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The main objective of this work is to provide a stability and error analysis of high-order commutator-free
quasi-Magnus (CFQM) exponential integrators. These time integration methods for nonautonomous linear
evolution equations are formed by products of exponentials involving linear combinations of the defining
operator evaluated at certain times. In comparison with other classes of time integration methods, such as
Magnus integrators, an inherent advantage of CFQM exponential integrators is that structural properties
of the operator are well preserved by the arising linear combinations. Employing the analytical framework
of sectorial operators in Banach spaces, evolution equations of parabolic type and dissipative quantum
systems are included in the scope of applications. In this context, however, numerical experiments show
that CFQM exponential integrators of nonstiff order five or higher proposed in the literature suffer from
poor stability properties. The given analysis delivers insight that CFQM exponential integrators are well
defined and stable only if the coefficients occurring in the linear combinations satisfy a positivity condition
and that an alternative approach for the design of stable high-order schemes relies on the consideration of
complex coefficients. Together with suitable local error expansions, this implies that a high-order CFQM
exponential integrator retains its nonstiff order of convergence under appropriate regularity and compati-
bility requirements on the exact solution. Numerical examples confirm the theoretical result and illustrate
the favourable behaviour of novel schemes involving complex coefficients in stability and accuracy.

Keywords: nonautonomous linear evolution equations; parabolic initial-boundary value problems; dissi-
pative quantum systems; exponential integrators; Magnus integrators; commutator-free quasi-Magnus
exponential integrators; stability; local error; convergence.

1. Introduction

Class of evolution equations

We consider evolution equations of the form{
u′(t) = A(t) u(t), t ∈ [t0, T ],
u(t0) given

(1.1)

© The authors 2017. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

Advance Access publication on May 5, 2017

IMA Journal of Numerical Analysis (2018) 743–77838,

Downloaded from https://academic.oup.com/imajna/article-abstract/38/2/743/3799994
by UNIVERSITAT JAUME I. Biblioteca user
on 07 May 2018



744 S. BLANES ET AL.

defined by a family of time-dependent linear operators (A(t))t∈[t0,T ] in a Banach space. We are primarily
interested in situations where (1.1) is related to a partial differential equation of parabolic type or a
dissipative quantum system, respectively. Nonautonomous linear evolution equations arise in sensitivity
analysis or optimal control; further relevant applications include driven open quantum systems such as the
parametrically driven dissipative Dicke model (see Alvermann et al., 2012 and references given therein).

Nonlinear equations and linearizations

As an elementary illustration, we state a one-dimensional partial differential equation

∂tU(x, t) = f2 (U(x, t)) ∂xxU(x, t)+ f1 (U(x, t)) ∂xU(x, t)+ f0 (U(x, t))+ g(x, t), (1.2a)

comprising a nonlinear diffusion term, a nonlinear advection term, a nonlinear reaction term and an
additional inhomogeneity. The time periodic logistic reaction–diffusion equation given in Pao (2001) can
be cast into the above form with

f2(w) = c3, f1(w) = 0, f0(w) = c0 (w+ c1) (w+ c2)

and constants c0, c1, c2, c3 ∈ R. Associated linearized equations involve the Fréchet derivative of the
second-order differential operator defining the right-hand side of the equation

F(v) =
[
x �→ f2 (v(x)) ∂xxv(x)+ f1 (v(x)) ∂xv(x)+ f0 (v(x))

]
,

F ′(v) w =
[
x �→ f ′2 (v(x)) ∂xxv(x) w(x)+ f2 (v(x)) ∂xxw(x)

+ f ′1 (v(x)) ∂xv(x) w(x)+ f1 (v(x)) ∂xw(x)+ f ′0 (v(x)) w(x)
]
.

For instance, the variational equation, which describes the sensitivity of the solution with respect to the
reference solution, corresponds to a nonautonomous linear partial differential equation

∂tu(x, t) = α2(x, t) ∂xxu(x, t)+ α1(x, t) ∂xu(x, t)+ α0(x, t) u(x, t), (1.2b)

with space–time-dependent coefficient functions given by

α2(x, t) = f2 (U(x, t)) , α1(x, t) = f1 (U(x, t)),

α0(x, t) = f ′2 (U(x, t)) ∂xxU(x, t)+ f ′1 (U(x, t)) ∂xU(x, t)+ f ′0 (U(x, t)).
(1.2c)

When rewritten as abstract differential equation, the variational equation is of the form (1.1).

Exponential integrators

A variety of contributions confirm that exponential time integration methods are favourable in various
respects (see Crouch & Grossman, 1993; Hochbruck & Lubich, 2003; Blanes & Moan, 2006; Thalhammer,
2006; Alvermann & Fehske, 2011; Alvermann et al., 2012; Bader et al., 2016 and references given therein).
Exponential integrators for nonautonomous evolution equations commonly rely on the computation of
several exponentials, which involve the values of the defining operator at certain nodes and combinations
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HIGH-ORDER CFQM EXPONENTIAL INTEGRATORS 745

thereof. For the associated spatially semidiscretized equation, the action of the arising matrix exponentials
on vectors is often advantageously realized by polynomial approximations such as Chebyshev or Krylov
methods (see also Hochbruck & Lubich, 1997; Sidje, 1998; Moler & Van Loan, 2003).

Magnus integrators

A well-established class of exponential time integration methods for nonautonomous linear evolution
equations (1.1) is based on a formal solution representation by the Magnus expansion

u(tn+1) = eΩ(τn ,tn) u(tn), t0 ≤ tn < tn+1 = tn + τn ≤ T ,

Ω(τn, tn) =
∫ tn+τn

tn

A(σ ) dσ

+ 1
2

∫ tn+τn

tn

∫ σ1

tn

[
A(σ1), A(σ2)

]
dσ2 dσ1

+ 1
6

∫ tn+τn

tn

∫ σ1

tn

∫ σ2

tn

([
A(σ1),

[
A(σ2), A(σ3)

]]
+[A(σ3),

[
A(σ2), A(σ1)

]])
dσ3 dσ2 dσ1

+ · · · , (1.3)

see Magnus (1954); the natural approach to truncate the infinite series and to employ quadrature
approximations of the arising multiple integrals leads to interpolatory Magnus integrators.

However, as has been noticed in Celledoni et al. (2003), the use of commutators may be undesirable
for solving stiff systems. In particular, in the context of partial differential equations, Magnus integrators
manifest a fundamental difficulty. In consideration of the fact that the commutator

[
A(σ1), A(σ2)

] = A(σ1) A(σ2)− A(σ2) A(σ1)

in general does not inherit the characteristic properties of the underlying operator, one has to face the issue
of well-definedness. Moreover, as relevant applications include partial differential equations in two- and
three-space dimensions, the systems resulting from spatial semidiscretization commonly involve large
matrices; the computation of the action of discrete counterparts to iterated commutators, such as

[
A(σ1),

[
A(σ2), A(σ3)

]]
on vectors, needed for the realization of higher-order Magnus integrators by Krylov-type methods, can
be exceedingly costly due to the number of matrix vector products required (see also Blanes et al., 2016
and references therein).

Nevertheless, there are situations where a special structure of the defining operator enables significant
simplifications and the action of the resulting matrix commutators on vectors can be efficiently carried
out. This is the case, for instance, for the linear Schrödinger equation in the semiclassical regime with a
time-dependent potential (see Bader et al., 2016).
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746 S. BLANES ET AL.

Commutator-free quasi-Magnus exponential integrators

In the present work, we focus on a class of exponential time integration methods that circumvents the
difficulties of Magnus integrators in the context of partial differential equations, and thus may provide a
favourable alternative (see Blanes & Moan, 2006; Thalhammer, 2006; Alvermann & Fehske, 2011). In
view of the attempt to avoid the presence of iterated commutators, we employ the notion commutator-
free exponential integrator, and to distinguish them from the commutator-free exponential integrators
considered in Celledoni et al. (2003) and Owren (2006), we add the term quasi-Magnus.

The basic idea leading to commutator-free quasi-Magnus (CFQM) exponential integrators is to replace
the single exponential (1.3) by the composition of several exponentials involving linear combinations of
the values of the underlying operator at certain nodes

un+1 = eτn BnJ · · · eτn Bn1 ≈ u(tn+1) = eΩ(τn ,tn) u(tn),

ck ∈ [0, 1], Ank = A(tn + ckτn), k ∈ {1, . . . , K},
Bnj = aj1 An1 + · · · + ajK AnK , j ∈ {1, . . . , J}.

An inherent advantage of CFQM exponential integrators over Magnus integrators is that structural
properties of the defining operator family are well preserved by the arising linear combinations. As a con-
sequence, well-definedness and stability of the time–discrete solution can be established, for instance,
within the framework of sectorial operators and analytic semigroups under natural (weak) regularity
requirements on the defining operator family.

Examples

Henceforth, we denote by p ∈ N the nonstiff order of the method.

(i) As a first example, we mention the exponential midpoint rule of nonstiff order two

p = 2 : un+1 = eτn A(tn+ 1
2 τn) un ≈ u(tn+1) = eΩ(τn ,tn)u(tn), (1.4)

which is an instance of a Magnus integrator and likewise fits into the class of CFQM exponential
integrators.

(ii) A Magnus integrator of nonstiff order four is based on two Gaussian nodes

p = 4 : un+1 = eτn a1(An1+An2)+τ2
n a2 [An2,An1] un ≈ u(tn+1) = eΩ(τn ,tn)u(tn),

c1 = 1
2 −

√
3

6 , c2 = 1
2 +

√
3

6 , a1 = 1
2 , a2 =

√
3

12 .

A related CFQM exponential integrator of nonstiff order four is given by

p = 4 : un+1 = eτn(a21An1+a22An2) eτn(a11An1+a12An2) un ≈ u(tn+1) = eΩ(τn ,tn)u(tn),

c1 = 1
2 −

√
3

6 , c2 = 1
2 +

√
3

6 , a11 = a22 = 1
4 +

√
3

6 , a12 = a21 = 1
4 −

√
3

6 .
(1.5)
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Related classes of commutator-free exponential integrators

It is worth mentioning the connection of CFQM exponential integrators to other classes of commutator-
free exponential integrators.

In Celledoni et al. (2003), autonomous nonlinear (ordinary) differential equations of the form

u′(t) = F (u(t)) =
L∑

�=1

f� (u(t)) E� (u(t))

are studied; the family of vector fields (E�)
L
�=1 is assumed to span, at every point, the tangent space,

and (f�)L
�=1 denotes a family of real or complex-valued functions defined on the underlying manifold.

Under the assumption that for a fixed value y the differential equation

w′(t) =
L∑

�=1

f�(y) E� (w(t))

is more easily solvable than the original one, explicit commutator-free exponential integrators of orders
three and four involving three and five exponentials, respectively, are proposed.

A nonautonomous linear equation of the form (1.1) can be recast in this way by adding the time as a
coordinate, i.e., by considering the system{

u′(t) = A (ζ(t)) u(t),

ζ ′(t) = 1.
(1.6)

However, compared with CFQM exponential integrators, this approach leads to more costly schemes,
requiring, for instance, five exponentials for order four; besides, we are not aware of schemes of order
five or higher that have been proposed in the literature.

A simpler alternative consists in considering a pth-order splitting method that is defined by real or
complex coefficients (a�, b�)

L
�=1; for noncommutative matrices X, Y , this in particular implies

L∏
�=1

(
eτa�X eτb�Y

) = eτ(X+Y) + O
(
τ p+1

)
.

The application to the autonomous system (1.6), more precisely, to the corresponding subproblems{
u′(t) = A (ζ(t)) u(t),

ζ ′(t) = 0,

{
u′(t) = 0,

ζ ′(t) = 1

leads to the commutator-free exponential integrator

un+1 =
L∏

�=1

eτna�A(tn+c�τn) un c� =
�∑

j=1

bj, � ∈ {1, . . . , L}. (1.7)

Again, compared with CFQM exponential integrators, the number of exponentials grows considerably
with the order; moreover, for order greater than two, schemes with real coefficients necessarily involve
negative coefficients, and thus have poor stability properties for evolution equations of parabolic type.
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Objective and approach

In this work, our main concern is to provide a stability and error analysis of high-order CFQM exponential
integrators for the time integration of nonautonomous linear evolution equations of parabolic type. For
this purpose, we employ the analytical framework of sectorial operators in Banach spaces.

Preliminary numerical tests for an elementary parabolic equation showed that CFQM exponential
integrators of nonstiff order six proposed in the literature suffer from poor stability properties, and a first
theoretical analysis delivered insight that the structural quality of CFQM exponential integrators is only
preserved under a positivity condition on certain combinations of the coefficients. Additional numerical
tests confirmed a conjectured order barrier at order five for schemes involving real coefficients, and the
connection to operator splitting method suggested to circumvent this order barrier by the consideration
of complex coefficients.

On the basis of these findings, we deduce stability and local error estimates with respect to the norm
of the underlying Banach space, which imply that a CFQM exponential integrator retains its nonstiff
order of convergence, provided that the exact solution to the considered evolution equation satisfies
suitable regularity and compatibility requirements. Numerical results obtained for a variational equation
associated with a test equation of the form (1.2) confirm the theoretical convergence estimate and illustrate
the favourable behaviour of novel schemes involving complex coefficients in stability and accuracy. The
class of methods considered in this article thus has good potential for its use in the time integration of
nonautonomous linear evolution equations.

Related work

Our analysis of CFQM exponential integrators extends former work on a fourth-order scheme within
this class involving two exponentials; however, in Thalhammer (2006), the main objective was to explain
order reductions encountered for parabolic equations under homogeneous Dirichlet boundary conditions,
and thus only few expansion steps of the local error were needed. The main original contribution of the
present work is the accomplishment of a suitable local error expansion, applicable to the whole class
of CFQM exponential integrators. The main novel aspect of the stability analysis is to include complex
coefficients and to identify the positivity condition on certain linear combinations of coefficients.

The observation that high-order CFQM exponential integrators, given in the literature involve nega-
tive coefficients, and thus suffer from poor stability properties when applied to dissipative equations of
parabolic type, motivates the design of novel optimized schemes with complex coefficients. Our related
work (Blanes et al., 2016) is concerned with this question; in particular, a set of independent conditions
for time-symmetric methods of order six is given there. In addition, the efficiency of the novel schemes
is compared with other time integration methods such as Magnus integrators for a dissipative problem in
quantum mechanics.

Outline

The present manuscript is organized as follows. The class of CFQM exponential integrators is introduced
in Section 2. A rigorous stability and error analysis of high-order CFQM exponential integrators is
provided in Section 3. For better readability, the details of the somewhat long-winded local error expansion
are included in the Appendix A; as an illustration of the general case, the expansion obtained for a fourth-
order CFQM exponential integrator involving two nodes and two exponentials per time step and a Maple

implementation of the resulting nonstiff order conditions are included in Appendix B. Numerical examples
that confirm and complement the theoretical considerations are given in Section 4.
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HIGH-ORDER CFQM EXPONENTIAL INTEGRATORS 749

Notation

Let N = {n ∈ Z : n ≥ 0} denote the set of non-negative integer numbers. For a composition of
noncommutative operators, we employ the convenient short notation

m∏
i=�

Ei =
{

Em · · ·E�, � ≤ m,

I , m < �,
�, m ∈ N;

here, by definition, the empty product is equal to the identity operator. Thoughout, C > 0 denotes a
generic constant. For simplicity, we do not distinguish the solutions to a partial differential equation and
to the associated abstract differential equation in notation and likewise for the defining operators.

2. Commutator-free quasi-Magnus exponential integrators

In this section, we introduce the general format of CFQM exponential integrators for the nonautonomous
linear evolution equation (1.1) and specify higher-order schemes.

General format

As usual in a time-stepping approach, we consider suitably chosen time grid points t0 < t1 < · · · < tN = T
and denote by

τn = tn+1 − tn n ∈ {0, 1, . . . , N − 1}

the associated time increments; throughout, we employ the standard assumption that the ratios of
subsequent time step sizes are bounded from below and above

	min ≤ τn+1
τn
≤ 	max n ∈ {0, 1, . . . , N − 2}. (2.1)

For a given initial approximation, the time-discrete solution values are determined by recurrence

u0 ≈ u(t0), un+1 = Sn(τn) un ≈ u(tn+1) n ∈ {0, 1, . . . , N − 1}; (2.2a)

a high-order CFQM exponential integrator can be cast into the format

Sn(τn) =
J∏

j=1

eτnBnj ,

J = {1, . . . , J}, K = {1, . . . , K},

Ank = A(tn + ckτn), Bnj =
K∑

k=1

ajk Ank , (j, k) ∈J ×K .

(2.2b)

As common, we relate the nodes to quadrature nodes, which we assume to be contained in the unit interval
and monotonically increasing

0 ≤ c1 < · · · < cK ≤ 1; (2.3a)
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750 S. BLANES ET AL.

for evolution equations of parabolic type, it is beneficial to permit complex coefficients in the linear
combinations. Henceforth, we use the abbreviations

bj =
K∑

k=1

ajk , dj =
j∑

�=1

b�, γj� =
K∑

k=1

ajk c�
k j ∈J , � ∈ N (2.3b)

and set d0 = 0 as well as d0
0 = 1. For a time-independent operator A, we have

Sn(τn) =
J∏

j=1

eτnbjA,

which explains the basic necessity of the positivity condition

� bj > 0 j ∈J ; (2.3c)

indeed, this elemental requirement ensures that a CFQM exponential integrator remains well defined
within the analytical framework of sectorial operators and analytic semigroups (see also Section 3).
Moreover, we tacitly assume that the consistency condition

dJ =
J∑

j=1

bj =
J∑

j=1

K∑
k=1

ajk = 1 (2.3d)

is satisfied; this relation is a direct consequence of the basic requirement Sn(τn) = eτnA for a time-
independent operator A. We recall that p ∈ N denotes the nonstiff order of the method.

Examples

As illustration and in view of numerical comparisons described in Section 4, we recall the CFQM
exponential integrators introduced before and specify the coefficients of fifth- and sixth-order schemes.
For further examples, among them optimized schemes with small effective error constants, we refer
to Blanes & Moan (2006), Blanes et al. (2009), Alvermann & Fehske (2011) and Alvermann et al.
(2012).

Often, the coefficient matrix a ∈ C
J×K is defined by the Gaussian nodes and weights (ci, wi)

K
i=1,

which correspond to a quadrature approximation of maximum order 2K . In some situations, however,
the use of a different quadrature formula of the same order or higher may be convenient or favourable,
providing more accurate approximations without considerably increasing the computational cost. The
new coefficient matrix related to quadrature nodes and weights (̂ci, ŵi)

K̂
i=1 is given by

â = a
(
Q[K ,K])−1

Q̂[K ,K̂],

Q[K ,K] ∈ R
K×K , Q[K ,K]

ij = wj

(
cj − 1

2

)i−1
i, j ∈ {1, . . . , K},

Q̂[K ,K̂] ∈ R
K×K̂ , Q̂[K ,K̂]

ij = ŵj

(̂
cj − 1

2

)i−1
i ∈ {1, . . . , K}, j ∈ {1, . . . , K̂}.

We note that the row sums of a are equal to the row sums of â, that is, the validity of condition (2.3c) is
independent of the underlying quadrature formula.
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(i) Order 2. The exponential midpoint rule (1.4) is based on a single Gaussian node and involves a
single exponential at each time step

p = 2, J = K = 1, c1 = 1
2 , w1 = 1, a11 = 1;

evidently, condition (2.3c) is satisfied. Considering instead the trapezoidal rule, we obtain

ĉ1 = 0, ĉ2 = 1, ŵ1 = ŵ2 = 1
2 , â11 = â12 = 1

2 .

(ii) Order 4. The fourth-order CFQM exponential integrator (1.5) is based on the Gaussian quadrature
formula and requires the evaluation of two exponentials at each time step

p = 4, J = K = 2, c1 = 1
2 −

√
3

6 , c2 = 1
2 +

√
3

6 , w1 = w2 = 1
2 ,

a =
(

1
4 +

√
3

6
1
4 −

√
3

6
1
4 −

√
3

6
1
4 +

√
3

6

)
;

(2.4)

in particular, condition (2.3c) is satisfied, since

b1 = a11 + a12 = 1
2 , b2 = a21 + a22 = 1

2 .

For instance, for the Simpson rule, we obtain

ĉ1 = 0, ĉ2 = 1
2 , ĉ3 = 1, ŵ1 = ŵ3 = 1

6 , ŵ2 = 2
3 ,

â = 1
12

(
3 4 −1
−1 4 3

)
;

for the sixth-order Gaussian quadrature formula, we have

ĉ1 = 1
2 −

√
3

20 , ĉ2 = 1
2 , ĉ3 = 1

2 +
√

3
20 , ŵ1 = ŵ3 = 5

18 , ŵ2 = 4
9 ,

â =
(

5+2
√

15
36

2
9

5−2
√

15
36

5−2
√

15
36

2
9

5+2
√

15
36

)
.

(2.5)

(iii) Order 5. A fifth-order CFQM exponential integrator with complex coefficients that satisfies con-
dition (2.3c) is designed in Blanes et al. (2016). Employing a quadrature approximation based on
the sixth-order Gaussian quadrature rule, see (2.5), the coefficient matrix reads

p = 5, J = K = 3,

a =

⎛⎜⎜⎝
145+37

√
15

900 + 5+3
√

15
300 i − 1

45 + 1
15 i 145−37

√
15

900 + 5−3
√

15
300 i

− 2
45 −

√
15

50 i 22
45 − 2

45 +
√

15
50 i

145−37
√

15
900 − 5−3

√
15

300 i − 1
45 − 1

15 i 145+37
√

15
900 − 5+3

√
15

300 i

⎞⎟⎟⎠ ;
(2.6)
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752 S. BLANES ET AL.

in particular, this implies

�b1 = �b3 = 3
10 , b2 = 2

5 .

(iv) Order 6. A nonoptimized sixth-order CFQM exponential integrator results from the coefficients
(fjk)

3
j,k=1 given in Alvermann & Fehske (2011, Table 3, CF6:6); using again the sixth-order Gaussian

quadrature rule yields

p = 6, J = 6, K = 3,

f =
⎛⎝ 0.160000000000000 − 0.151015389377465 0.133046168132396
− 0.227381647426963 0.087654259755115 0.069919836812657

0.567381647426963 − 0.210351545122098 − 0.202966004945053

⎞⎠ ,

F =

⎛⎜⎜⎜⎜⎜⎜⎝
f11 f12 f13

f21 f22 f23

f31 f32 f33

f31 − f32 f33

f21 − f22 f23

f11 − f12 f13

⎞⎟⎟⎟⎟⎟⎟⎠ , G =
⎛⎝ 1 0 0

0 6 0
− 5

2 0 30

⎞⎠ , a = F G Q[3,3],

a =

⎛⎜⎜⎜⎜⎜⎜⎝
0.215838996975768 − 0.076717964591551 0.020878967615784
− 0.080897796320853 − 0.178747217537158 0.032263366431047

0.180628460055830 0.477687404350931 − 0.090934216979798
− 0.090934216979798 0.477687404350931 0.180628460055830

0.032263366431047 − 0.178747217537158 − 0.080897796320853
0.020878967615784 − 0.076717964591551 0.215838996975768

⎞⎟⎟⎟⎟⎟⎟⎠ .

(2.7)

We point out that condition (2.3c) does not hold, since

b1 = b6 = 0.16, b2 = b5 = − 0.227381647426963, b3 = b4 = 0.567381647426963;

thus, a poor stability behaviour is observed for evolution equations of parabolic type. As an
alternative, we introduce a sixth-order CFQM exponential integrator with complex coefficients
(see Blanes et al., 2016); when based on the Gaussian nodes (2.5), the scheme is given by

p = 6, J = 5, K = 3, a = �a+ �a,

�a =

⎛⎜⎜⎜⎜⎝
0.194217945883438 − 0.056316450736459 0.014749454957822
0.103849953683652 0.155323390036559 − 0.032809068534171
− 0.002230508212962 0.246430565844245 − 0.002230508212962
− 0.032809068534171 0.155323390036559 0.103849953683652

0.014749454957822 − 0.056316450736459 0.194217945883438

⎞⎟⎟⎟⎟⎠ ,

�a =

⎛⎜⎜⎜⎜⎝
0.032784503082251 − 0.002894852021076 0.000390316102524
− 0.032105649424546 0.056238557581740 − 0.007595658537257

0.006526488777028 − 0.106687411121327 0.006526488777028
− 0.007595658537257 0.056238557581740 − 0.032105649424546

0.000390316102524 − 0.002894852021076 0.032784503082251

⎞⎟⎟⎟⎟⎠ ,

(2.8)
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which in particular implies

�b1 = �b5 = 0.1526509501048, �b2 = �b4 = 0.22636427518604,

�b3 = 0.241969549418321.

3. Convergence analysis

In this section, we establish a convergence result for high-order CFQM exponential integrators applied to
nonautonomous linear evolution equations of parabolic type. In Section 3.1, we specify our hypotheses
on the defining operator and recapitulate basic results related to sectorial operators in Banach spaces;
for details on the employed analytical framework, we refer to the standard works Tanabe (1979), Henry
(1981), Pazy (1983) and Engel & Nagel (2000) and in particular to the monograph (Lunardi, 1995).
An elementary initial-boundary-value problem introduced in Section 3.2 serves as illustration and test
problem for numerical comparisons. A fundamental stability estimate and a suitable local error expansion
are stated in Sections 3.3 and 3.4. Our main result is finally given in Section 3.5.

3.1 Analytical framework

As before, we let (X, ‖ · ‖X) denote the underlying Banach space and assume that the Banach space
(D, ‖ · ‖D) is dense and continuously embedded in X. For some exponent μ ∈ (0, 1), the associated
intermediate space D ⊂ Xμ ⊂ X satisfies a bound of the form

‖x‖Xμ ≤ C ‖x‖μD ‖x‖1−μ

X x ∈ D; (3.1)

as common, we set X0 = X and X1 = D. Examples for intermediate spaces are real interpolation spaces
or fractional power spaces (see Henry, 1981; Pazy, 1983; Lunardi, 1995). We employ the following
hypotheses on the family (A(t))t∈[t0,T ] defining the right-hand side of (1.1) (see Lunardi, 1995, Chapter
6.1).

Hypothesis 3.1 (i) The linear operator A(t) : D → X is sectorial, uniformly in t ∈ [t0, T ]; that is,
there exist constants a ∈ R, φ ∈ (0, π

2 ) and C1 > 0 such that the resolvent estimate

∥∥(λI − A(t))−1
∥∥

X←X
≤ C1

|λ− a| (3.2a)

holds for all t ∈ [t0, T ] and complex numbers λ ∈ C \ Sφ(a) in the complement of the sector

Sφ(a) = {a} ∪ {λ ∈ C : |arg(a− λ)| ≤ φ
}
.

(ii) The graph norm of A(t) and the norm in D are equivalent for any t ∈ [t0, T ]; that is, there exists a
constant C2 > 0 such that the relation

C−1
2 ‖x‖D ≤ ‖x‖X + ‖A(t) x‖X ≤ C2‖x‖D x ∈ D (3.2b)

is valid for all t ∈ [t0, T ].
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(iii) The regularity requirement A ∈ C ϑ ([t0, T ], L(D, X)) holds for some ϑ ∈ (0, 1]; that is, there
exists a constant C3 > 0 such that the bound

‖A(t)− A(s)‖X←D ≤ C3 (t − s)ϑ (3.2c)

is valid for all s, t ∈ [t0, T ].
Let t ∈ [t0, T ]. Under the above assumptions, the sectorial operator A(t) : D → X generates an

analytic semigroup
(

eσA(t)
)
σ≥0

, given by the integral formula of Cauchy

eσA(t) =
⎧⎨⎩ 1

2π i

∫
Γ

eλ (λI − σA(t))−1 dλ, σ > 0,

I , σ = 0,

for some path Γ surrounding the spectrum of A(t); the resolvent estimate (3.2a) ensures that the operator
eσA(t) : X → X remains bounded, see also relation (3.3) below.

In order to show well-definedness and stability of high-order CFQM exponential integrators, we make
use of the following auxiliary considerations (see also Henry, 1981; Pazy, 1983; Lunardi, 1995).

Remark 3.2 Let t ∈ [t0, T ].
(i) For any τ > 0 and λ ∈ C \ Sφ(a), the resolvent bound implies∥∥(λI − τA(t))−1

∥∥
X←X
= 1

τ

∥∥( 1
τ
λI − A(t))−1

∥∥
X←X
≤ C1

|λ− τa| .

By the required equivalence of the graph norm and the norm in D, this yields the estimate∥∥(λI − τA(t))−1
∥∥

D←D
= sup
‖x‖D=1

∥∥(λI − τA(t))−1 x
∥∥

D

≤ C2 sup
‖x‖D=1

(∥∥(λI − τA(t))−1 x
∥∥

X
+ ∥∥A(t) (λI − τA(t))−1 x

∥∥
X

)
≤ C2

∥∥(λI − τA(t))−1
∥∥

X←X
sup
‖x‖D=1

(‖x‖X + ‖A(t) x‖X)

≤ C2
2

∥∥(λI − τA(t))−1
∥∥

X←X

≤ C1C2
2

|λ− τa| .

Moreover, together with the identity τA(t) (λI − τA(t))−1 = λ (λI − τA(t))−1 − I , the bound

τ
∥∥(λI − τA(t))−1

∥∥
D←X
= sup
‖x‖X=1

τ
∥∥(λI − τA(t))−1 x

∥∥
D

≤ C2 sup
‖x‖X=1

(
τ
∥∥(λI − τA(t))−1 x

∥∥
X
+ τ

∥∥A(t) (λI − τA(t))−1 x
∥∥

X

)
≤ C2

(
τ
∥∥(λI − τA(t))−1

∥∥
X←X
+ ∥∥λ (λI − τA(t))−1 − I

∥∥
X←X

)
≤ C2

(
1+ C1(τ + |λ|)

|λ− τa|
)

follows.
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(ii) Let Tσ > 0. The above considerations lead to a basic estimate for the analytic semigroup

∥∥ eσA(t)
∥∥

X←X
+ ∥∥ eσA(t)

∥∥
D←D
+ σ

∥∥ eσA(t)
∥∥

D←X
≤ C σ ∈ [0, Tσ ]; (3.3a)

more generally, for exponents 0 ≤ μ ≤ ν ≤ 1 and k ∈ N, we obtain

σ k+ν−μ
∥∥(A(t))k eσA(t)

∥∥
Xν←Xμ

≤ C σ ∈ [0, Tσ ], (3.3b)

see also (3.1).

3.2 Illustration

Let Ω ⊂ R denote a bounded closed interval. In regard to (1.2), we consider the initial value problem
for a nonautonomous linear partial differential equation

{
∂tu(x, t) = α2(x, t) ∂xxu(x, t)+ α1(x, t) ∂xu(x, t)+ α0(x, t) u(x, t), (x, t) ∈ Ω × [t0, T ],
u(x, 0) = u0(x) x ∈ Ω .

(3.4)

Under the basic assumption that all values of the leading space–time-dependent coefficient function are
positive, the equation is of parabolic type. In order to rewrite (3.4) as an abstract Cauchy problem of the
form (1.1), we choose the space of continuous functions as underlying Banach space

X = C (Ω , R), D = C 2(Ω , R),

A(t) : D −→ X : w �−→ [
x �→ α2(x, t) ∂xxw(x)+ α1(x, t) ∂xw(x)+ α0(x, t) w(x)

]
t ∈ [t0, T ].

Further restrictions apply when additional boundary conditions are imposed; for instance, in the case of
homogeneous Dirichlet boundary conditions, the domain of the defining operator is given by

D = {
w ∈ C 2(Ω , R) : w(x)

∣∣
x∈∂Ω
= 0

}
.

Analogous considerations are valid for alternative choices such as X = L2(Ω , R).
For a detailed exposition and the natural extension to several space dimensions, we refer to Lunardi

(1995, Chapter 3). Provided that the boundary of the spatial domain Ω ⊂ R
d is sufficiently regular

and that the (complex-valued) space–time-dependent coefficient functions are sufficiently smooth with
respect to the spatial variables, it is, for instance, shown that a (strongly) elliptic second-order differential
operator under homogeneous boundary conditions generates a sectorial operator in the space of continuous
functions (see Lunardi, 1995, Corollary 3.1.21). Furthermore, assuming the coefficient functions to be
Hölder continuous with respect to time permits to extend fundamental results for the time-independent
case to the time-dependent case (see Lunardi, 1995, Chapter 6). We point out that the construction of
the evolution operator associated with a nonautonomous linear equation and in particular the proof of
its well-definedness as operator from X to X is a nontrivial task; the stability bound given in Section 3.3
conforms to the first statement in Lunardi (1995, Corollary 6.1.8).
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3.3 Well-definedness and stability

Employing the analytical framework introduced in Section 3.1, it is ensured that high-order CFQM
exponential integrators remain well defined on the underlying Banach space.

Remark 3.3 Let n ∈ {0, 1, . . . , N−1} and j ∈J . Under Hypothesis 3.1 on the linear operator family and
assumption (2.3) on the method coefficients, the operator Bnj : D→ X defining the CFQM exponential
integrator (2.2) is sectorial; indeed, employing the reformulation

Bnj =
K∑

k=1

ajkA(tn + ckτ) = bj A(tn)+
K∑

k=1

ajk (A(tn + ckτ)− A(tn))

noting that the operator bj A(tn) is sectorial if �bj > 0 and that the remainder is bounded by the Hölder
continuity assumption (3.2c), the statement follows from a perturbation result for sectorial operators (Pazy,
1983, Section 3.2).

A stability bound for high-order CFQM exponential integrators is provided by the following result.

Theorem 3.4 (Stability) Let n0, n ∈ {0, 1, . . . , N − 1} be such that n0 ≤ n. Under Hypothesis 3.1,
assumption (2.1) on the sequence of time step sizes, and condition (2.3c) on the method coefficients, the
time-discrete evolution operator associated with a high-order CFQM exponential integrator (2.2) satisfies
the following bound with a constant C > 0 that depends on tN = T , in general, but is independent of N
and the step size sequence ∥∥∥∥∥∥

n∏
i=n0

Si(τi)

∥∥∥∥∥∥
X←X

≤ C.

Proof. We recall that C > 0 denotes a generic constant which possibly has different values at different
occurrences. Without loss of generality, we henceforth assume n >> n0; otherwise, the boundedness of
compositions of the time-discrete evolution operator follows at once from a repeated application of (3.3).
Our proof of the above stability bound is in the lines of the preceding work (Thalhammer, 2006), see also
references given therein. The basic idea is to use the relations

n∏
i=n0

J∏
j=1

ebjτiA(t) = e(tn+1−tn0 ) A(t),

∥∥ e(tn+1−tn0 ) A(t)
∥∥

X←X
+ (tn+1 − tn0)

∥∥ e(tn+1−tn0 )A(t)
∥∥

D←X
≤ C,

(3.5)

which are valid for the analytic semigroup generated by the sectorial operator A(t), due to the consistency
condition (2.3) and the bounds in (3.3); for reason that will become clear subsequently, we choose
t = tn0 + cKτn0 . Thus, it suffices to estimate the difference

Δn
n0
=

n∏
i=n0

Si(τi)− e(tn+1−tn0 ) A(t).
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We employ the telescopic identity

Δn
n0
=

n∑
i=n0

(
n∏

�=i+1

S�(τ�)

) (
Si(τi)− eτiA(t)

)
e(ti−tn0 ) A(t)

=
n−1∑
i=n0

Δn
i+1

(
Si(τi)− eτiA(t)

)
e(ti−tn0 ) A(t) +

n∑
i=n0

e(tn+1−ti+1) A(t)
(
Si(τi)− eτiA(t)

)
e(ti−tn0 ) A(t);

as a consequence, by (3.5), we obtain the estimate∥∥∥Δn
n0

∥∥∥
X←X
≤
∥∥∥Δn

n0+1

∥∥∥
X←X

∥∥Sn0(τn0)− eτn0 A(t)
∥∥

X←X

+
n−1∑

i=n0+1

∥∥Δn
i+1

∥∥
X←X

∥∥Si(τi)− eτiA(t)
∥∥

X←D

∥∥ e(ti−tn0 ) A(t)
∥∥

D←X

+ C
∥∥Sn0(τn0)− eτn0 A(t)

∥∥
X←X

+ C
n∑

i=n0+1

∥∥Si(τi)− eτiA(t)
∥∥

X←D

∥∥ e(ti−tn0 ) A(t)
∥∥

D←X

≤
∥∥∥Δn

n0+1

∥∥∥
X←X

∥∥Sn0(τn0)− eτn0 A(t)
∥∥

X←X

+ C
n−1∑

i=n0+1

(ti − tn0)
−1

∥∥Δn
i+1

∥∥
X←X

∥∥Si(τi)− eτiA(t)
∥∥

X←D

+ C
∥∥Sn0(τn0)− eτn0 A(t)

∥∥
X←X

+ C
n∑

i=n0+1

(ti − tn0)
−1

∥∥Si(τi)− eτiA(t)
∥∥

X←D
. (3.6)

In a similar manner, for some i ∈ {n0, . . . , n}, the difference Si(τi)− eτiA(t) is rewritten by means of the
telescopic identity

Si(τi)− eτiA(t) =
J∏

j=1

eτiBij −
J∏

j=1

ebjτiA(t)

=
J∑

�=1

J∏
j=�+1

ebjτiA(t)
(

eτiBi� − eb�τiA(t)
) �−1∏

j=1

eτiBij

and estimated as follows

∥∥Si(τi)− eτiA(t)
∥∥

X←D
≤

J∑
�=1

∥∥∥∥∥
J∏

j=�+1

ebjτiA(t)

∥∥∥∥∥
X←X

∥∥ eτiBi� − eb�τiA(t)
∥∥

X←D

∥∥∥∥∥
�−1∏
j=1

eτiBij

∥∥∥∥∥
D←D

≤ C max
�∈{1,...,J}

∥∥ eτiBi� − eb�τiA(t)
∥∥

X←D
,
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∥∥Si(τi)− eτiA(t)
∥∥

X←X
≤

J∑
�=1

∥∥∥∥∥
J∏

j=�+1

ebjτiA(t)

∥∥∥∥∥
X←X

∥∥ eτiBi� − eb�τiA(t)
∥∥

X←X

∥∥∥∥∥
�−1∏
j=1

eτiBij

∥∥∥∥∥
X←X

≤ C max
�∈{1,...,J}

∥∥ eτiBi� − eb�τiA(t)
∥∥

X←X
.

An application of the integral formula of Cauchy yields the representation

eτiBi� − eb�τiA(t) = 1
2π i

∫
Γ

eλ
(
(λI − τiBi�)

−1 − (λI − b�τiA(t))−1
)

dλ

= τi
1

2π i

K∑
k=1

a�k

∫
Γ

eλ (λI − τiBi�)
−1 (A(ti + ckτi)− A(t)) (λI − b�τiA(t))−1 dλ,

and thus implies the bound

τi

∥∥ eτiBi�(τi) − eb�τiA(t)
∥∥

X←X
+ ∥∥ eτiBi�(τi) − eb�τiA(t)

∥∥
X←D
≤ C τi max

k∈K
|ti + ckτi − t|ϑ ,

see also Hypothesis 3.1 and Remarks 3.2 and 3.3. With regard to (3.6), we set t = tn0 + cKτn0 such that

τi

∥∥Si(τi)− eτiA(t)
∥∥

X←X
+ ∥∥Si(τi)− eτiA(t)

∥∥
X←D
≤ C τi max

k∈K
|ti − tn0 + ckτi − cKτn0 |ϑ ;

this yields the bounds

i = n0 : τn0

∥∥Sn0(τn0)− eτn0 A(t)
∥∥

X←X
+ ∥∥Sn0(τn0)− eτn0 A(t)

∥∥
X←D
≤ C τ 1+ϑ

n0
,

i ∈ {n0 + 1, . . . , n} : τi

∥∥Si(τi)− eτiA(t)
∥∥

X←X
+ ∥∥Si(τi)− eτiA(t)

∥∥
X←D
≤ C τi (ti − tn0)

ϑ .

Altogether by collecting the above bounds and estimating the arising Riemann sums by the corresponding
integrals, we obtain

∥∥∥Δn
n0

∥∥∥
X←X
≤ C τϑ

n0

∥∥∥Δn
n0+1

∥∥∥
X←X
+ C

n−1∑
i=n0+1

τi (ti − tn0)
−1+ϑ

∥∥Δn
i+1

∥∥
X←X

+ C τϑ
n0
+ C

n∑
i=n0+1

τi (ti − tn0)
−1+ϑ

≤ C τϑ
n0

∥∥∥Δn
n0+1

∥∥∥
X←X
+ C

n−1∑
i=n0+1

τi (ti − tn0)
−1+ϑ

∥∥Δn
i+1

∥∥
X←X
+ C.

A Gronwall-type inequality involving a weakly singular kernel (see, for instance, Brunner & van der
Houwen, 1986) finally proves the stated result. �
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3.4 Local error expansion

Our objective is the derivation of a local error expansion for a high-order CFQM exponential integrator
that is appropriate for nonautonomous evolution equations involving time-dependent unbounded linear
operators. Compared with alternative approaches for nonstiff differential equations, it is essential to
capture the remainder terms and to specify the regularity and compatibility requirements on the problem
data and the exact solution. As the treatment of the general case entails certain technicalities, detailed
calculations are shifted to the appendix; for the less involved case of a fourth-order CFQM exponential
integrator comprising two nodes and two exponentials, the basic expansion steps are also recapitulated
there.

Local error

We meanwhile fix n ∈ {0, 1, . . . , N−1}. For the convenience of the reader, we recall useful abbreviations
and a basic consistency condition on the coefficients

Ank = A(tn + ckτn) k ∈ K ,

Bnj =
K∑

k=1

ajk Ank , bj =
K∑

k=1

ajk , dj =
j∑

�=1

b�, j ∈J ,

dJ =
J∑

j=1

bj = 1,

see (2.2) and (2.3). The local error of a CFQM exponential integrator is defined by

δn+1 = u(tn+1)− Sn(τn) u(tn) = u(tn+1)−
J∏

j=1

eτnBnj u(tn). (3.7)

Assuming that the coefficients of the method satisfy the pth nonstiff order conditions, our aim is to deduce
a local error expansion which implies δn+1 = O

(
τ p+1

n

)
.

Linearization and solution representation

Let j ∈J be such that bj �= 0. In order to attain a local error representation that is appropriate for further
stepwise expansions, we rewrite the right-hand side of the evolution equation (1.1) as follows

u′(t) = A(t) u(t) = B̃nj u(t)+ Rnj(t),

B̃nj = 1
bj

Bnj, Rnj(t) =
(
A(t)− B̃nj

)
u(t), t ∈ [tn, tn + τn].

The variation-of-constants formula together with a linear integral transformation yields

u(tn + djτn) = u(tn + dj−1τn + bjτn)

= eτnBnj u(tn + dj−1τn)+ bj

∫ τn

0
e(τn−σ)Bnj Rnj(tn + dj−1τn + bjσ) dσ ;
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a repeated application of this relation implies

u(tn + d1τn) = eτnBn1 u(tn)+ b1

∫ τn

0
e(τn−σ)Bn1 Rn1(tn + b1σ) dσ ,

u(tn + d2τn) = eτnBn2 u(tn + d1τn)+ b2

∫ τn

0
e(τn−σ)Bn2 Rn2(tn + d1τn + b2σ) dσ

= eτnBn2 eτnBn1 u(tn)

+ b1 eτnBn2

∫ τn

0
e(τn−σ)Bn1 Rn1(tn + b1σ) dσ

+ b2

∫ τn

0
e(τn−σ)Bn2 Rn2(tn + d1τn + b2σ) dσ ,

u(tn + d3τn) = eτnBn3 u(tn + d2τn)+ b3

∫ τn

0
e(τn−σ)Bn3 Rn3(tn + d2τn + b3σ) dσ

= eτnBn3 eτnBn2 eτnBn1 u(tn)

+ b1 eτnBn3 eτnBn2

∫ τn

0
e(τn−σ)Bn1 Rn1(tn + b1σ) dσ

+ b2 eτnBn3

∫ τn

0
e(τn−σ)Bn2 Rn2(tn + d1τn + b2σ) dσ

+ b3

∫ τn

0
e(τn−σ)Bn3 Rn3(tn + d2τn + b3σ) dσ ,

and, by induction, this leads to

u(tn+1) =
J∏

j=1

eτnBnj u(tn)+
J∑

j=1

bj

(
J∏

i=j+1

eτnBni

)∫ τn

0
e(τn−σ)Bnj Rnj(tn + dj−1τn + bjσ) dσ .

Local error representation

As a consequence, we obtain the local error representation

δn+1 =
J∑

j=1

K∑
k=1

ajk

(
J∏

i=j+1

eτnBni

)∫ τn

0
e(τn−σ)Bnj gnjk(σ ) dσ ,

gnjk(σ ) = (
A(tn + dj−1τn + bjσ)− A(tn + ckτn)

)
u(tn + dj−1τn + bjσ),

(3.8)

see also (2.2) and (3.7).
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Further expansion

Starting from the above integral relation, suitable Taylor series expansions of certain values of A and u
lead to a representation of the form

δ
(1)

n+1 =
J∑

j=1

K∑
k=1

p−1∑
�=1

p−2∑
m=0

�+m≤p−1

cjk�m τ �+m+1
n Fjk�m(Bnj, . . . , BnJ) A(�)(tn) u(m)(tn)+ O

(
τ p+1

n , A(p), u(p−1)
)
,

with certain coefficients cjk�m and expressions Fjk�m involving the operators Bni for j ≤ i ≤ J; detailed
calculations are included in the appendix. A further expansion yields the relation

δn+1 =
J∑

j=1

K∑
k=1

p−1∑
�=1

p−2∑
m=0

�+m≤p−1

∑
κ∈Kj�m

cjk�mκ τ �+m+|κ|+1
n

×
(

J∏
i=j

Bκi
ni

)
A(�)(tn) u(m)(tn)+ O

(
τ p+1

n , A(p), u(p−1)
)
,

cjk�mκ = κj !
�!m!κ! ajk

(
�+m∑
μ=0

(�+m)!
μ!(�+m+κj+1−μ)! b

�+m−μ

j dμ

j−1 −
m∑

ν=0

m!
ν!(m+κj+1−ν)! b

m−ν
j c�

k dν
j−1

)
, (3.9)

and, in a final step, a suitable expansion of the product involving the operators Bni for j ≤ i ≤ J is
employed.

Local error expansion

Altogether this yields the local error expansion

δn+1 = δ
(4)

n+1 +Rn+1, (3.10a)

where the principal term

δ
(4)

n+1 =
J∑

j=1

K∑
k=1

p−1∑
�=1

p−2∑
m=0

�+m≤p−1

∑
κ∈Kj�m

∑
λ∈Lj�mκ

κj !
�!m!κ!λ! ajk γλ τ �+m+|κ|+|λ|+1

n

×
(

�+m∑
μ=0

(�+m)!
μ!(�+m+κj+1−μ)! b

�+m−μ

j dμ

j−1

−
m∑

ν=0

m!
ν!(m+κj+1−ν)! b

m−ν
j c�

k dν
j−1

)
A(λ)(tn) A(�)(tn) u(m)(tn) (3.10b)

retains the nonstiff order conditions imposed on a pth order CFQM exponential integrator (2.2); more
precisely, a (redundant) set of order conditions results from inspecting the expressions associated with τ q

n
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for exponents q ∈ {2, . . . , p} and utilizing that certain compositions of A and u as well as time derivatives
thereof are independent. The remainder comprises terms of the form A(�)(s) u(m)(t) with � ∈ {0, 1, . . . , p}
and m ∈ {0, 1, . . . , p− 1}.

3.5 Convergence result

By means of the stability bound and the local error expansion given in Sections 3.3 and 3.4, we are able
to establish the following convergence result for a CFQM exponential integrator of the form (2.2). We
point out once more that the local error expansion (3.10) implies that the stiff order conditions coincide
with the nonstiff order conditions. A set of 10 independent order conditions for nonstiff order five and
the corresponding seven conditions for time-symmetric schemes of order six are stated in our related
work (Blanes et al., 2016), see also references given therein. For notational simplicity, we formulate the
global error estimate for the maximum time step size

τ = max
{
τn : n ∈ {0, 1, . . . , N − 1}}.

On the basis of the elementary evolution equation introduced in Section 3.2, the regularity and
compatibility requirements on the problem data and the exact solution are discussed below.

Theorem 3.5 Assume that the operator family (A(t))t∈[t0,T ] defining the nonautonomous linear evolution
equation (1.1) satisfies Hypothesis 3.1; suppose further that the coefficients of the considered CFQM
exponential integrator fulfil the relations in (2.3) and the nonstiff pth order conditions. Provided that
compositions of the form A(�)(s) u(m)(t) with � ∈ {0, 1, . . . , p} and m ∈ {0, 1, . . . , p− 1} remain bounded
for s, t ∈ [0, T ], the global error estimate

‖un − u(tn)‖X ≤ C (‖u0 − u(t0)‖X + τ p) n ∈ {0, 1, . . . , N}

is valid with a constant C > 0 that does not dependent on n and τ .

Proof. As standard, we employ a telescopic identity to relate the global error to the local errors

un − u(tn) =
(

n−1∏
�=0

S�(τ�)

)
(u0 − u(t0))−

n−1∑
m=0

(
n−1∏

�=m+1

S�(τ�)

)
δm+1,

δm+1 = u(tm+1)− (Sm(τm) u(tm)).

By means of Theorem 3.4, the estimate

‖un − u(tn)‖X ≤ C ‖u0 − u(t0)‖X + C
n−1∑
m=0

‖δm+1‖X

follows. Under the given assumptions on the operator family and the exact solution, the local error
expansion (3.10) is well defined; in particular, the remainder is bounded in the underlying Banach space

‖Rm+1‖X ≤ C τ p+1
m .
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Provided that the CFQM exponential integrator (2.2) fulfils the nonstiff pth order conditions, the principal
error term in (3.10) vanishes, and we obtain

δ
(4)

m+1 = 0, ‖δm+1‖X = ‖Rm+1‖X ≤ C τ p+1
m .

As a consequence, this implies the stated global error bound. �

Remark 3.6 We note that any CFQM exponential integrator of order five or higher found in the literature
involves merely real coefficients and does not fulfil the positivity condition in (2.3); as a consequence,
the above result does not apply to it.

Elementary evolution equation

In order to substantiate the implications of Theorem 3.5, we reconsider the elementary evolution equa-
tion (3.4), choosing again the space of continuous functions as underlying function space. Provided that
the coefficient functions are sufficiently often continuously differentiable, time derivatives of the defining
operator again correspond to second-order differential operators; for instance, the first time derivative is
given by

A′(t) : D −→ X : w �−→ [
x �→ ∂tα2(x, t) ∂xxw(x)+ ∂tα1(x, t) ∂xw(x)+ ∂tα0(x, t) w(x)

]
t ∈ [t0, T ].

Straighforward calculations such as

u′(t) = A(t) u(t),

u′′(t) = (
A′(t)+ A(t) A(t)

)
u(t),

u′′′(t) = (
A′′(t)+ 2 A′(t) A(t)+ A(t) A′(t)+ A(t) A(t) A(t)

)
u(t)

show that the kth time derivative of the solution involves the k-fold product (A(t))k for k ∈ N. The
regularity requirements of Theorem 3.5, reflected, for instance, in

A(p)(t) u(p−1)(t) ∈ C (Ω , R),

hence correspond to the condition

u(t) ∈ C 2p(Ω , R) t ∈ [t0, T ].

Whenever the solution is subject to boundary conditions, additional restrictions apply; for instance, in the
case of homogeneous Dirichlet boundary conditions, the condition u(p−1)(t) ∈ D in particular involves
the compatibility requirement

∂2(p−1)
x u(x, t)

∣∣
x∈∂Ω
= 0 t ∈ [t0, T ].
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Order reductions

In situations where it is unnatural to assume that certain compositions of the defining operators and the
exact solution satisfy the imposed boundary conditions, order reductions are encountered. These order
reductions are explained by the fact that the relation (A(t))k−κu(t) ∈ X holds for certain exponents k ∈ N

and κ ∈ (0, 1), but (A(t))ku(t) �∈ X . The smoothing property of an analytic semigroup, reflected in
relation (3.3), then permits to use estimates such as

tκ
∥∥(A(t))κ etA(t) (A(t))k−κ u(t)

∥∥
X
≤ C

∥∥(A(t))k−κ u(t)
∥∥

X
k ∈ N, κ ∈ (0, 1),

in order to establish global error estimates involving fractional powers of the time increments. For a
detailed error analysis of a fourth-order CFQM exponential integrator and the explanation of significant
order reductions, we refer to Thalhammer (2006); a numerical counterexample for an evolution equation
subject to homogeneous Dirichlet boundary conditions is also given there.

Full discretization error

Our convergence result for the time-discrete solution is also a basic ingredient for the derivation of an
estimate for the full discretization error. We sketch the approach for the exponential midpoint rule applied
with constant time step size τ > 0 and exact initial value

un =
n−1∏
�=0

S�(τ ) u(t0) =
n−1∏
�=0

eτ A(t�+ 1
2 τ) u(t0) n ∈ {1, . . . , N},

see also (1.4); the fully discrete solution values are obtained by a composition of the form

unM =
n−1∏
�=0

S̃�M(τ ) u(t0) n ∈ {1, . . . , N},

where the index M reflects the quality of the spatial approximation. For instance, for central finite
differences, the number M corresponds to the number of spatial grid points. Together with a suitable
interpolation, this procedure defines an element in the underlying function space (and not just a vector
comprising real numbers). The triangle inequality implies that the full discretization error is bounded by
the time discretization error, see Theorem 3.5, and by the error of the additional space discretization

‖unM − u(tn)‖X ≤ C τ p + ‖unM − un‖X n ∈ {1, . . . , N}.
Employing a telescopic identity, the difference unM − un takes the form( n−1∏

�=0

S̃�M(τ )−
n−1∏
�=0

S�(τ )

)
u(t0) =

n−1∑
�=0

( n−1∏
m=�+1

S̃mM(τ )

) (̃
S�M(τ )− S�(τ )

) ( �−1∏
m=0

Sm(τ )

)
u(t0).

Thus, the crucial point is to estimate products of S̃�M(τ ) and the defect S̃�M(τ ) − S�(τ ). Under suitable
regularity requirements on the data of the problem, a global error bound of the form

‖unM − u(tn)‖X ≤ C
(
τ p +M−q

)
n ∈ {1, . . . , N}

with some exponent q > 0 is expected (see also Thalhammer, 2012 and references given therein).
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4. Numerical examples

In this section, we present numerical comparisons for a test equation in a single-space dimension. The def-
inition of the underlying nonlinear equation is somewhat inspired by models arising in pattern formation
such as the Kuramoto–Sivashinsky equation and the Gierer–Meinhardt equations, but with a nonlinear
diffusion term; for these types of problems, it is also natural to consider periodic boundary conditions.
Our test equation is rather elementary from a computational point of view and has been chosen in this
way for two reasons. First, in order to enable a comparison with other high-order CFQM exponential
integrators given in the literature, a sufficiently low degree of freedom is required; otherwise, the poor
stability behaviour of CFQM exponential integrators involving merely real coefficients would entirely
spoil the numerical result (not a number). Secondly, our purpose here is to confirm the favourable stability
behaviour of schemes involving complex coefficients and our theoretical global error estimate, rather than
exhaustively analysing the efficiency of our novel schemes on realistic problems.

Simulations for relevant applications are found in Alvermann et al. (2012); for a more detailed
assessment of our novel schemes when applied to a dissipative quantum system of higher dimension, we
refer to Blanes et al. (2016).

Test equation

Let Ω = [0, 1]. With regard to (1.2) and Section 3.2, we consider the nonlinear diffusion–advection
reaction equation

∂tU(x, t) = f2 (U(x, t)) ∂xxU(x, t)+ f1 (U(x, t)) ∂xU(x, t)+ f0 (U(x, t))

+ g(x, t), (x, t) ∈ Ω × [0, T ], (4.1a)

defined by the scalar functions

f2(w) = 1
10

(
cos(w)+ 11

10

)
, f1(w) = 1

10 w, f0(w) = w
(
w− 1

2

)
; (4.1b)

the inhomogeneity is chosen such that the exact solution is equal to

U(x, t) = e− t sin(2 π x).

The associated variational equation

∂tu(x, t) = α2(x, t) ∂xxu(x, t)+ α1(x, t) ∂xu(x, t)+ α0(x, t) u(x, t) (x, t) ∈ Ω × [0, T ] (4.1c)

involves the space–time-dependent coefficient functions

α2(x, t) = f2 (U(x, t)) , α1(x, t) = f1 (U(x, t)),

α0(x, t) = f ′2 (U(x, t)) ∂xxU(x, t)+ f ′1 (U(x, t)) ∂xU(x, t)+ f ′0 (U(x, t)),
(4.1d)

where all values of the leading coefficient are positive; we, in particular, consider the initial state

u(x, 0) = (sin(2 π x))2 x ∈ Ω .
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Fig. 1. Time integration of test equation (4.1) by different CFQM exponential integrators of nonstiff orders p = 2, 4, 5, 6. Left:
Periodic boundary conditions. Global errors at time T = 1 vs. the chosen time step sizes. Right: Homogeneous Dirichlet boundary
conditions. Global errors at time T = 1, measured on the entire spatial domain and in the interior, respectively, vs. the chosen time
step sizes. Numerical results obtained for M = 100 (first row) and M = 120 (second row) grid points.

Numerical results

For the space discretization, we choose M = 100 equidistant grid points and apply standard symmetric
finite differences. The time integration is performed by different CFQM exponential integrators with
time step sizes 2−� for � ∈ {1, . . . , 10}; the numerical approximation obtained for the finest time step size
serves as reference solution.

In Fig. 1, we display the global errors at time T = 1, obtained for the CFQM exponential integrators
of nonstiff orders p = 2, 4, 5, 6 introduced in Section 2; the slopes of the lines reflect the orders of
convergence. In accordance with Theorem 3.5, the nonstiff orders are retained for smaller time step sizes.

The numerical comparisons also confirm the poor stability behaviour of CFQM exponential integrators
that do not verify condition (2.3c). Indeed, for the sixth-order scheme with real coefficients, a satisfactory
result is only obtained for sufficiently small time step sizes; for larger values, it fails (not a number). This
unstable behaviour changes for the worse when the spatial grid is refined, see Fig. 1.
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Order reductions

In situations, where compositions of the involved operators applied to the exact solution values do not
satisfy the imposed boundary conditions, an order reduction is expected (see Thalhammer, 2006). In
order to illustrate this error behaviour, we consider (4.1) with

U(x, t) = e− t x (1− x) u(x, 0) = 10 x (1− x)

and impose homogeneous Dirichlet boundary conditions. We determine the global temporal orders at
time T = 1. In addition, we measure the global errors in the interior of the domain; that is, we only
consider the 80 interior grid points and neglect the contributions of the grid points nearby the boundaries.

The obtained results, displayed in Fig. 1, show order reductions of the fourth-, fifth- and sixth-order
schemes to third order, when the error is measured in the maximum norm, whereas higher convergence
rates are obtained in the interior of the spatial domain.

Effect of space discretization

For comparison, we include the corresponding results obtained for M = 120 grid points in Fig. 1; due to
the fact that the size of the errors are retained for the stable schemes, we conclude that the spatial error is
negligible and that the numerical results are independent of the considered space discretization method.
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Appendix A. Further expansion of the local error

This section is devoted to a detailed derivation of the local error expansion (3.10), starting from (3.8).

Auxiliary notation and results

In a first expansion step, we employ Taylor series expansions of the integrand; that is, we utilize the
formula

f (t + s) =
m∑

i=0

1
i! s

i f (i)(t)+ R
(
sm+1, f (m+1)

)
,

R
(
sm+1, f (m+1)

) = 1
m! s

m+1

∫ 1

0
(1− σ)mf (m+1)(t + σ s) dσ.

(A.1)

In order to obtain a compact representation of the resulting integrals and in view of a further expansion,
it is convenient to introduce linear operators that are closely related to the analytic semigroup generated
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by a sectorial operator. For t ∈ [t0, T ], σ ≥ 0 and m ∈ N, we set

ϕm (σA(t)) =
⎧⎨⎩ eσA(t) m = 0,

1
(m−1)! σ

−m

∫ σ

0
σ̃ m−1 e(σ−σ̃ )A(t) dσ̃ m ≥ 1,

(A.2a)

referred as ϕ-functions. Evaluation at zero is understood as right-sided limit σ → 0+, such that
ϕm(0) = 1

m! I for any m ∈ N. The corresponding result for the analytic semigroup
(
eσA(t)

)
σ≥0

ensures that
ϕm(σA(t)) : Xμ → Xμ remains bounded for exponents μ ∈ [0, 1] and σ ∈ [0, Tσ ], see (3.3). By means
of the recurrence relation

ϕm (σA(t)) = 1
m! I + σA(t) ϕm+1 (σA(t)) m ∈ N, (A.2b)

we obtain the expansion

ϕm (σA(t)) =
M−1∑
κ=0

1
(m+κ)! (σA(t))κ + (σA(t))M ϕm+M (σA(t)) m ∈ N M ∈ N≥2. (A.2c)

Taylor series expansions and integration

Let (j, k) ∈ J × K . In order to expand the local error (3.8) with respect to the time increment, we
employ the Taylor series expansions

A(tn + dj−1τn + bjσ)− A(tn + ckτn) =
q∑

�=1

1
�!
(
(dj−1τn + bjσ)� − (ckτn)

�
)

A(�)(tn)

+ R
(
(dj−1τn + bjσ)q+1, A(q+1)

)− R
(
(ckτn)

q+1, A(q+1)
)

u(tn + dj−1τn + bjσ) =
r∑

m=0

1
m! (dj−1τn + bjσ)m u(m)(tn)

+ R
(
(dj−1τn + bjσ)r+1, u(r+1)

)
,

see (A.1); clearly, the term involving � = 0 vanishes. An elementary calculation yields

gnjk(σ ) =
q∑

�=1

r∑
m=0

1
�!m!

(
(dj−1τn + bjσ)� − (ckτn)

�
)

(dj−1τn + bjσ)m A(�)(tn) u(m)(tn)+ Rjk(σ ),

Rjk(σ ) = R
(
(dj−1τn + bjσ)q+1, A(q+1)

) r∑
m=0

1
m! (dj−1τn + bjσ)m u(m)(tn)

− R
(
(ckτn)

q+1, A(q+1)
) r∑

m=0

1
m! (dj−1τn + bjσ)m u(m)(tn)

+
q∑

�=1

1
�!
(
(dj−1τn + bjσ)� − (ckτn)

�
)

A(�)(tn)R
(
(dj−1τn + bjσ)r+1, u(r+1)

)
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+ R
(
(dj−1τn + bjσ)q+1, A(q+1)

)
R
(
(dj−1τn + bjσ)r+1, u(r+1)

)
− R

(
(ckτn)

q+1, A(q+1)
)

R
(
(dj−1τn + bjσ)r+1, u(r+1)

)
.

Inserting the above representation into (3.8) implies

δn+1 =
J∑

j=1

K∑
k=1

q∑
�=1

r∑
m=0

1
�!m! ajk

(
J∏

i=j+1

eτnBni

)

×
∫ τn

0
e(τn−σ)Bnj

(
(dj−1τn + bjσ)� − (ckτn)

�
)

(dj−1τn + bjσ)m dσ A(�)(tn) u(m)(tn)

+
J∑

j=1

K∑
k=1

ajk

(
J∏

i=j+1

eτnBni

)∫ τn

0
e(τn−σ)Bnj Rjk(σ ) dσ .

The integrals arising in the principal local error term are rewritten by means of the binomial series and
the ϕ-functions, which leads to∫ τn

0
e(τn−σ)Bnj

(
(dj−1τn + bjσ)� − (ckτn)

�
)

(dj−1τn + bjσ)m dσ

=
�+m∑
μ=0

(
�+m
μ

)
b�+m−μ

j dμ

j−1 τμ
n

∫ τn

0
e(τn−σ)Bnj σ �+m−μ dσ

−
m∑

ν=0

(m
ν

)
bm−ν

j c�
k dν

j−1 τ �+ν
n

∫ τn

0
e(τn−σ)Bnj σ m−ν dσ

= τ �+m+1
n

(
�+m∑
μ=0

(�+m)!
μ! b�+m−μ

j dμ

j−1 ϕ�+m+1−μ(τnBnj)−
m∑

ν=0

m!
ν! bm−ν

j c�
k dν

j−1 ϕm+1−ν(τnBnj)

)
.

As a consequence, choosing q = p − 1 and r = q − 1 = p − 2, where p denotes the nonstiff order
of (2.2), we obtain the local error representation

δn+1 = δ
(1)

n+1 +R(1)

n+1 (A.3a)

δ
(1)

n+1 =
J∑

j=1

K∑
k=1

p−1∑
�=1

p−2∑
m=0

�+m≤p−1

1
�!m! ajk τ �+m+1

n

(
J∏

i=j+1

eτnBni

)

×
(

�+m∑
μ=0

(�+m)!
μ! b�+m−μ

j dμ

j−1 ϕ�+m+1−μ(τnBnj)

−
m∑

ν=0

m!
ν! bm−ν

j c�
k dν

j−1 ϕm+1−ν(τnBnj)

)
A(�)(tn) u(m)(tn); (A.3b)
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in order to indicate the dependence of the remainder

R(1)

n+1 =
J∑

j=1

K∑
k=1

p−1∑
�=1

p−2∑
m=0

�+m≥p

1
�!m! ajk τ �+m+1

n

(
J∏

i=j+1

eτnBni

)

×
(

�+m∑
μ=0

(�+m)!
μ! b�+m−μ

j dμ

j−1 ϕ�+m+1−μ(τnBnj)

−
m∑

ν=0

m!
ν! bm−ν

j c�
k dν

j−1 ϕm+1−ν(τnBnj)

)
A(�)(tn) u(m)(tn)

+
J∑

j=1

K∑
k=1

ajk

(
J∏

i=j+1

eτnBni

)∫ τn

0
e(τn−σ)Bnj Rjk(σ ) dσ ,

Rjk(σ ) = R
(
(dj−1τn + bjσ)p, A(p)

) p−2∑
m=0

1
m! (dj−1τn + bjσ)m u(m)(tn)

− R
(
(ckτn)

p, A(p)
) p−2∑

m=0

1
m! (dj−1τn + bjσ)m u(m)(tn)

+
p−1∑
�=1

1
�!
(
(dj−1τn + bjσ)� − (ckτn)

�
)

A(�)(tn) R
(
(dj−1τn + bjσ)p−1, u(p−1)

)
+ R

(
(dj−1τn + bjσ)p, A(p)

)
R
(
(dj−1τn + bjσ)p−1, u(p−1)

)
− R

(
(ckτn)

p, A(p)
)

R
(
(dj−1τn + bjσ)p−1, u(p−1)

)
, (A.3c)

on the time increment and the highest time derivatives, we employ the short notation

R(1)

n+1 = O
(
τ p+1

n , A(p), u(p−1)
)
. (A.3d)

Expansion of exponential functions

It remains to suitably expand the principal term in the local error representation (A.3). For this purpose,
we apply the following relations for the ϕ-functions

ϕ�+m+1−μ(τnBnj) =
p−�−m−1∑

κ=0

1
(�+m+κ+1−μ)! (τnBnj)

κ + (τnBnj)
p−�−m ϕp+1−μ(τnBnj),

ϕm+1−ν(τnBnj) =
p−�−m−1∑

κ=0

1
(m+κ+1−ν)! (τnBnj)

κ + (τnBnj)
p−�−m ϕp+1−�−ν(τnBnj),

see (A.2). This leads to the local error expansion

δn+1 = δ
(2)

n+1 +R(1)

n+1 +R(2)

n+1,
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δ
(2)

n+1 =
J∑

j=1

K∑
k=1

p−1∑
�=1

p−2∑
m=0

�+m≤p−1

p−�−m−1∑
κ=0

1
�!m! ajk τ �+m+κ+1

n

×
(

�+m∑
μ=0

(�+m)!
μ!(�+m+κ+1−μ)! b

�+m−μ

j dμ

j−1 −
m∑

ν=0

m!
ν!(m+κ+1−ν)! b

m−ν
j c�

k dν
j−1

)

×
(

J∏
i=j+1

eτnBni

)
Bκ

nj A(�)(tn) u(m)(tn),

where the remainder is given by (A.3c) and

R(2)

n+1 = τ p+1
n

J∑
j=1

K∑
k=1

p−1∑
�=1

p−2∑
m=0

�+m≤p−1

1
�!m! ajk

(
J∏

i=j+1

eτnBni

)

×
(

�+m∑
μ=0

(�+m)!
μ! b�+m−μ

j dμ

j−1 ϕp+1−μ(τnBnj)

−
m∑

ν=0

m!
ν! bm−ν

j c�
k dν

j−1 ϕp+1−�−ν(τnBnj)

)
Bp−�−m

nj A(�)(tn) u(m)(tn);

as before, we indicate the highest time-derivatives and write

R(1)

n+1 +R(2)

n+1 = O
(
τ p+1

n , A(p), u(p−1)
)

for short. In a further expansion step, we repeatedly employ the recurrence relation

eτnBni = ϕ0(τnBni) =
Λi−1∑
λi=0

1
λi ! τ

λi
n Bλi

ni + τΛi
n BΛi

ni ϕΛi(τnBni).

Setting ΛJ = p− �− m − κ as well as ΛJ−1 = ΛJ − λJ , we obtain

eτnBnJ eτnBn,J−1 =
ΛJ−1∑
λJ=0

1
λJ ! τ

λJ
n BλJ

nJ eτnBn,J−1 + τΛJ
n BΛJ

nJ ϕΛJ (τnBnJ) eτnBn,J−1

=
ΛJ−1∑
λJ=0

ΛJ−1−1∑
λJ−1=0

1
λJ−1!λJ ! τ

λJ−1+λJ
n BλJ

nJ B
λJ−1
n,J−1

+
ΛJ−1∑
λJ=0

1
λJ ! τ

λJ+ΛJ−1
n BλJ

nJ B
ΛJ−1
n,J−1 ϕΛJ−1(τnBn,J−1)

+ τΛJ
n BΛJ

nJ ϕΛJ (τnBnJ) eτnBn,J−1

Downloaded from https://academic.oup.com/imajna/article-abstract/38/2/743/3799994
by UNIVERSITAT JAUME I. Biblioteca user
on 07 May 2018



HIGH-ORDER CFQM EXPONENTIAL INTEGRATORS 773

=
ΛJ−1∑
λJ=0

ΛJ−1−1∑
λJ−1=0

1
λJ−1!λJ ! τ

λJ−1+λJ
n BλJ

nJ B
λJ−1
n,J−1

+ τΛJ
n

⎛⎝ΛJ−1∑
λJ=0

1
λJ ! B

λJ
nJ B

ΛJ−1
n,J−1 ϕΛJ−1(τnBn,J−1)+ BΛJ

nJ ϕΛJ (τnBnJ) eτnBn,J−1

⎞⎠ ;

we point out that the range for the index λJ−1 is chosen in dependence of the preceding index λJ such
that the remainder involves the same power of the time increment, namely τ

ΛJ
n . In order to indicate the

dependence of the remainder on certain values of A and products thereof, comprising a total of ΛJ factors,

we henceforth employ the short notation O
(
τ

ΛJ
n , AΛJ

)
; hence, the above relation rewrites as

eτnBnJ eτnBn,J−1 =
ΛJ−1∑
λJ=0

ΛJ−1−1∑
λJ−1=0

1
λJ−1!λJ ! τ

λJ−1+λJ
n BλJ

nJ B
λJ−1
n,J−1 + O

(
τΛJ

n , AΛJ
)
.

In an inductive manner, for any j ∈J , the expansion

J∏
i=j+1

eτnBni =
∑

λ∈Lj+1

1
λ! τ
|λ|
n

(
J∏

i=j+1

Bλi
ni

)
+ O

(
τ p−�−m−κ

n , Ap−�−m−κ
)
,

Lj+1 =
{
λ = (λj+1, . . . , λJ) ∈ N

J−j : 0 ≤ λi ≤ Λi − 1 = p− �− m − κ −
J∑

ĩ=i+1

λ̃i − 1 for j + 1 ≤ i ≤ J
}

,

follows; here, we set |λ| = λj+1 + · · · + λJ as well as λ! = λj+1! · · · λJ ! for λ = (λj+1, . . . , λJ) ∈ N
J−j.

As a consequence, we obtain

δn+1 = δ
(3)

n+1 +R(1)

n+1 +R(2)

n+1 +R(3)

n+1,

δ
(3)

n+1 =
J∑

j=1

K∑
k=1

p−1∑
�=1

p−2∑
m=0

�+m≤p−1

p−�−m−1∑
κ=0

∑
λ∈Lj+1

1
�!m!λ! ajk τ �+m+κ+|λ|+1

n

×
(

�+m∑
μ=0

(�+m)!
μ!(�+m+κ+1−μ)! b

�+m−μ

j dμ

j−1 −
m∑

ν=0

m!
ν!(m+κ+1−ν)! b

m−ν
j c�

k dν
j−1

)

×
(

J∏
i=j+1

Bλi
ni

)
Bκ

nj A(�)(tn) u(m)(tn);

Downloaded from https://academic.oup.com/imajna/article-abstract/38/2/743/3799994
by UNIVERSITAT JAUME I. Biblioteca user
on 07 May 2018



774 S. BLANES ET AL.

the remainder R(3)

n+1 comprises certain compositions of the linear operators Bnj for j ∈J and can be cast
into the form O

(
τ p+1

n , A(p), u(p−1)
)
. Employing the abbreviation

Kj�m =
{
κ = (κj, . . . , κJ) ∈ N

J+1−j : 0 ≤ κj ≤ p− �− m − 1,

0 ≤ κi ≤ p− �− m − κj −
J∑

ĩ=i+1

κ̃i − 1 for j + 1 ≤ i ≤ J
}

,

we may rewrite δ
(3)

n+1 as follows

δ
(3)

n+1 =
J∑

j=1

K∑
k=1

p−1∑
�=1

p−2∑
m=0

�+m≤p−1

∑
κ∈Kj�m

κj !
�!m!κ! ajk τ �+m+|κ|+1

n

×
(

�+m∑
μ=0

(�+m)!
μ!(�+m+κj+1−μ)! b

�+m−μ

j dμ

j−1 −
m∑

ν=0

m!
ν!(m+κj+1−ν)! b

m−ν
j c�

k dν
j−1

)

×
(

J∏
i=j

Bκi
ni

)
A(�)(tn) u(m)(tn).

Final expansion

In a final expansion step, we employ the Taylor series expansion

Bni =
K∑

k=1

aik A(tn + ckτn) =
K∑

k=1

Λ−1∑
λ=0

1
λ! aik (ckτn)

λ A(λ)(tn)+ O
(
τΛ

n

) = Λ−1∑
λ=0

1
λ! γiλ τ λ

n A(λ)(tn)+ O
(
τΛ

n

)
,

see also (2.3) for the definition of γiλ. For notational simplicity, we do not specify the remainder terms
arising in this expansion step; again, they can be cast into the form O(τ p+1

n , A(p), u(p−1)). Analogously to
before, we choose the upper indices, such that the same power Λ(J)

κJ
= p−�−m−|κ| occurs; proceeding

by induction, setting Λ
(J)

κJ−1 = Λ(J)
κJ
− λ(J)

κJ
, etc., this yields the expansion

J∏
i=j

Bκi
ni = BnJ BκJ−1

nJ

(
J−1∏
i=j

Bκi
ni

)

=
Λ

(J)
κJ −1∑

λ
(J)
κJ =0

1

λ
(J)
κJ !

γ
Jλ

(J)
κJ

τ
λ
(J)
κJ

n A(λ
(J)
κJ )

(tn) BκJ−1
nJ

(
J−1∏
i=j

Bκi
ni

)
+ O

(
τ

Λ
(J)
κJ

n

)

=
Λ

(J)
κJ −1∑

λ
(J)
κJ =0

Λ
(J)
κJ−1−1∑

λ
(J)
κJ−1=0

1

λ
(J)
κJ−1!λ

(J)
κJ !

γ
Jλ

(J)
κJ−1

γ
Jλ

(J)
κJ

τ
λ
(J)
κJ−1+λ

(J)
κJ

n A(λ
(J)
κJ )

(tn) A
(λ

(J)
κJ−1)

(tn) BκJ−2
nJ

(
J−1∏
i=j

Bκi
ni

)
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+ O

(
τ

Λ
(J)
κJ

n

)
=

∑
λ∈Lj�mκ

1
λ! γλ τ |λ|n A(λ)(tn)+ O

(
τ

Λ
(J)
κJ

n

)
;

here, for j ∈J , we employ the abbreviations

λ(i) = (λ
(i)
1 , . . . , λ(i)

κi
) ∈ N

κi , j ≤ i ≤ J , λ = (λ(j), . . . , λ(J)) ∈ N
|κ|,

|λ| =
J∑

i=j

|λ(i)| =
J∑

i=j

κi∑
ηi=1

λ(i)
ηi

, γλ =
J∏

i=j

κi∏
ηi=1

γ
iλ(i)

ηi
,

A(λ) = A(λ
(J)
κJ )

(tn) · · ·A(λ
(J)
1 )(tn) · · ·A(λ

(j)
κj )

(tn) · · ·A(λ
(j)
1 )(tn),

Lj�mκ =
{
λ =∈ N

|κ| : 0 ≤ λ(i)
ηi
≤ p− �− m − |κ| −

J∑
ĩ=i+1

|λ(̃ i )| −
κi∑

η̃=ηi+1

λ
(i)
η̃ − 1

for 1 ≤ ηi ≤ κi and j ≤ i ≤ J
}

.

Clearly, the summation over the subindex λ(i) does not arise whenever κi = 0 and, in particular, the
summation over the index λ does not arise whenever |κ| = 0. Altogether we obtain the local error
expansion (3.10), where the remainder is of the form

Rn+1 = R(1)

n+1 +R(2)

n+1 +R(3)

n+1 +R(4)

n+1 = O
(
τ p+1

n , A(p), u(p−1)
)
.

Appendix B. Illustration

In this section, we illustrate our approach for the derivation of (3.10) on the basis of a fourth-order CFQM
exponential integrator involving two nodes and two exponentials per time step. That is, setting p = 4 as
well as J = K = 2, relation (3.9) involves the index sets

�+ m = 1 : (�, m) = (1, 0),

K110 =
{
(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (2, 0)

}
, K210 =

{
0, 1, 2

}
,

�+ m = 2 : (�, m) ∈ {(1, 1), (2, 0)
}
,

K111 = K120 =
{
(0, 0), (0, 1), (1, 0)

}
, K211 = K220 =

{
0, 1

}
,

�+ m = 3 : (�, m) ∈ {(1, 2), (2, 1), (3, 0)
}
,

K112 = K121 = K130 =
{
(0, 0)

}
, K212 = K221 = K230 =

{
0
}
,
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and thus simplifies to

δn+1 =
2∑

j=1

2∑
k=1

3∑
�=1

2∑
m=0

�+m≤3

∑
κ∈Kj�m

cjk�mκ τ �+m+|κ|+1
n

(
2∏

i=j

Bκi
ni

)
A(�)(tn) u(m)(tn)+ O

(
τ 5

n , A(4), u(3)
)

= (c11100 + c12100 + c21100 + c22100) τ 2
n A′(tn) u(tn)

+ (c1110(1,0) + c1210(1,0)) τ 3
n Bn1 A′(tn) u(tn)

+ (c1110(0,1) + c1210(0,1) + c21101 + c22101) τ 3
n Bn2 A′(tn) u(tn)

+ (c11200 + c12200 + c21200 + c22200) τ 3
n A′′(tn) u(tn)

+ (c11110 + c12110 + c21110 + c22110) τ 3
n A′(tn) u′(tn)

+ (c1110(2,0) + c1210(2,0)) τ 4
n B2

n1 A′(tn) u(tn)

+ (c1110(0,2) + c1210(0,2)) τ 4
n B2

n2 A′(tn) u(tn)

+ (c1110(1,1) + c1210(1,1)) τ 4
n Bn2 Bn1 A′(tn) u(tn)

+ (c21102 + c22102) τ 4
n B2

n2 A′(tn) u(tn)

+ (c1120(1,0) + c1220(1,0)) τ 4
n Bn1 A′′(tn) u(tn)

+ (c1120(0,1) + c1220(0,1) + c21201 + c22201) τ 4
n Bn2 A′′(tn) u(tn)

+ (c11300 + c12300 + c21300 + c22300) τ 4
n A′′′(tn) u(tn)

+ (c1111(1,0) + c1211(1,0)) τ 4
n Bn1 A′(tn) u′(tn)

+ (c1111(0,1) + c1211(0,1) + c21111 + c22111) τ 4
n Bn2 A′(tn) u′(tn)

+ (c11210 + c12210 + c21210 + c22210) τ 4
n A′′(tn) u′(tn)

+ (c11120 + c12120 + c21120 + c22120) τ 4
n A′(tn) u′′(tn)

+ O
(
τ 5

n , A(4), u(3)
)
.

In the present situation, we employ the stepwise expansion

Bni = biA(tn)+ O(τn)

= biA(tn)+ γi1τnA′(tn)+ O
(
τ 2

n

)
= biA(tn)+ γi1τnA′(tn)+ 1

2 γi2 τ 2
n A′′(tn)+ O

(
τ 3

n

)
,

and, as a consequence, we obtain the following local error expansion

δn+1 = C(2) τ 2
n + C(3) τ 3

n + C(4) τ 4
n + O

(
τ 5

n , A(4), u(3)
)
,
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comprising the compositions

C(2) = C10 A′(tn) u(tn),

C(3) = C010 A(tn) A′(tn) u(tn)+ C20 A′′(tn) u(tn)+ C11 A′(tn) u′(tn),

C(4) = C110 A′(tn) A′(tn) u(tn)+ C0010 A(tn) A(tn) A′(tn) u(tn)+ C020 A(tn) A′′(tn) u(tn)

+ C30 A′′′(tn) u(tn)+ C011 A(tn) A′(tn) u′(tn)+ C21 A′′(tn) u′(tn)+ C12 A′(tn) u′′(tn),

where

C10 = c11100 + c12100 + c21100 + c22100,

C010 = b1

(
c1110(1,0) + c1210(1,0)

)+ b2

(
c1110(0,1) + c1210(0,1) + c21101 + c22101

)
,

C20 = c11200 + c12200 + c21200 + c22200,

C11 = c11110 + c12110 + c21110 + c22110,

C110 = γ11

(
c1110(1,0) + c1210(1,0)

)+ γ21

(
c1110(0,1) + c1210(0,1) + c21101 + c22101

)
,

C0010 = b2
1

(
c1110(2,0) + c1210(2,0)

)+ b1b2

(
c1110(1,1) + c1210(1,1)

)
+ b2

2

(
c1110(0,2) + c1210(0,2) + c21102 + c22102

)
,

C020 = b1

(
c1120(1,0) + c1220(1,0)

)+ b2

(
c1120(0,1) + c1220(0,1) + c21201 + c22201

)
,

C30 = c11300 + c12300 + c21300 + c22300,

C011 = b1

(
c1111(1,0) + c1211(1,0)

)+ b2

(
c1111(0,1) + c1211(0,1) + c21111 + c22111

)
,

C21 = c11210 + c12210 + c21210 + c22210,

C12 = c11120 + c12120 + c21120 + c22120.

We note that the operators A(t) and A′(t) do not commute in general; thus, using the differential equation
and inserting the relations u′(t) = A(t) u(t) as well as u′′(t) = A′(t) u(t)+ A(t) A(t) u(t) does not lead to
a further simplification. The requirement

δn+1 = O
(
τ 5

n

)
implies that the quantities

C10, C010, C20, C11, C110, C0010, C020, C30, C011, C21, C12,

involving the method coefficients ajk and ck for j = 1, 2 and k = 1, 2 should vanish; this set of
(redundant) order conditions possesses a uniquely determined solution, the CFQM exponential inte-
grator (2.4) based on two Gaussian nodes. For completeness, the order conditions are included in a
simple Maple-implementation.
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> restart;

Coefficient for kappa = 0

> cc := proc(j,k,ell,m)
1/(ell!*m!)*a[j,k]*(sum((ell+m)!/mu!/(ell+m+1-mu)!*b[j]ˆ(ell+m-mu)*d[j-1]ˆmu,mu=0..ell+m)
- sum(m!/nu!/(m+1-nu)!*b[j]ˆ(m-nu)*c[k]êll*d[j-1]ˆnu,nu=0..m));
end proc:

Coefficient for j = 1 with (kappa1, kappa2)

> ccj1 := proc(j,k,ell,m,kappa1,kappa2)
kappa1!/(ell!*m!*kappa1!*kappa2!)*a[j,k]
*(sum((ell+m)!/mu!/(ell+m+kappa1+1-mu)!*b[j]ˆ(ell+m-mu)*d[j-1]ˆmu,mu=0..ell+m)
- sum(m!/nu!/(m+kappa1+1-nu)!*b[j]ˆ(m-nu)*c[k]êll*d[j-1]ˆnu,nu=0..m));
end proc:

Coefficient for j = 2 with kappa2

> ccj2 := proc(j,k,ell,m,kappa2)
kappa2!/(ell!*m!*kappa2!)*a[j,k]
*(sum((ell+m)!/mu!/(ell+m+kappa2+1-mu)!*b[j]ˆ(ell+m-mu)*d[j-1]ˆmu,mu=0..ell+m)
- sum(m!/nu!/(m+kappa2+1-nu)!*b[j]ˆ(m-nu)*c[k]êll*d[j-1]ˆnu,nu=0..m));
end proc:

Order conditions

> J := 2:
K := 2:
for j from 1 to J do
b[j] := sum(a[j,’k’],’k’=1..K);
od:
for j from 1 to J do
d[j] := sum(b[’ell’],’ell’=1..j);
od:
for ell from 1 to 1 do
for j from 1 to J do
gam[j,ell] := sum(a[j,’k’]*c[’k’]êll,’k’=1..j);
od;
od:
> C[0] := d[2] = 1:
C[1,0] := simplify(cc(1,1,1,0) + cc(1,2,1,0) + cc(2,1,1,0) + cc(2,2,1,0)):
C[0,1,0] := simplify(b[1]*(ccj1(1,1,1,0,1,0) + ccj1(1,2,1,0,1,0))
+ b[2]*(ccj1(1,1,1,0,0,1) + ccj1(1,2,1,0,0,1) + ccj2(2,1,1,0,1) + ccj2(2,2,1,0,1))):
C[2,0] := simplify(cc(1,1,2,0) + cc(1,2,2,0) + cc(2,1,2,0) + cc(2,2,2,0)):
C[1,1] := simplify(cc(1,1,1,1) + cc(1,2,1,1) + cc(2,1,1,1) + cc(2,2,1,1)):
C[1,1,0] := simplify(gam[1,1]*(ccj1(1,1,1,0,1,0) + ccj1(1,2,1,0,1,0))
+ gam[2,1]*(ccj1(1,1,1,0,0,1) + ccj1(1,2,1,0,0,1) + ccj2(2,1,1,0,1) + ccj2(2,2,1,0,1))):
C[0,0,1,0] := simplify(b[1]ˆ2*(ccj1(1,1,1,0,2,0) + ccj1(1,2,1,0,2,0))
+ b[1]*b[2]*(ccj1(1,1,1,0,1,1) + ccj1(1,2,1,0,1,1))
+ b[2]ˆ2*(ccj1(1,1,1,0,0,2) + ccj1(1,2,1,0,0,2) + ccj2(2,1,1,0,2) + ccj2(2,2,1,0,2))):
C[0,2,0] := simplify(b[1]*(ccj1(1,1,2,0,1,0) + ccj1(1,2,2,0,1,0))
+ b[2]*(ccj1(1,1,2,0,0,1) + ccj1(1,2,2,0,0,1) + ccj2(2,1,2,0,1) + ccj2(2,2,2,0,1))):
C[3,0] := simplify(cc(1,1,3,0) + cc(1,2,3,0) + cc(2,1,3,0) + cc(2,2,3,0)):
C[0,1,1] := simplify(b[1]*(ccj1(1,1,1,1,1,0) + ccj1(1,2,1,1,1,0))
+ b[2]*(ccj1(1,1,1,1,0,1) + ccj1(1,2,1,1,0,1) + ccj2(2,1,1,1,1) + ccj2(2,2,1,1,1))):
C[2,1] := simplify(cc(1,1,2,1) + cc(1,2,2,1) + cc(2,1,2,1) + cc(2,2,2,1)):
C[1,2] := simplify(cc(1,1,1,2) + cc(1,2,1,2) + cc(2,1,1,2) + cc(2,2,1,2)):
> OCs := subs(d[0]=0, {C[0],C[1,0],C[0,1,0],C[2,0],C[1,1],C[1,1,0],C[0,0,1,0],C[0,2,0],
C[3,0],C[0,1,1],C[2,1],C[1,2]}):

Solution of order conditions

> allvalues(solve(OCs))[2];{
a1, 1 = 1

4
+
√

3

6
, a1, 2 = 1

4
−
√

3

6
, a2, 1 = 1

4
−
√

3

6
, a2, 2 = 1

4
+
√

3

6
, c1 = 1

2
−
√

3

6
, c2 = 1

2
+
√

3

6

}
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