∂xxψ(x, t) + V (x)ψ(x, t) + ϑ

∣∣ψ(x, t)
∣∣2

ψ(x, t),

ψ(x,0) given, x ∈ R, t � 0,

(13)

governed by a harmonic external potential V (x) = 1
2 x2. A convergence result analogous to Theorem 1 is given in [12,33].

As a first illustration, the global error of the first-order Lie–Trotter splitting method, the second-order Strang splitting
method, and the real splitting schemes of orders three and four forming the embedded pair are displayed in Fig. 5. For
the space discretisation, we apply the Fourier spectral method with 512 basis functions on the space interval [−8,8]. Note
that the slopes of the lines reflect the true orders of convergence and that the third-order scheme is favourable in accuracy
compared to the optimised fourth-order scheme proposed by Blanes and Moan.

The time integration, starting from an initial (normalised) Gaussian, is performed by the real embedded split-step pair of
orders 4(3) with tolerance 10−6. In Fig. 6, we display the results for the energy showing good conservation properties and
the underlying automatically generated time stepsizes for t ∈ [0,1000].
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Table 5
Time integration of the Gross–Pitaevskii equation (13) with ε = 1. Global errors
at time T = 1 of the third-order method associated with the real split-step pair
4(3) given in Table 1 (left) and the three-stage third-order scheme (14) (right).

�t Global error �t Global error

1 1.06 · 10−2 1 2.82 · 10−2

2−1 1.24 · 10−3 2−1 3.00 · 10−3

2−2 1.75 · 10−4 2−2 3.32 · 10−4

2−3 2.19 · 10−5 2−3 3.57 · 10−5

2−4 2.77 · 10−6 2−4 4.36 · 10−6

2−5 3.48 · 10−7 2−5 5.41 · 10−7

2−6 4.36 · 10−8 2−6 6.74 · 10−8

2−7 5.45 · 10−9 2−7 8.42 · 10−9

2−8 6.82 · 10−10 2−8 1.05 · 10−9

2−9 8.53 · 10−11 2−9 1.31 · 10−10

2−10 1.07 · 10−11 2−10 1.64 · 10−11

Fig. 7. Time integration of the Gross–Pitaevskii equation (13) with ε = 1. First row: Solution profile �ψ for the section (x, t) ∈ [0,1.5] × [0,100]. Second
row: Time stepsizes for t ∈ [0,10] (left) and t ∈ [0,100] generated by the real split-step pair 4(3). Third row: Time stepsizes for t ∈ [0,10] (left) and
t ∈ [0,100] generated by the split-step pair 4(3) with unrelated three-stage third-order scheme.

A naive local error control could be based on a pair comprising again the optimised fourth-order scheme by Blanes and
Moan [4] and an unrelated three-stage third-order scheme with real coefficients

a1 = 1, a2 = −2

3
, a3 = 2

3
, b1 = − 1

24
, b2 = 3

4
, b3 = 7

24
. (14)

However, as the results displayed in Table 5 and Fig. 7 confirm, such a choice does not compare favourably to the constructed
embedded pair: The latter scheme has a larger effective error constant and thus induces smaller time steps at the same cost
for each step.
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4. Conclusions

We have put forward embedded exponential operator splitting time integration methods for nonlinear evolution equa-
tions. The new algorithms are constructed in a similar manner to embedded Runge–Kutta pairs such as to yield a com-
putationally cheap estimate of the local error by reusing several of the substeps in two methods of different orders. To
exemplify the principle, we have constructed pairs of orders 4(3) with real coefficients which are suitable for the solution
of Schrödinger equations and pairs of the same orders with complex coefficients, appropriate for parabolic problems. Fur-
thermore, we have demonstrated that adaptive stepsize selection can successfully be based on these methods. To this end,
numerical illustrations for the cubic nonlinear Schrödinger equation in two space dimensions, a nonlinear parabolic problem
in three space dimensions, and the one-dimensional Gross–Pitaevskii equation have been included.

Interesting aspects for future investigations are the construction of favourable embedded split-step pairs of higher-order
and thorough numerical comparisons with alternative local error estimators based for instance on defect-correction [2] or
extrapolation techniques.
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