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This work is concerned with the study of fundamental models from nonlinear acoustics.
In Part I, a hierarchy of nonlinear damped wave equations arising in the description
of sound propagation in thermoviscous fluids is deduced. In particular, a rigorous jus-
tification of two classical models, the Kuznetsov and Westervelt equations, retained as
limiting systems for vanishing thermal conductivity and consistent initial data, is given.
Numerical comparisons that confirm and complement the theoretical results are provided
in Part II.
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1. Introduction

Mathematical models in the form of damped wave equations naturally arise in the
field of nonlinear acoustics, when describing the propagation of sound in thermo-
viscous fluids; the examination of nonlinear models is of particular importance in
high-intensity ultrasonics and includes various medical and industrial applications,
see Refs. 1, 3, 8 and 14 and references given therein.

Classical models. A widely-used model that neglects thermal effects is the
Kuznetsov equation, see Ref. 17; if additionally local nonlinear effects are disre-
garded, the Westervelt equation is obtained, see Ref. 25.
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For our investigations, it is advantageous to formulate the Kuznetsov and West-
ervelt equations as abstract evolution equations for the space-time-dependent acous-
tic velocity potential ¢; moreover, with regard to a compact and unifying represen-
tation of the considered hierarchy of nonlinear damped wave equations, we introduce
the auxiliary abbreviations

B = A, B =2,

1 B
Gs(0) = % <2(1 —0)+ Z)’ Be(o) =0, o€{0,1},

(1.1a)

which involve the kinematic viscosity v, the quantity A = ”TB + % given by the
ratio of the bulk and shear viscosities up and pu, the speed of sound ¢, and the
parameter of nonlinearity §7 see Table 1. Setting o = 1, the Kuznetsov equation
reads as

Dratb(t) — 51" Ad(t) — B Ap(t)
+ 0, (% B5(0)(@r(1))° + Bs(0) |vw<t>|2) =0, te(1),  (1ID)
P(0) =vo, 9Y(0) = ¢y;

the Westervelt equation is included for o = 0.

The additional assumption of a preferred direction of propagation leads to the
Khokhlov—Zabolotskaya—Kuznetsov and the viscous Burgers equations, see Refs. 6
and 26; however, we do not consider these special cases here.

Extended models. Nonlinear damped wave equations that incorporate thermal
effects and hence generalize the Kuznetsov and Westervelt equations are found in
the seminal works®7 and the recent contributions.?!'3

In the present work, we readdress the derivation of these extended models from
the fundamental conservation laws for mass, momentum, and energy as well as
an equation of state. As common, we split the basic state variables of acoustics,
the mass density o, the vector-valued acoustic particle velocity v, the acoustic pres-
sure p, and the temperature 7', into constant mean values and space-time-dependent
fluctuations; furthermore, we employ a Helmholtz decomposition of the acoustic
particle velocity and assign the irrotational part to the gradient of the acoustic
velocity potential, see Table 1. According to Refs. 2 and 18, we take first- and
second-order contributions with respect to the fluctuating quantities into account;
denoting

a B a B B
%):a<1+z> + VA, ﬂé )(go):a (VA+CLZ+UOZ(VA—G))7

a B
ﬂ?) = C%, ﬂi )(0'0) =a (1 + oo Z) 0(2)7 (12&)

Bs(0) = (2(1 —0o)+ g), Be(o) =0, 0,00 €{0,1},

§m| =
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Table 1. Overview of fundamental state variables with decompositions
into constant mean values and space-time-dependent fluctuations, decisive
physical quantities, and auxiliary abbreviations.

State variables

Mass density o = 0o + o~

Vector-valued acoustic particle velocity v = vg + v~, vo = 0
Associated acoustic velocity and vector potentials v~ = Vi) +V x S
Acoustic pressure p = pg + p~

Temperature T'= Ty + T

Physical quantities

Shear (or dynamic) viscosity p
Bulk viscosity pp

Kinematic viscosity v = %
Prandtl number Pr

Thermal conductivity a = &-
Specific heat at constant volume cy
Specific heat at constant pressure cp
Thermal expansion coefficient oy,

Speed of sound ¢p = , /<229
cv eo
Parameter of nonlinearity %

Auxiliary abbreviations and relations

A:ngg

5
B =a(1+§) +vA
,(32a>(00) =a(vA+a % + o0 %(I/A —a)) with o¢ € {0,1}
Bs = ¢}
ﬂia)(ag) =a(l+oo %)cg with o¢ € {0,1}
Bs(0) = = (2(1 — o) + §) with o € {0,1}
Bs(o) = aowith o e{0,1}

(@) (o
86" (00) = G725 = (WA + (1~ o0)a §) with o0 € {0,1}
4 a0 0

a =1+ Bs5(c) Oy with o € {0,1}
r = B35(0)(81:)* + B6(0) et |V|? with o € {0,1}

we attain the nonlinear damped wave equation

Drer(™) () = 5" DB (™) (1) + 5" (00) A0, (1)

— s A0 (1) + B (00) A2 (¢)

+0u (3 A0 O O + fule) [T @) =0, t€ 0.7)
P0) = o, 9P (0) =41, Ou)((0) = .

2405
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For the sake of distinctiveness, we indicate the dependence of the solution on the
thermal conductivity a > 0; evidently, ﬂla) — ﬂ;o) and ﬂéa) (09) — 0 as well as
ia)(ao) —0ifa— 04,

The most general model studied in this work is given by (1.2) with ¢ = 1
and o9 = 1; in contrast to Ref. 4 (Eq. (1.19)) and Ref. 5 (Eq. (4)), it con-
tains the additional term aZ ¢} A%4, which permits to decompose the differ-
ential operator comprising the linear contributions into a heat operator and a
wave operator. Despite this discrepancy, we refer to (1.2) with ¢ = 1 and
op = 1 as Blackstock—Crighton-Brunnhuber—Jordan—-Kuznetsov equation or briefly
as Brunnhuber—Jordan—Kuznetsov equation.

Other nonlinear damped wave equations known from the literature are embed-
ded in our general model, see Table 2. The value o = 0 corresponds to Westervelt-
type equations, where local nonlinear effects are disregarded; the special choice
o9 = 0 is characteristic for a monatomic gas and also referred to as Becker’s
assumption.

Main result. In this work, our central aim is to rigorously justify that the
Kuznetsov and Westervelt equations (1.1) are retained as limiting systems of the
nonlinear damped wave equation (1.2) for vanishing thermal conductivity, provided
that the initial data satisfy the consistency condition

Py — B Ay — B3 Atb + B5(0) o th1 + 2 Be(0) Viby - Vg = 0. (1.3)

With regard to numerical simulations included in Part II, we henceforth con-
sider (1.1)—(1.2) on a finite time interval [0, 7], subject to homogeneous Dirichlet
boundary conditions on a bounded space domain  C R%, where d € {1,2,3};
in order to realize (1.3), we prescribe 1y as well as ¥; such that 1 + f5(0) 1 is
non-degenerate and then determine 15 from the relation

Py = (1+ Bs(0) 1) (B Ay + B Adho — 2 Be(0) Viby - Vby).

Table 2. Overview of the considered hierarchy of nonlinear damped wave equations. The
Brunnhuber—Jordan—-Kuznetsov equation is cast into the general formulation (1.2) with o =1
and o9 = 1, see also Table 1. The Blackstock—Crighton-Kuznetsov equation arises in situa-
tions, where the quantity (vA—a) % is negligible, for instance in the description of monatomic
gases; it is embedded in (1.2) for ¢ = 1 and oo = 0. In both cases, the Kuznetsov equation
results as limiting system for vanishing thermal conductivity a — 04 and initial data sat-
isfying the consistency condition (1.3). Westervelt-type equations do not take into account
local nonlinear effects; this is reflected by the absence of the term c2 |V|? — (9¢1))? and
corresponds to the value o = 0.

Brunnhuber—Jordan-Kuznetsov (BJK) —7=% . Brunnhuber—Jordan-Westervelt (BJW)

ld():(] 100:0

Blackstock—Crighton—Kuznetsov (BCK) =0, Blackstock—Crighton—Westervelt (BCW)

la~>0+ la~>0+

Kuznetsov (K) _— Westervelt (W)
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Evidently, in the general model (1.2), third-order time derivatives and fourth-order
space derivatives occur; on the contrary, for the reduced model (1.1), it is natural
to consider a closed subspace

Xo C H*([0,T], H*(2))
as solution space. This explains that we study the associated equation

LOPO () + N (@@ (1), @ (1) + LS + Ny =0, te(0,T),

LOx(t) = Bux(t) — B DX (1) + 85 (00) A2x(t) — B3 Ax(1)
t
+ B8 (o0) / A2y (7)dr,
0

N(o(t),x(t) = B5(0) Oux(t) 0rp(t) + 2 Bs(0) VOrx(t) - Vo(t),
L5 = —pa + B Ay — B5 (00) Ao + B3 Ao,
No = —B5(0) 2101 — 2 Bs(0) Vipy - Vo,

which follows from (1.2) by integration with respect to time; moreover, to
reduce the spatial regularity requirements, we test this relation with elements
in L1([0,T], H'(2)) and perform integration-by-parts. Imposing appropriate consis-
tency conditions such that the arising boundary terms vanish, we obtain the weak
formulation

T
/0 (Ot (£) — s | 0(t)) 1t
T
+01 [ (V0 1) — Vo | Tu(o)
0
T
— B (00) / (VAG (1) — VA | Vo(t)) ,dt
T
b / (AP (1) — Ao | v(t)) ,dt
0
T rt
— 64 (00) / / (VAG (1) | o(t)),drdt
T
+ / N (1), 9@ (1) [0(6) adt = 0, v € Ly([0,T], H ().

Provided that the initial data fulfill suitable regularity and smallness assumptions,
we show existence of a weak solution

$@ e HA([0, 7], HA(Q)) "W (10, 7], H(Q)) n Wi, ([0, 7], H*(Q)),  (1.5)

see Proposition 3.1; as our proof relies on Schauder’s fixed point theorem, it does
not include uniqueness. Main tools in the derivation of Proposition 3.1 are a priori
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energy estimates, combined with an auxiliary result that ensures that the first time
derivative of the solution and its inverse remain uniformly bounded. The natural
approach to test (1.2) with the second time derivative of the solution and to consider
the lower-order energy functional

Eo( @ () = [|our @ ®)||;, + 85 (00) |20 (1)} + Vo' B},

turns out to be insufficient, since higher-order space and time derivatives remain;
by introducing the higher-order energy functional

EWO(1) = |[Vaup @ 1)} + 85 (00) [VAG D )|} + || A0 @ ®)][;,,

we attain a bound of the form

T
sup E(y (1)) + sup Ei(p (1)) +/ HAatti/J(a)(t)HzLQ dt < C.
0

te[0,T] te[0,T
Evidently, the terms in & are associated with the Bochner—Sobolev spaces
WL (0,71, HY(Q)), Wi (10,71, H(Q), Wi ([0,T], H*(Q)),

and hence comprise the regularity implicated by the terms in &; though, for the
specification of certain constants, we found it useful to maintain & and related
terms. On the basis of the regularity result (1.5), we establish convergence towards
the solution of the Kuznetsov equation (1.1), that is

U 2 in H([0,T], H*(Q)) as a — 04,

see Theorem 4.1; due to the fact that 65‘1) (09) — 0 as a — 04, higher spatial
regularity cannot be achieved.

Methodology. As indicated before, the derivation of our main result, Theorem 4.1,
and of a fundamental auxiliary result, Proposition 3.1, relies on a priori energy
estimates and a fixed point argument to resolve the nonlinearity. In order to keep
our approach applicable to nonlinear damped wave equations of a similar form, see
for instance Ref. 5 (Eq. (4)), we do not exploit the factorization of the linear part
into a heat and a wave operator; a mathematical analysis for the special case of a
monatomic gas, where such a decomposition holds as well, is found in Ref. 4. The
statement of Proposition 3.1 compares with the existence result deduced in Ref. 13;
however, in Ref. 13, a different approach based on maximal parabolic regularity is
used and existence as well as uniqueness is established under stronger regularity
and compatibility requirements on the problem data.

Outline. Our work has the following structure. In Sec. 1.1, we collect basic nota-
tion concerning the underlying Lebesgue and Sobolev spaces. In Sec. 2, we specify
the considered nonlinear damped wave equations arising in applications from non-
linear acoustics; this in particular includes the Brunnhuber—Jordan—Kuznetsov and
the Kuznetsov equations. For this purpose, we review physical and mathematical
principles that are relevant in the derivation of the Brunnhuber—Jordan—-Kuznetsov
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equation and formally justify the Kuznetsov equation as limiting system for vanish-
ing thermal conductivity and consistent initial data, see Sec. 2.1; additional details
on the derivation are found in Appendix A. The considered hierarchy of nonlinear
damped wave equations is introduced in Sec. 2.2.

Section 3 is devoted to the derivation of a fundamental auxiliary result that
ensures existence and non-degeneracy of a weak solution to the Brunnhuber—
Jordan-Kuznetsov equation and related models, see Proposition 3.1. We begin with
the specification of convenient unifying representations of the different general and
reduced models, see Sec. 3.1. In view of Theorem 4.1, we introduce a weak formula-
tion of the general nonlinear damped wave equation, obtained by integration with
respect to time, see Sec. 3.2. Moreover, with regard to the fixed-point argument
employed in the proof of Proposition 3.1, we state a suitable modification of the
general nonlinear damped wave equation; by testing with certain partial deriva-
tives of the solution, we obtain auxiliary relations involving lower- and higher-order
energy functionals. Based on these identities, we deduce a priori energy estimates,
see Sec. 3.3. The existence result and its proof are given in Sec. 3.4.

By means of the regularity provided by Proposition 3.1, it is straightforward to
derive the main result of this work in Sec. 4; Theorem 4.1 rigorously justifies the
Kuznetsov and Westervelt equations as limiting systems of the general nonlinear
damped wave equation for vanishing thermal conductivity and consistent initial
data.

1.1. Bastic notation

Space domain and time interval. Throughout, we consider a bounded space
domain  C R? with regular boundary dQ and a finite time interval [0, 7], see
also Sec. 3.2. In Secs. 2-4, we are primarily interested in the most relevant three-
dimensional case; however, with regard to numerical illustrations, we admit d €

{1,2,3}.
Euclidian norm. Let v = (v1,...,v4)T € R? and w = (wy,...,wq)T € R As
usual, the Euclidian inner product and the associated norm are denoted by

d
v-w:Zvjwj7 [v] = Vv - .
j=1

Space derivatives. For scalar-valued and vector-valued functions
[ Q—=R:x=(x1,...,2q)" — f(2),
F:Q—-Ré:z=(z1,...,24)T = F(z) = (F1(),..., Fi(x)),

we denote by (9, f){—; and (9, F},)9,_, their spatial derivatives. Gradient, Lapla-
cian, and divergence are defined by

d d
vf:(8$1f77azdf)T7 Afzzazjf, VF:Zam7FJ
j=1 j=1
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Lebesgue and Sobolev spaces. For exponents p € [1,00] and k € N>, we denote
by L,(Q,R) and W;(Q, R) the standard Lebesgue and Sobolev spaces; as common,
we set H*(Q,R) = WF(Q,R). In particular, the Hilbert space Ly(£2, R) is endowed
with inner product and associated norm given by

(Ha)ea = [ 1@ o@in, £, =) [ G@)dr. fioe @Ry

accordingly, for vector-valued functions that arise in connection with the gradient,
we set

(F|G)L /F (z)dz, ||F[|,, = /Q}F(x)}de, F,G € Ly(Q,R?).

Bochner spaces. In Secs. 3 and 4, we employ reformulations of the considered
nonlinear damped wave equations as abstract evolution equations on Banach spaces;
for mappings that involve certain space and time derivatives of a function, we write
F(p(t)) = F(p,t) for short, see for instance (1.4). In the derivation of auxiliary
estimates, we use standard notation for the norms of different Bochner—Lebesgue
and Bochner—Sobolev spaces; for example, we set

Iz

H@HLOO([O,T],LOO(Q)) = es: sup || (t)

e[0T

see (3.17).

2. Fundamental Models

In this section, we introduce fundamental models arising in nonlinear acoustics,
the Blackstock—Crighton-Brunnhuber—Jordan-Kuznetsov or briefly Brunnhuber—
Jordan-Kuznetsov (BJK) equation, the Blackstock—Crighton-Kuznetsov (BCK)
equation, the Kuznetsov (K) equation, the Blackstock—Crighton—Brunnhuber—
Jordan—Westervelt of briefly Brunnhuber—Jordan-Westervelt (BJW) equation, the
Blackstock—Crighton-Westervelt (BCW) equation, and the Westervelt (W) equa-
tion; these nonlinear damped wave equations form a hierarchy in the sense that
some of them can be viewed as special cases of others, see Table 2. In Sec. 2.1, we
specify the physical and mathematical principles employed in the derivation of the
Brunnhuber—Jordan-Kuznetsov equation, which is the most general model studied
in this work and provides the basis for reduced models such as the Kuznetsov and
Westervelt equations. In Sec. 2.2, we review the considered nonlinear damped wave
equations and put them into relation. Our collection of models is by no means com-
plete, and we refer to Ref. 12 for recent references from the active field of modelling
in nonlinear acoustics as well as to the classical works Refs. 7, 9, 11, 17, 19-21
and 24.
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2.1. Derivation of Brunnhuber—Jordan—Kuznetsov equation

Notation. The following considerations are characteristic of three space dimen-
sions. In order to distinguish between vector-valued and scalar-valued quantities,
we meanwhile employ the notation x for the space variable, v for the vector-valued
acoustic particle velocity, and S for the associated vector potential.

Physical quantities. The main physical quantities for the description of sound
propagation in thermoviscous fluids are the mass density p, the acoustic particle
velocity v, the acoustic pressure p, and the temperature T'. These space- and time-
dependent quantities are decomposed into constant mean values and space-time-
dependent fluctuations; in the situation relevant here, the mean value of the acoustic
particle velocity may be assumed to vanish. Consequently, the relations

o(x,t) = 00 + 0~(x,1), V(X,t) =vo+V(X,t) = v (x,1),
p(x,t) = po + p~(x,t), T(x,t) =To+ T(x,t),
are obtained.

Physical principles. A system of time-dependent nonlinear partial differential
equations governing the interplay of these quantities results from the conservation
laws for mass, momentum, and energy, supplemented with an equation of state.
The conservation of mass is reflected by the continuity equation

oo+ V-(ov)=0. (2.1a)

The conservation of momentum corresponds to the relation
1
O(ov)+vV.-(ov)+o(v-V)v+Vp=pAv + <,uB + §,u> V(V-v), (2.1b)

where p and pp denote the shear and bulk viscosities, respectively. The relation
describing the conservation of energy reads

2 1
Q(@OE+v - VE)+pV-v=aAT + (uB— g/i) (Vv 5 99+ (V)

see Eq. (3c) in Ref. 2. Here, E' denotes the internal energy per unit mass and a = -
the thermal conductivity, defined by the kinematic viscosity v = g% and the Prandtl
number Pr; the subscript F indicates that the Frobenius norm is used. Rewriting the
left-hand side of this equation by means of the specific heat at constant volume and
pressure, cy and c,, respectively, as well as the thermal expansion coefficient ay,

the conservation of energy is given by

Q(CV8tT+cvv~VT—|—MV-V)
ay

= aAT + <,uB - §u> (V-v)? + %u | Vv + (VV)TH;, (2.1c)
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see Eq. (3¢') in Ref. 2. The heuristic equation of state for the acoustic pressure in
dependence of mass density and temperature is approximated by the first terms of
a Taylor-like expansion

~ B [o.\* T.

pN%AQ——F—(Q—) +A> (2.2)
o0 2 \oo

involving certain positive coefficients A, B, A >0, see Eq. (5d) in Ref. 2 and also

Table 1.

Helmholtz decomposition. A Helmholtz decomposition of the acoustic particle
velocity into an irrotational and a solenoidal part

Vo =Vy+Vx8 (2.3)

leads to a reformulation of the conservation laws (2.1) in terms of the acoustic
velocity potential ¢) and the vector potential S. We note that some authors use
instead the relation v.. = =V + V x S which explains a differing sign in the
resulting nonlinear damped wave equations.

Derivation of reduced models. In order to derive reduced models from (2.1)—-
(2.2), three categories of contributions are distinguished. First, terms that are linear
with respect to the fluctuating quantities and not related to dissipative effects are
taken into account (first-order contributions). Second, quadratic terms with respect
to fluctuations and dissipative linear terms are included (second-order contribu-
tions). All remaining terms are considered to be higher-order contributions. Due to
the fact that the conservation laws contain at least first-order space or time deriva-
tives, zero-order terms with respect to the fluctuating quantities do not play a role
further on. This classification and the so-called substitution corollary, which allows
to replace any quantity in a second-order or higher-order term by its first-order
approximation, was introduced by Lighthill in Ref. 18 and described by Blackstock
in Ref. 2.

Linear wave equation. A natural approach for the derivation of a single higher-
order partial differential equation is to combine the equations for conservation of
mass and momentum. Subtracting the time derivative of (2.1a) from the divergence
of (2.1b) and assuming interchangeability of space and time differentiation, the term
OV - (ov) =V -0¢(oVv) cancels

V-(vV-(ev)+o(v-V)v)+Ap—0uo=pAAV - v);

here, we set A = L& + %. Retaining only the first-order contribution Ap. — 0o~
and replacing (2.2) by the first-order approximation g~ ~ % p~, where A = 2 0o

Cp PO
cv Qo
acoustic pressure

and ¢y = denotes the speed of sound, yields a linear wave equation for the

Optpe — 6(2) Ap. = 0.
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Nonlinear damped wave equation (Brunnhuber—Jordan—Kuznetsov
equation). If additionally all second-order contributions are taken into account
in (2.1) and (2.2), a more involved procedure for eliminating o~ , p~, and T, leads
to a nonlinear damped wave equation for the acoustic velocity potential

B B
8ttt¢ — <CL (1 + Z) + VA) A@mﬁ +a <1 + Z) vA A2(9t¢ — C% A8t¢

+a (1—|— g) g A% + Oy (217% g
details of the derivation are included in Appendix A. As this equation coincides
with Eq. (1.19) in Ref. 4 and Eq. (4) in Ref. 5, aside from the extension of the term
acd A% to a(1+Z) @ A%, we refer to it as Brunnhuber—Jordan-Kuznetsov equa-
tion. We point out that the differential operator defining the linear contributions is
given by the composition of a heat operator and a wave operator

@) + |w2) -y (2.40)

(at —a <1 + %) A) (D) — VA ADtp — & Avp)

#0051z (0w + 170 ) =0, (2.40)
see also Eq. (1) in Ref. 4 and Eq. (1) in Ref. 5; due to the fact that relation (2.1c)
reflecting energy conservation involves the heat operator d; — a A, its appearance
is quite intuitive. Our analysis, however, does not exploit the fact that the general
model is factorizable and thus also applies to Eq. (1.19) in Ref. 4 and Eq. (4)
in Ref. 5. A significant discrepancy of (2.4) compared to the model obtained by
Blackstock, see Eq. (7) in Ref. 2, is the presence of the term comprising A20;1),
which is essential for proving well-posedness, see Ref. 13.

Limiting model (Kuznetsov equation). In situations where temperature con-
straints are insignificant, the Kuznetsov (K) equation
1 B

8tt¢ —vA A8t¢ — C(2) A¢ + 8,5 (ﬂ A

@) + |w2) —0, (25)

see Ref. 17, results from (2.4) by considering the formal limit @ = £ — 04 (but

not necessarily v — 04 ). More precisely, setting
1 B

F() = 0uyp — vA A0 — cg A + 0, <ﬁ P

@0)? + V0P,

it is evident that any solution to (2.5) satisfies F'(¥)) = 0 and in particular fulfills
Ot F (v) = 0, which corresponds to (2.4) with a = 0; on the other hand, integration of
the condition 9, F(¢) = 0 with respect to time implies that any solution to (2.4) with
a = 0 solves (2.5), provided that the prescribed initial data satisfy a consistency
condition such that F(¢(-,0)) = 0. A rigorous justification of this limiting process
is given in Sec. 4.
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2.2. Hierarchy of nonlinear damped wave equations

We next introduce the considered hierarchy of nonlinear damped wave equations,
see also Table 2; we distinguish equations of Kuznetsov and Westervelt type, respec-
tively.

Equations of Kuznetsov type

(1) For convenience, we restate the Brunnhuber—Jordan-Kuznetsov equation (2.4)
in elaborate and factorized form

8m1/) — (a (1 + g) + VA) A@ttz/}

+a (1 + g) VA A20p) — 3 AOwp +a (1 + g) c2 A%y
1 B 9 9
+ Ot 22 Z(aﬂﬁ) + VY| ) =0, (BJK)

Sy

(675 —Qa (1 + Z) A) (8tt¢ —vA A@ﬂb — Cg A¢)

1 B
+ O (2—63 Z(at¢)2 + |V¢2> =0,

see also Eq. (1.19) in Ref. 4 and Eq. (4) in Ref. 5.

(2) In the special case of a monatomic gas, where the identity A Pr = 1 holds, or,
more generally, when a(APr—1) £ = (vA —a) £ is negligible, i.e. vAZ ~ a 2,
the contribution involving A20;1) formally reduces to

B B
a1+ = )vAA?O) ~a|vA+a— | A%,
A A
if we replace in addition the term a (1 + %) c2 A2 by acd A%y, we retain the
factorizable reduced model

Orr) — (a (1 + %) + VA) Ay + a <uA +a g) A204)

LB

— C(2) Aaﬂl) + acg A21/) + Ot (ﬁ 1
0

(0p) + IVW) =0,
(BCK)

(8t - CLA) <8tt’(/J - <VA +a g) Aaﬂl) - C% Ail))

1 B
+ Ot <E Z(aﬂ/})Q + |V1/J|2) =0

which we refer to as Blackstock—Crighton-Kuznetsov equation, see also Eq. (1)
in Ref. 4 and Eq. (1) in Ref. 5.
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(3) As shown in Sec. 4, the Kuznetsov equation
1 B
8tt¢ —vA A@,ﬂb — C% Aw + at <2—c% Z
see also Eq. (3) in Refs. 4 and 17, is obtained from (BJK) and (BCK) in the

limit @ — 04; for this reduced model, the orders of the arising space and time
derivatives are significantly lowered.

(Or)? + |vw|2) —0, ()

Equations of Westervelt type

(1) In certain situations, local nonlinear effects reflected by |V|* — gg(aﬂp)? are

negligible and thus the nonlinearity can be replaced by
1 B 1 B
— (O + VY = (24 =) (B
sz 3 OP IVl ~ g (24 ) @
in accordance with our derivation of the Brunnhuber—Jordan—Kuznetsov equa-
tion, we keep the term a(1 + £) ¢ A%). Altogether, this yields the nonlinear
damped wave equation

Opt) — (a <1 + g) + uA) Adyp +a (1 + g) vA A%0p)

(BJW)

B 1 B
— A +a <1 + Z) g A%+ 22 (2 + Z) O (9pp)* = 0,

which we refer to as Brunnhuber—Jordan—Westervelt equation; as in (BJK), the
linear contributions are given by the composition of a wave and a heat operator.
(2) In analogy to (BCK), the Blackstock—Crighton-Westervelt equation

Opettp — <a (1 + E) + VA) Aduth + a <1/A +a E) A29,1)

A A

. 5 (BCW)

— 2 A0+ ack A%+ 52 <2 + —) Ot (0rp)? = 0
g A

is retained as a reduced model from (BJW), see also Eq. (2) in Ref. 4.
(3) The Westervelt equation is given by
1 B
8ttw —vA A@tz/} — 0(2) A’(/J + ﬁ (2 + Z) 875(875'(/1)2 = O7 (W)
0

see also Eq. (4) in Refs. 4 and 25; as justified in Sec. 4, it results as limit-
ing model from (BJK) for vanishing thermal conductivity and negligible local
nonlinear effects.

3. Auxiliary Results

In this section, we state unifying representations of the nonlinear damped wave
equations studied in this work. Furthermore, we deduce reformulations of the
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Brunnhuber—Jordan-Kuznetsov equation and a prior: energy estimates that are
needed in Sec. 4.

3.1. Unifying representations

Abbreviations. In view of a unifying representation, it is convenient to introduce
switching variables 09,0 € {0,1} and abbreviations for the arising non-negative
coefficients

%a):a<l+§>+uA>07

a B B
ﬂé )(00) :a(VA—l—aZ—l—ao Z(VA_G)) > 0,

" B
B3 =c3 >0, g§>(ao):a<1+aoz)cg>o,

1 B
Bs(o) = 2 (2(1 —o)+ Z) >0, Bs(o)=02>0;

we recall that the quantities a, %7 vA, ¢ > 0 are strictly positive. Besides, we set

(@
(@(5g) = P2 (00) _ L (m +(1—-00)a g) > 0. (3.1b)

B (0) B

Evidently, these definitions imply the relations
(@) 1 a) 1 B
0 (1)—%VA, ﬂO (0)—%<VA+CLZ 5

éa)(l) =a <1 + g) VA, 65(1)(0) =a <VA +a §>7

a B a .
P =a(1e ) d A0 =ad (310
1 B 1 B
1 = — — = — 2 —_—
ﬂ5( ) C% Aa ﬂ5(0) 0(2) < + A)a
Be(1) =1, Bs(0) = 0;
in the limit a — 04, the following values are obtained
1
By (00) = zvA, 5" =vA 5 (00) =0, 5" (e0)=0.  (3.1d)
0

With regard to the statement of Proposition 3.1 and Theorem 4.1, we intro-
duce uniform lower and upper bounds for coefficients involving a > 0; that is, we
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denote

By= A, Boloo) =

: <VA+(1—UO)5§>,

oy oﬁm| =

B, =vA, 31=a<1+z)+uA,

(3.1e)

By(00) =@ <Z/A+E§ + 0o g(uA —E)),

By(og) <@ <1 + 0 g) 6(2), a € (0,al.

Unifying representations. Employing a compact formulation as abstract evo-
lution equation, the Brunnhuber—Jordan—Kuznetsov equation takes the following
form with g = o =1

At (t) — B DB () + 85 (00) A204(t) — Bs Ad(t)

+ 35" (00) AZ(t) + Oy (% B35(0) (0pp(1))* + Bs(0) |V¢(t)|2> =0, (3.1f)

see (BJK); the equations (BCK), (BJW), and (BCW) are included as special cases,
see Table 2. Moreover, the Kuznetsov and Westervelt equations rewrite as

D (1) — B A (1) — Bs AY(t) + 0y (% Bs(0)(0pb(t))* + B (o) |w(t)2> =0,
(3.2)

when setting 0 = 1 or 0 = 0, respectively.

3.2. Reformulations

With regard to the proof of Theorem 4.1, we next state a weak formulation of
the general nonlinear damped wave equation (3.1), obtained by integration with
respect to time; moreover, in view of the proof of Proposition 3.1, we introduce a
reformulation of the general equation that presupposes non-degeneracy of the first
time derivative of the solution. Accordingly, in formulas (3.3)-(3.6), we denote by
1) a solution to (3.1).

Initial and boundary conditions. Throughout, we study the general nonlin-
ear damped wave equation (3.1) on a finite time interval [0,7"]. When performing
integration-by-parts, we need the boundary of the space domain to be sufficiently
smooth, namely 99 € C*. In order to avoid the presence of additional bound-
ary terms in (3.9) and (3.11), we impose homogeneous Dirichlet conditions on the
following space and time derivatives of the solution

Ouh(t) oo =0, Ad(t)|lan =0, AY(t)]aa =0, (3.3a)
Oerh(t) o = 0,  Adu)(t)]|on = 0; (3.3b)
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in Ref. 13, due to the fact that the proofs rely on maximal parabolic regularity
and do not employ energy estimates, the first condition in (3.3b) does not occur.
Moreover, we suppose that the initial conditions

$(0) = o, p(0) = Y1, Iutp(0) = 2o, (3.4)

are fulfilled; the needed regularity, compatibility, and smallness requirements on )y,
11, and o are specified in Proposition 3.1.

Reformulation by integration. With regard to (3.2), assuming interchangeabil-
ity of space and time differentiation, we set

F(p(t)) = Outb(t) — B1” Adup(t) — B3 Aui(t)
+ B5(0) Out) (1) Oup(t) + 2 B (o) VOyp(t) - Vip(t); (3.5a)
straightforward differentiation shows that its time derivative is given by
OF (1)) = Ouaatp () — B Adup(t) — B3 DDy (1)
+ B5(0) Ouat)(t) Byp(t) + B5(0) (Dre ) (1))
+2 f6(0) Vou(t) - Vi (t) + 2 Be(0) |Vorp(t)|”
and that (3.1) rewrites as
QP (1)) = (B — B1) A (t) — B (00) A20up(t) — AL (00) A% ().

Provided that the prescribed initial data are sufficiently regular and satisfy the
consistency condition

o — %0) Ay — (3 Atpg + Bs(0) 2 1 + 2 Bs(0) Vipr - Vihg = 0 (3.5b)

such that F'(¢(0)) = 0, integration with respect to time implies
F(1) = (317 = 5i”) (A0 (1) — Agn)

— B (00) (A2(t) — A%g) — B (00) / AZy(r)dr.  (3.50)

Reformulation by differentiation. A reformulation of (3.1) is obtained by
straightforward differentiation of the nonlinear term; suppressing for the sake of
notational simplicity the dependence on ¢ and o € {0, 1}, we set

a(t) =1+ B5(0) Orp(t),
r(t) = B5(0) (Dutb(t))? + Bo(0) Bue |V (¢ |
= B5(0) (0 t)(1))? + 2 B6(0) De(VO(t) - V(1))
= B5(0) (O (1))? + 2 B (0) VOt (t) - Vib(t) + 2 Bo(0) | VO (1),

(3.6a)
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and, as a consequence, we obtain the relation
a(t) Buarth(t) — BL" Adup(t) + 85" (00) A%0rab () — B A (1)
+ B (50) A2(t) + r(t) = 0; (3.6b)

provided that non-degeneracy of «/(t) is ensured, this further yields

Db (1) — BY 2 Adub(t) + A (00) —— A2005(t) — s —— A1)

a(t) a(t) ()
+ B (00) <5 A0 + g5 (1) =0, (3.6¢)

Fixed-point argument. Our approach for the derivation of a priori energy esti-
mates uses a fixed-point argument based on a suitable modification of (3.6); that
is, we consider two functions ¢ and v that satisfy the initial conditions

$(0) = (0) = o,  01$(0) = Dutp(0) = 1,  Dpp(0) = Dpeth(0) = b, (3.7)
and replace a and r in relations (3.6b) and (3.6¢c) by
a9 (1) = 14 B5(0) Bro(t),
O (t) = B5(0) D) (1) D b(t) + 2 Bo(0) Vb (t) - V(t) (38)
+ 2086(0) VO (t) - VO o(t).

First energy identity. Our starting point is (3.6b) with « and r substituted
by a(®) and r(%); testing with 0,1 (t) yields

(19 (£) Db (t) | Durp(£)) 1y — BI™ (ADutb (1) | Dextd(8)) 1
+ 85" (00) (A0 (1) | 9t (1)) 22 — B (ADb(1) | Dur ()L,
+ B4 (00) (A20(8) | 9t (1)) 1 + (r D (1) | Durb(£)) 1, = .

In order to rewrite this relation as the time derivative of a function plus additional
terms, we apply the identity
2

(@ (t) Ouetp (t) | Do () 1, = %at @) (t) Dyyap(t)

Ly

_ % (8ta(¢) (t) att’(/J(t) |8tt"/}(t))L2;

under assumption (3.3a), integration-by-parts implies

(A () | (), = —|| VO (®)][7.,
(A20,(t) | e (t)) 1, = (AB(E) | Aduetb(t)) 1, = %@HAM@)HL»

(A0 (t) | Burtp(t)) 1, = —(VO(t) | VOt (8)) 1, = —% ANCIGL
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(A%(1) [ Ot () L, = (A(t) | ADutp (1)L,

= (A0 (1) | A1)z, — A0
(3.9)

As a consequence, we have

2 9 ﬂ(a)(

%at a@ (1) Bup(t)|  + B |V, +
Lo

ol aguso)l?,

atHvatw )7, + 85 (00) (A () | A (1)) 1, — 85" (00) [| A (1),

+ (r(¢) (t) — 3 ata(¢) (t) Operb(t) |8tt1/)(t)) =0;

Lo
by means of the abbreviation
(
Eo(¢ H\/ t) O (t) + - HAaH/) HL
||V(9t¢ HL ) (3.10a)

the following relation results:

O Eo(o(t), w(1)) + B ||V t)||%

= — 81" (00) (A (1) | Ap(D)) . + B (00) [[ A (1),

o <7‘(¢) (t) — %8,504(‘15) (t) Db (t) |8tt¢(t))

Lo

Integration with respect to time finally yields
Bo(o(t), v(1)) + 61 / IVowu()|?, dr
= Eo (o, v0) + 8" (00) (Agy | Atko) 1, — B (00) (ADp(t) | Aw(t)) L,
37 ) | Nadw| dr

o~ L@ , . .
/O ( (1) = 5 0'”(7) Dt th (7) | D ( )) dr; (3.10D)

Lo

note that we here set

Bo(wo, o) = 5 |VIF Bl v v, +

) a7, + 2 5 Vol
(3.10¢)
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Second energy identity. On the other hand, we substitute o and r in (3.6¢)
by a(®) and r(#); by testing with Ady1)(t), we obtain

2
1

NZCID) Aduip(t)

Qe (t) | ADtb(t)) 1, — ga)

Lo

+ 35 (00) < @) A2y (t )’Aatt¢(t)>L2 — 3 ( @) Adey(t )’Aatﬂ/)(t))

Lo
+ B (00) ( o A% ‘ A@ttw(t)>L2 + (a(%)(t) r(@(t) ‘ A@ttw(t)>L2 =0.

Similar to before, we employ integration-by- parts under assumption (3.3b) and
replace the arising space and time derivatives of (¢) by

1 1 1 1

va(¢) (t) B _65(0) (a(¢) (t))2 Vat¢(t)7 atm = —55(0) W att¢(t)§
this yields the identities
(attt¢(t) ‘ Aattw(t))[,g = —(vattt¢(t) ‘ V@tt¢(t))L2 = —= atHvattw ||L ,
( (¢)( ) A28t1/)( ) ’ Aatt"b@))[q
1
- (vaawin|v ( g M)
(VA@W ' Aatt¢ )
Lo
(VAati/J ‘ VA@M/’ )
Lo
(3.11)

(v( lAaﬁw ) VAB,(2)
O(

Lo
2

1 1 1 1 2
— 5 875 aT)(t) VAat’(/J(t) . + 5 (8130[((1)—)(2&) ‘ IVAat’(/J(t” )L2
2
1 1
=5 Oy W VAG(t) .
! A A 0
+ Bs(0) <W Oy (t) VAGy(t) - V t¢(t))L2
Bs (o)

5 | ud(t) | VAS)( )|) :

Lo
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as well as
1
(75 20000 Bowin)

2
1

1
=2 Ad(t)

t

Lo
2
+

1

N =

FA 1

1850052

o ' @00y

Lo

Adh(t)

1
0 || ——
2 a@ (1) .

furthermore, we make use of the relation

(el
o \ o), (5
(ot
ot

e(t)

A@ttw(t)>

HM

<a<¢1>< il

O~ o) (¢t

(%o

~bslo ( a@) (¢

VA (L)

2

O/(¢) (t) Lo

With the help of the abbreviation

E1(o(t),¥(t)) =—||vatt¢ )7, +

1

Ps

2

Bs(0) (( L

Adu(t) VAY(t ) a(
Lo

VA(?,W() VA¢(t)) +
vAdU() - Tau()
A >vat¢<t>-mw<t>)

Dud(t) VA1) - mww)

attas(t)matw(t))?) ;

Lo
(3.12)

a9 (1))?

‘ @) (t) v Oup(t >>

Lo

‘ VAO(t) - VA¢(t)>

Lo
2

VA ()

Lo a(¢) (t) Lo

Lo
Lo

Lo

2

Adh(t)

- VAdU(1

al®)(t

Lo

(3.13a)

Lo
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we thus obtain
2

0.1 (6(1), (1)) + B Adu(t)

Lo

= 3" (00) 0, (a(%)(t) ’matw(ﬂ : mw(@)

Lo
2

+ B (00)

VAOp(t)

| a(¢) (t) Lo

155 (00) B (o) (

Adytp (1) VAOp(L) - Vatqb(t))

Lo

o1 (1))?

—~

B (00) s (o) ( 1
2 () (1))?

B3 B5(0) 1
N ( )

D d(t) ;VAatw(t)f)

Lo

A9 (00) B5(0) (

A () VOL(t) - mwm)

al?)(t))? Lo

—~

1
— 81" (20) B5(0) ( (1) VA, (1) - VAW))
! (al9)(t))? Lo
Performing integration with respect to time, finally leads to
2

dr
Lo

1
a® ()

Fu(o(t), (1)) + B /0 ABu)(7)

= E1 (o, t0) + ﬂz(xa) (00) (Oé(%(o) ‘ VA VA%)L

2

- 8700) (g | A0 - vau)

Lo

2
1

t
(a)
+ 847 (o0) /0 2@ ()

[ (7
1

+ 85 (00) 55(0)/0 (W

VAO(T) dr

Lo

A@ttw(T)) dr

Ly

Aatt¢(T) VAatw(T) . V8t¢(T)) dT

Ly
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(a) t
_ B3 (00)B5(0) 1
2 /o <(04(¢) (1))?

_ ﬁsﬂ;(g) /Ot <(a(¢)1(7))2

6tt¢ }VA(%ﬂﬁ )| ) dT

Lo

a@@NA@wv»ﬁ dr

Lo

(@ ' 1
+ 64 (00) ﬂ5(a)/0 ((a(¢) B A (1) Voo (1) - VA¢(T)>L2 dr
(a) ' 1 .
— B, (00) 55(0)/0 ((a(¢) ) O (1) VARY(T) - VA¢(T)>L2 dr;
(3.13b)
similar to before, we here set
2
E1(v0,0) = ||V¢2HL2 1+55
fa ;M}f .13
2 L+ B5(0) Y1 L

3.3. Energy estimates
Objective. In the following, we deduce a priori estimates for the energy functionals:

o Hmaﬁm 2

59 (o
+ 20 gy,

HVCW HL»
2 (3.14a)
E1($(t), ¥(t)) =—I|V8ttw G, + G VA(‘W)
Lo
8 1 ’
3
FRINZCIO Ad(?) .

on bounded time intervals [0, T]; we recall that a(?) = 1+ f5(c) ;¢ and note that
the values at the initial time are given by

Eo(vo,vo) = 3 [V By dn s, + 22 o,

+ 2 v},
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2

E1 (1o, %0) = ||V¢2HL2

1+ﬁ5

2
1

1+ Bs5(0) 1

Bs

2 Aty

)

Lo

(3.14b)

see (3.7). In order to keep the formulas short, we introduce auxiliary abbreviations
for the basic components

E01 H \/ Ol(qb) 8ttw

Eoa(9(1), (1)) = [|Adw )|,
Eoa((t), () = [|Va(t)[[7,.
@),
Eo((0), (1) = 3 Eoa(0(2),6(0) + 2 By (9001, (1)
+ 2 B0, 00)),
E11((t),(t)) = || VOu(t) HL : (3.14c)
2
E12(¢(t)7w(t)) = \/()((TVAatw ) B )
E13(¢(t)71/)(t)) = WAatw ) 3
@),
Ev(@(0).0(0) = & Eun(o(t).v(0) + 2 4( ) i (o(t). (1)
+ 2 Biso), v

we in particular apply the relations

Eo1((1), 9 (1)) < 2Eo(o(1),%(t)),  Eos(d(t),¥(t) <
(3.14d)

En(o@t), (1) <2Ei(o(t), ¢(t),  Eus(¢(t),d(t)) <
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Moreover, we denote

2

Ego(( H Aatﬂl) ;
Vel (3.14e)
. (a)

Ea(o(t),¥(t)) = %E (1), ¥(t) = %E20(¢(t),¢(t)).

Our essential premise in the proof of Proposition 3.1 is boundedness of the energy
functionals by positive constants Eq, E1, E5 > 0, when inserting ¢ twice

sup Eo(¢(t), 6(t)) < Eo,  sup Ei(e(t), (1)) < En,

te[0,77] t€[0,77]

(3.14f)
/ Ba(6(t), 6(t)) dt < Fo;
evidently, this yields the relations
— 2
sup Eo1(6(t), ¢(t)) < 2Eo,  sup Eopz(é(t), ¢(t)) < — Eo,
t€[0,7) t€[0,7) B3
) (3.14g)
sup B (o(t), ¢(t)) <2E1,  sup Eis(o(t), ¢(t)) < — Ei.
te[0,T] te[0,T B3

We note that ﬂga) (00) — 0 if @ — 04 ; for this reason, Epe will be related to Fis,
employing uniform boundedness of a(?) from above and below.

Basic auxiliary estimates. Considering in the first instance regular bounded spa-
tial domains 2 C R?, we exploit the Poincaré-Friedrichs inequality, the continuous
embeddings H'(Q)) — Lg(Q2) as well as H?(Q) — Lo (9), and assume elliptic reg-
ularity; the application of Hoder’s inequality with exponent p = 3 and conjugate

exponent p* = Lo = 3 also shows H'(€2) — Lg(2) — L4(€), since

A1z, = /Q (f(z)dz < ( /Q 1dx)‘l” ( /Q <f<x>>4p*dx)pl* = 1905 [I£1,-

To summarize, we apply the estimates
£l < Coel[VE],,,  feH (),
1£1lz, < Cracr Fll s 1£llz, < Cromm [[£ller £ € HYQ), o)
1], < Crworz [ fll o £ € HXO),
£z < CallAfll,,,  fe HA(Q)N Hy();

in all cases, the arising constant depends on the space domain.
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Gronwall’s inequality. We use that a non-negative function f:[0,7] — R that
solves an integral equation of the form

= f(0 > [ d t dr,
(6 = £(0) + / £(r) T+/O g(r)dr
where v > 0 and ¢:[0,T] — Rx¢, satisfies the relation
£ =™ )+ [0 gryir < (f<o> + [ g(r)dr).
0 0

Setting f(t) =||¢(t)||7, and applying Cauchy’s inequality as well as Young’s inequal-
ity with weight v = %, this in particular implies

(o, = IOz, +2 | @otr) 1 r))zy o
< e, +2 [ 1o, ot a
1
< eI, + 3 [ Nl ar+7 [ ol ar

<3 (Hga(m”; +T/0 low)|I%, dT). (3.16)

Auxiliary estimates ensuring non-degeneracy. We first prove that the time-
dependent function a?) = 1+ 35(c) 9;¢ defined in (3.6) is uniformly bounded from
below and above

3

”Loo([o,T],Loo(Q)) <a= > (3.17a)

N

0<g:%§”a(¢>

provided that the upper bound for the higher-order energy functional on the con-
sidered time interval [0, T satisfies the smallness requirement

1 (CACL_ —12P5(0))?
E < — = =
CoEr < Bk Co 7 )
see also (3.1), (3.14) and (3.15); we point out that the arising constant Cy > 0 does
not depend on a > 0. With regard to the relation

1=t ® =1l | = [la®()

(3.17b)

lp. =1+ 0@ =1,

obtained by triangular inequalities, it remains to show boundedness of ||a(®)(t) —
1|z, for any ¢ € [0, T]. By means of (3.15), we have

090 = 1], = 85(0) 00 < Coreote Bol) [0
<CACL_py2 Bs(o HA&&‘?S ||L2

< CaACr_ oy Bs5(0) ‘ al®)(t) A0ro(t)

1
N7
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< V/Co /B3 Brs (1), 6(1)) /[ a@ (t)]],

<200 E 1+ a0 -1,

see also (3.14). Due to the smallness requirement Cy E1 < 15, the positive solution
to this inequality satisfies

n<\2CoE1\/14+n n*—2CoEin—2CyE, <0,

(77— COE1)2 S (2+00E1)00E1, 0 S n S C()El + \/(2+COE1)COE1 S

1.
27

this implies the stated relation, since

1 3
5 <[ =lla@@® -1, _[ <[P, <1+ . <3
and in particular ensures non-degeneracy
1 2 1 1
0<===<||——& < —=2. 3.17¢
a 37 e qorae) 2 1

Auxiliary estimate for nonlinearity. We next deduce an auxiliary estimate for
the nonlinearity

) = B5(0) et e p + 2 B6(0) VOiuth - Vb + 2 B(0r) VOt - V6,

see (3.8) and recall (3.14). The estimation of the first term uses Cauchy’s inequality
and relation (3.15); that is, we have

[0¢e1p(t) Oreb(t) ||L2 [Br(t HL4H8”¢ HL4
< Oy 100 O[5 0050

< CppCL, o || VO (t (Vouo(t

.| I,

< Cpp O, o E1i (9(1),4()) v ((1), (1))
<4CPp C, i E1 E1(6(1), ¥(1)).

For the third term, we apply the same arguments and use boundedness of a(?) by
@ = 3, see (3.17), to obtain

IV (t) - Voo t)ll3, < Vo], Vo),
<o [V @) [V 5

< Cpp CL, o || A0t HL A0 (t HL
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2
2 1
<t ot @ _
< Che Gl 090, | 200 )
2
| —L— rg60)
a@(n

< Cip Cﬂng @ Eis(o(t), v(t)) E1s(6(t), 6(t))
9 CI%FC%AI «—H1
- 3
For the second term, we in addition employ Gronwall’s inequality, see (3.16) with
© = A¢; this yields

[Voui(t) - Vo)
< |Vouv @5, Vo7, < Ch,om [[V0ub®)|| 5 [[VE®) |3

<CprCl,m ||A3tt¢(t)“f;2 HA‘ZS(”L)Hi2

E1 E1((t), ¥(1))-

t
< G Ol 8000, (3 1wl +37 [ a0, ar)

2
<3CppCl,m@ LAaﬁzﬁ(t)
a(¢)(t) Lo
t 1 2
2
A aT — A d
x (H volly, +@ /0 g A0 . T>

<3Cp Cﬂng Q@ Eao(o(t), (1)) (HAil)OHiQ +aT? sup Ei3((t), ¢(t))>

t€[0,T]

901%FC%4MH1 - , .
e Blo.v) (lawlz, + 277,

By the elementary inequality (a1 + as + a3)? < 3(a? + a3 + a3), valid for positive
real numbers a1, as, asz > 0, the estimate follows.

J IO am <3 [ (@s0)? lowiir) duotl,
+4(86(0))? || VO0(r) VO o(7)||3,
F4(36(0))? | Vi(r) - ()2, )dr

<1208 CH, ((ﬁs(o))2 + %)
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t 4 4 2
R
1

2 3 o= b~
x (HA%HL;ET E) | Eaotr).vtrar

In order to deduce a bound that holds uniformly for a € (0,a], we use (3.1e);
denoting

Cr =120t 0, ( (Bt + 220,
3
_ G CL o (Be0)? 3
- 8, R

(3.18a)

we arrive at the auxiliary estimate

[ IO, 0 < B [ B v ar
+Oa(l|avolly, + T ) [ Batotr).vtr)ar
<G [ B i) ar

4G ([[awl;, + T F) [ Baor) v
(3.18b)

First energy estimate. Our starting point is (3.10), which we restate for conve-
nience

Bo((t), (1)) + B / Eu(6(r), (r)) dr
= Eo (v, %0) + B (00) (A1 | Adhy) 1, — B (00) (A0(t) | Ap(H)) L,
+3(en) [ 80|}, ar

+ % /0 (8t06(¢) (7) Oueth(7) | Ot (7)) o AT _/0 (7"(¢) (7)1 et th(7)) 2 AT,

see also (3.14). In order to suitably estimate and absorb the terms arising on the
right-hand side, we proceed as follows.

(i) By means of Cauchy’s inequality and Young’s inequality, we have

B (00) | (A | Adbo)L,| < B (00) [|Athn],, [| Ao

’Lz

B (00)
2

(a)
< 000 g2 4

| aoll;,-
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In a similar manner, incorporating an additional weight v; > 0, we obtain

A(LQ)(UO)’(AaﬂM )| Ap(t) L2|<ﬂ4 90 ’|Aat¢ ||L2HA¢ HL2

< Oy )2+ 54 ) a2,
with regard to the relation ﬂéa) (09) = éa)(do) fla) (00), we set 7§ = w
such that
(a)
() (00) [ (A0s0(1) | AY(1)) 1, | < ﬂ2 %) || Ayt P1_(20) 5 1L,

HL2 6(()(1) (0_0)

This permits to absorb the first term involving [|Ady¢(t)||7, and explains the
definition of the energy functional

- (@)
Eo((t), ¥(t) = Eo(b(t), v(t)) — L

_ % H\/Maﬁwt)

||V<‘W

| agus(t)

Ol

(a)
+ 20 g,
Lo

I[P

for the second term, we apply Gronwall’s inequality, see (3.16) with ¢ = A,
which yields

t
lav@)|2. <3|l +3T/0 |80(r)|2. dr.
Again by Cauchy’s inequality, we have

((Bre0(1))? [ s (7)), < ||Betp(7) HL4 100 (T)|[ 5

relation (3.15) and the uniform bound 2 = 2, see (3.17), imply
1 t
5 | @) 00(r) | 0, o7
0

<27 [owv )l louot],, ar

c2.c2 3 T
< ZPF L42H 5(0)\/;/0 HV@W(T)HZ H\/o{(@(T)@ttqﬁ(T)
2
SCPFCM;HlﬂS \[ / VE (60, 6(1) Evt (6(7), (7)) dr
< 2 O,y Bs(0) /B / By (6(r), $(r)) dr.

dr
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Provided that the smallness requirement

C2pC2
it 21 @H @) JE, < L (3.19)

[\

is satisfied, see (3.1e), the resulting term

t (a)
%/0 (0:' P (1) D) (7) | et (7)) 1, d < FLm / Eq1(o (1)) dr

can be absorbed by the corresponding term arising on the left-hand side.
(iv) Cauchy’s inequality and Young’s inequality with weight 7o > 0 as well as (3.15)

yield
(D (1) |0 (1)) 2| < [P D ()|, [Oeeto( HL2
< % PO @2, + 2 o],
< 52 MO, + 2 oo
< sz IO, + FEE Buatoto). wio)y
with the special choice 72 = fé;; such that %2522 = 27 the second term

arising on the right-hand side of

t C2 t
|, 16O 10uvar < S [ O @], an

(a) pt

+5 | Bl v ar

can be absorbed.

The above considerations imply the estimate

) 2 () 1 3 2
||A¢1||L2 + B4 (00) (5 + M) [ Avoll7,

00 (15282 st o+ G [ 00
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together with (3.17) providing the uniform bound @ = 2 and (3.18), this yields

a) +
Eo@(0). () + 2 [ Euloln).u(r) dr

N (@)
< Bowo, vo) + 2 5(300) @ Ex(vo, vo) + 65" (00) (% + ﬁ(%) 1Al
0
254(1(1)(0'0) 3T — PF Ch ) dr
' ( % (1 ! ﬂéa)(ao)> b / et em)
2 t
+4(;1§§)02(|\Awoui2+ch2E) / Ba(o(r), (r)dr
1 0
< Eo(t0,%0) + Sﬂéﬂ( 0) E1 (0, %0) + 65 (00) (% + ﬁ(o)) HA%H;
0 g
3ﬂ4a)(00) 3T CPFcl
! ( s (l ! ﬂo“><o-o>> Bl E) / Bl

2
+ 401?2)02 <HA¢0H2L2 +C3T? El) /0 Ey(¢(7),1(7))dr.

Employing again (3.15) and (3.17), we obtain Eq (¢, ) < 4 C21E1(10,0); with
the help of the bounds collected in (3.1e), which hold uniformly for a € (0,al, we
finally arrive at the relation

Eo(o(t), (1))

< @0 (E(0n.vo) + Aol + 1+ B [ Eatot), v ar

+ (8wl +B1) [ BaGotr)virar),

By — Bo(T) (3.20)

. NEYACH Ly 3 30 (), 37
_max{4CPF+ 2 g, Pl )<2+ﬁ0>’ 5 <1+ﬁ0>,
C3pC1 4CEpCy

ﬁ1 ’ ﬁ1

max{1,C3 T2}},

see also (3.18a). Due to the appearance of Eq(4(t), ¢ (t)) and Ez(¢(7), (7)) on the
right-hand side, further considerations are needed.
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Second energy estimate. In order to deduce a suitable a priori estimate for the
higher-order energy functional, our starting point is

By (6(t), (1)) + / B (p(r), (r))dr

= E1(vo,0) + Ba(00) ( @0 )‘VA% VA%)
Lo
_ 9, 1 :
o0 (2 ‘matw(w vau()

(oo / Eua((), (7)) dr

+/o <a<¢><7> rO)

where we employ the convenient abbreviation

R(t) = ﬂé“)(ao)&(a)/o (W

(a) t
5 (00)B5(0) 1
2 /0 ((W)( ))?

S / <<a<¢>1<r>>2

_|_ﬁ(a)(00) 55(‘7)/0 (m

— 394 o t -
4 ( 0)ﬁ5( )/0 ((@(¢)(T))2

see also (3.13); similar arguments to before permit to estimate and absorb the
arising terms.

Aaﬁwr)) dr + R(t),

Lo

Aattw(T) VA8t¢(T) . V@tgb(r)) dT

Lo

8tt¢ ’VAaﬂl) )| ) dT

Lo

O () (A@ﬂ/}(T)f) dr

Lo

Ayt (1) Voro(T) - VAw(T)) dr

Lo

O (1) VAY(T) - VAw(T)) dr,

Lo

(i) The application of Cauchy’s inequality, Young’s inequality with
2 B"(0) _ 4" ()
6(‘1)( ) 2
and the uniform bound 1 =2, see (3.17), yields

(a)

1
(o) (a(¢) (0) ’mwl 'VA%L
a) 1
< B (00) ’mel o VA%
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2

ﬂ4 UO 4
< |¢Q<mel + 2% a(¢) F VATl
(a)
< 4()E12(1/J071/)0) 6((1) _H z/J0H2L2
2
< E1 (o, %o) + ﬁﬁ(i)( [vA ¢0HL2

(ii) Using in addition Gronwall’s inequality, see (3.16) with ¢ = VA, and the

3 see again (3.17), we obtain

uniform bound @ = 3,

() (00) | (a(%)(t) ‘ VAdp(t) - mww)h ;

89 (o 1
H ol I oGl
2264 (o) 2
< 1 ‘\/WVA(?W (t)
() (5 ?
s el
@,
< @TWEu(as(t),w(t» ¥ ﬁ()—” ~vavol?,
(5 (00))? @
(a)(ao)
< = Bu(e(), v ()
Gﬂz (0 .
o (Iawl, o7 [ I9sawo o)
(a)(Uo)
< B0 o), w0

7665@)(00) * +a t T T))dr
# oo (Ivanl, +a7 [ Futo,vimar)

§) (00)
< 22390 g (6(1), w(2)

4
Gﬂéa)(ffo) 952
LY wa— (6((;1)(00)) H Ao HL2 (a) / Ena(¢
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(@) (o
< 21 o), win)

605" (90) | o a2 36 [ o i
e IV awl, + g = [ B(otn. o) dr

this shows that the first term on the right-hand side can be absorbed to yield
Eq1(o(t), (1)) on the left-hand side, which explains the definition of the energy
functional

gy

B2 (90) g o), (1)),

Ey(6(t), (1)) = Ex((t), () — =

(iii) Recalling once more the abbreviation 6(()a) (00) = Z 2 E ; the bound

(a) t 74 t T T T
en) [ Euatotr) v()ar < P, JRCICERIE

is obvious.
(iv) By Cauchy’s inequality, Young’s inequality with weight 75 = 6§a), and the
upper bound é = 2, we have

Aattz/}(T)) dr

Lo
t ) 1
< / Ol I Adw (5| dr
a<¢ o Va@ @ o
< — ! /t ( ) 2 d
T T
2’}/2 a(¢ Lo
3 [t ’
= A0, d
+ 5 / r@ 1) (T T

Lo

@ / Ir ), dr+ 5 / By (@(r), v(r))dr:

together with estimate (3.18) for the nonlinearity, this implies

< %F / Ey(6(r), (r)) dr

A@ttw(T)) dr

Lo

1 C
+<5 o 120l + 6T E) )/ By(o(r). (7)) dr.
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Under the additional smallness requirement

(3.21)

1
S (1awl, + B < 5

we obtain the relation
¢ 1
L) | aduu( )) a
T T 't T T
/0 (a(gﬁ)(T) Lo

S5 [ ) senar+ § [ Btots) vl

thus, the second term involving Eg can be absorbed into the left-hand side and

yields the integral over Es.

As an intermediate result, we attain a bound of the form

Fy(6(1), (1)) + / By ((r), () dr

< d; <E1(¢0,¢0) + HVA%HE2 +/0 E1(¢(7')’¢(7'))d7'> +|R(®)], (3.22)

il 864( 0) 4 Cl
&, =& (T,E,) = _T S YUFE
1 1( s 1) max{ éo ﬁo +ﬁ0+ﬁ1 1}

The remaining terms are estimated with the help of Cauchy’s inequality and (3.15),
that is, we use that a product of functions satisfies the relation

[(o1(7) 2(7) [ 031 < [l (@) 220, s,
< [ler @, ez, les(™]l,
< Croere |01 2 02D 1, 03D,
< CaCpcepe [Apr (D), [l lles(D]] 1,

As a consequence, by (3.14), inserting agaln = 2, we obtain

}R()|<26()(00 Bs(o /\/E20 7))V Erz(o( 7)) [[Vaia(r) HL dr
+ﬂ§ (00) Bs(o /Hatt¢ HL Era(o(7),¢(7)) dr

+ 63 B5(0) / 10wo (), Bra(é(r), (r)) dr
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+2v2 8" (00) Bs () / Eao(o(1), (7)) [|[Vorb(7)||,_ [[VAY(T)||, dr
+2V2 B (0) B (o / 10:6(T) |, VER(@@), 9] ||VAY(T)|),, dr

Recalling the upper bound @ = %, we employ the estimates

[Vorp(r < CaCr e ||[VAGB(T

Mz Mz,

< \/gCA Cr..—m2 Era(é(7), ¢(7)),

||8tt¢ HL <Ca C'LOO<—)H2 ||A8tt¢ ||L
3
< \@ Ca Cr iz VEo(9(1), (7));

moreover, the application of Gronwall’s inequality, see (3.16) with ¢ = VA, and
the elementary relation /22 4+ y2 < x + y, valid for positive real numbers x,y > 0,
implies

[Vavm;, <3 Ivaul}, +57 [ [vaou@];, o7

< 3|[VAvl?, +3Ta/ E1s(6(7), (7)) 07,

[a0inl, < VBTl + S VE ) [ B, v
Introducing the auxiliary abbreviations

0= [ (). 000 VEG 6 o

:/0 VEL(¢(7), $(7)) \//OTE1(¢(?),¢(?))d?\/Ez(sb(T),¢(T))dT,

as well as the constant

Cy=CaACrL_p2

M max { 8v/6, - 62(00)724\/6\/T ) (3.23)
J o,
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this leads to the relation

[R(t)] < C4 (/0 VEL((7), (7)) VE2(6(7), (7)) VEL (7). 6(7)) dr

t

[Vl / VEG(), 9(n) VEL(8(), () dr

t

[V Al / VELG), 9(0) VE:(8(), () dr

+/0 Ea(6(7), (7)) \//OT Ev(o(7),9(7)) dT V E1(6(7), ¢(7)) dT

We next make use of the fundamental assumption
sup El S E / E2 dt < E2
te[0,7]

see also (3.14). Replacing the interval of integration [0,7] by [0,¢] and applying
Cauchy’s inequality, yields

R (t)g\/ / By (6(7), (7)) dF / VEG@) 90 VE @), () dr
<\/ / El<¢<%>,w<F>>dF\/ / i (6(7), (7)) dr \/ / E>(6(r), 6(r)) d

s\/i/otEl(as()w( )

together with Young’s inequality, this shows

#0)] < € (3B [ (B0 + Balotm, vt ar

L vawl, (TFl + /0 E2(¢(T),¢(T>>df)

2 VA, (E2+ / tE1<¢<T>7w<T>>dT)

+= \/7</ Ex(¢ dT—l—T/ Er(¢ )¢(T))d7)

CRi(0) + R2<t>)
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< (% IV Aol (T Ey + Fa)

+ (3198wl + 30+ 7 YB + B [ Bo)vimar
+ (31980l +VE) [ Bt v

+ [ Ba(ot0), 6() VB, 907) dr).

Under the smallness requirement

e (% VAl + \/ET) < (3.24)

the third term can be absorbed and we have

B (0(0).0(t) + 5 [ Ba(o(r).vr)ar
< @, (El(wo,ww T |[vawl,,

+/0t <1+\/W>El(¢(r),¢(7))d7'>y

VA

(3.25)

By = Oy(T, E1, Ey)

Iz

c, —
= max {04,<I>1 [V Aol + 74(TE1 + Ey),

1 1 — —
Py + Cy (5 VAo, + F(1+T) \/E1 + \/Eg)},

see (3.22) and (3.23). Combining this with estimate (3.20) for the lower-order energy
functional
1
4®0(||Avoll2, + E1)
1
< =
A([[AvollZ, + Ev)

Eo(¢(t), (1))

(510, o) + | vo]l 7

1
+ —
(|| AdolZ, + E1)

(1+F) / Ey (6(7), () dr

+1 | B v ar
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1
< —
~ A(lAYollF, + E1)

(100, o) + Core | Aol ., [ Vw0 )

1

+ —
4([[A%ollZ, + E1)

1+ ) / iy (6(r), (7)) dr

1 t
+1 | Baotn). w(rar,

see (3.15), yields

1
490([|Adholl3, + E1)

1
< | ®,+ — E ,
( ’ 4<Awo%2+E1>> 1o, vo)

Bo(0(2).v(t) + B (0(0).4(0) + § | Ea(o(). vt

Cpr
+ | & + —
( WTAbol, + Bv)

1 o t
+ (@2 + 4(||A¢0||2L2 —|-E1) (1+ E1)> /0 Ey(o(7),9(r)) dr

1 3, / VE@(7), 6(7) Er((r), (7)) dr.

HAMMM>HVA¢dh2

Altogether, we obtain the relation
t
Bo(6(0),0(8) + B (0(0).6(0) + | Baf(r). w(r))ar
< @3 (El(d)o,lﬂo) + ||V A,

+ [ (14 VEGE 60D ) Baotr). vl dr ).
D5 = B5(T, || Ao, VAo, Br. ) (3.26)
= 4max{1, ®o([|Ado|;, +E1)}

1 Cpr

x max < 1, Py + =, P2 + =
{ 4(|[A¢ollZ, + E1) 4([|Avpollz, + E1)

1Avol[,

1 1 —
Oy +-————(1+Ey)y,
4 (I1avolZ, + Ev) }
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which can be cast into the form

s <o (s | tw(r)f(f)dr>,

F(8) = Eo(6(t), () + Ea (6 / Ex(6(r), (r))dr,
§ = Bi(o,%0) + [|[VAYo|[ . w(t) =1+ VE2(e(t), 6(t));

consequently, by Gronwall’s inequality, we finally have

flt)y < @9,

b = @(T, ||A¢OHL2; HVAonLz,El,EQ) = O3 e ®3

Summary. For convenience, we summarize the previous considerations; we recall
that the constants Cy, C1, Cs, C3, Cy and the quantities &g, @1, Do, P3, P are defined
in (3.17b), (3.18a), (3.23) as well as (3.20), (3.22), (3.25)—(3.27). Under the smallness

conditions
_ C2.C i Bs(0 /_
CO F < —1127 PF L4(_) 1es < Z

1 — 1
(HA%HL +C5T? El) T o (5 ||VA¢0||L2 + \/El) < >

see (3.17b), (3.19), (3.21), (3.24), the energy estimate

(3.28a)

Eo(6(t), (1)) + Ex (¢ / Ea((r), (r))dr

(T, || Atbo|l Lo, I|VA1/J0HL27F17F2)<E1(1/)07wo) + ’|VA1/J0HL2> (3.28b)

holds for a € (0,a]; we note that the quantities Ey(vo,10) and |[|[VAy| L, only
depend on the initial data and can be chosen sufficiently small.

3.4. Existence result

The proof of the following existence result uses Schauder’s fixed point theorem and
hence does not include uniqueness; as described in Remark 3.1 below, uniqueness
can be established under stronger conditions on the initial data.

Proposition 3.1. Consider the nonlinear damped wave equation (3.1) for a €
(0,a], and impose the homogeneous Dirichlet boundary conditions (3.3) as well as
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the initial conditions (3.4). Suppose that the prescribed initial data satisfy the reg-
ularity and compatibility conditions

¢0,¢1 S H3(Q) n H&(Q)7 A¢O,A¢1,¢2 S H(])-(Q)7

assume in addition that for ||AvollL,, ||[VAYel L, and upper bounds €y,e1 > 0 on
the initial energies

], + B 0) Aw ]2, + [V, <2

19925, + 85 (00) |[VAGL |} +]|Av ], <

ol

1
the quantity

C2pC2, _ynf5(0)

M(éo,él) = ﬁ
=1

Veg + Coey

+ 2 (Jawl, + a1t +o (% |9 A, + \/e—l) (3.29)
-1

is sufficiently small, see (3.15), (3.17b), (3.18a), and (3.23) for the definition of the
arising constants. Then, there exists a weak solution

Y€ X = H([0, 7], H2(R)) N W2 ([0, T, H} () n WL ([0, T], H3 (),
H2(Q) = {x € H(Q):x € H}(2)}, H3(Q) = {x € H*(2):x, Ax € Hj(Q)},
to the associated equation
Db (t) — s — ALY M@ (t) — ) + 85" (00) A2 (o (t) — o) — Bs A((t) — tho)
+84” (00) / " AR+ (o) Pub (1) ) — )

+2B86(0)(VOrp(t) - Vap(t) — Vapy - Vihg) = 0,

obtained by integration with respect to time. This solution satisfies a priori energy
estimates of the form

Eo(W () = |3, + 857 (00) [ABw(0)|[3, + Vo).

E1W () = | Va3, + A5 (00) [|[VABw(0)|3, + | Adw (@),

(3.30)

which hold uniformly for a € (0,a]. In particular, the quantity M (Eo, E1) remains
sufficiently small to ensure uniform boundedness and hence non-degeneracy of the
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first time derivative

1 _ 3

0<a= 3 < ||1 + fs(0) 8tw||Loo([0,T],Loo(Q)) sa= bR
12 . 1

0< = =3+ o1 rmien < 5 =2

Proof. Asindicated before, our proof relies on a fixed-point argument. For suitably
chosen positive constants Eg, E1, E5 > 0 and suitably chosen initial data

Yo € HJ(Q), 1€ HY(Q), vo€ Hj(Q),

such that M (Ey, E1) is sufficiently small, we introduce the nonempty closed subset

M = {¢ € X :9(0) = 10, 0:¢(0) = 1, 04$(0) = 1,

T
sup Eo(o(t)) < By, sup E1(o(t)) < El,/o HAatth(t)HQLz dt < EQ}.

te[0,T] te[0,T
The nonlinear operator is defined by
T:M—M:¢— 1,
where 9 is the solution to
(1+ B5(0)0:0)Duurtd — B1” Aduytp + 85 (00) A2yt — B3 Ay

+ 65 (00) A% + B5(0) Ot Ouh + 2 B (o) VOutp - Vb

+206(0) Vo - VO = 0 (3.31)
that is, in (3.6b), we replace a and r by a(®) and 7(#), see also (3.8).

(i) Well-definedness. As common, existence of a solution to (3.31) is shown by
Galerkin approximation in space and weak limits based on the a priori energy
estimate (3.28) deduced before; relation (3.28) also implies uniqueness and
ensures that 7 is a self-mapping on M.

(ii) Continuity. The set M is a weak™ compact and convex subset of the Banach
space X ; thus, for ensuring existence of a fixed point of 7 from the general ver-
sion of Schauder’s fixed point theorem in locally convex topological spaces, we
have to prove weak* continuity of 7', see Ref. 10. For any sequence (¢(*)) kENsq
in M converging weakly™ to some ¢. € M, the sequence of correspondir_lg
images defined by

W =T(¢™M) e M, k€N,
is bounded in X; hence, there exists a subsequence that converges to a function
¥, € M in the following sense:
) g in X as k — oo,

_ (3.32)
Yp®) =, in X = HY([0,T),Wi(Q)) as k — oo,
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with compact embedding X — X. We apply a subsequence-subsequence argu-
ment for proving weak* convergence of 1)(¥) to T (¢,). For this purpose, we con-
sider an arbitrary weakly* convergent subsequence of (¢)(*));cn., and prove
that its limit 1, coincides with 7(¢,). Due to boundedness in X, there is a
sub-subsequence (not relabeled in the following) which converges in the sense
of (3.32); the same type of convergence can be assumed for the corresponding
subsequence of preimages (also not relabeled) (¢F))ren., to ¢.. It remains to
verify the solution property . = 7 (¢.). )

(iii) Verification of solution property. We employ convenient abbreviations for the
linear and the nonlinear terms

LOX(t) = Brex(t) — B Adx(t) + 55" (00) A2x(t) — B3 Ax(1)

t
+ B (a) /0 A2y (7)dr,

3.33
L5 = o + B Ay — B3 (00) A4 + 3 A, o

N(#(t), x(t)) = B5(0) Oux(t) 0 d(t) + 2 Bs(0) VOrx(t) - V(t),
No = —B5(0) P2 91 — 2 B6(0) V1 - Vo
the relation
LOp® 4 £8) 4 N (6™ p®) 4 Ny =0

thus corresponds to the given reformulation of the defining equation, obtained
by integration with respect to time. In order to verify that 1, is a solution to

L%, + L5 + N (e, 10.) + Ny = 0,
we consider the difference
LW =) + N (W, W) = N (s, 151
— rla) w(k) — 1) +N(¢(k) _ ¢*’¢(k)) +N(¢*,¢(k) — ).

Due to the fact that ¢(¥) > ¢, in X as k — oo, the linear contribution tends
to zero in Lo ([0,7], H=1(£2)). The first terms in the nonlinearity satisfy

Bs(0) Hattw(k)”Loo([O,T},L4(Q)) ”at(¢(k) — ¢+) L([0,77,L4(2))
+2 (o) HV@tw(k) |‘Lm([O,T],L4(Q)) |W(¢(k) - ¢*)HL2([0,T],L4(Q))
+206(0) [ VO™ =¥l 021 2acon V94l o, a0y
< Crye ((Bs(0) + 2050 |[4] |0 — 0. ¢
+206(0) [[0®) — v g |04l )
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and therefore tend to zero by the strong convergence of ¢*) and v*) in X;
for any v € Lo([0, T], L2(€2)), due to the fact that

Ore(P*F) — ) =0 in Ly([0,T], Lo(Q)) as k — oo,
Orp« v € La([0,T7, La(£2)),

we further have

T
Bs(o) /0 (Ot (W™ (1) = () [ 910 (8) 0(t)) ,, At — 0 as k — oo,

which concludes the proof. O

Remark 3.1. (i) By Morrey’s inequality, for any element in the Sobolev space
W,y ([0,T]) with p € [1,00], there exists a unique representative that is Holder
continuous with exponent v = 1 — %; in this sense, the continuous embeddings
H'Y([0,T]) — C*7([0,T]) with v € [0, 1] and WL < C%1([0,7]) hold. As a conse-
quence, the regularity

o€ H([0,T), H () N W ([0, T], Hg () N W, ([0, T], H()),
ensured by Proposition 3.1, implies
¥ € CY([0,T], H3(Q)) N CHH([0,T], Hg(2)) N C*H([0, T1, H3 (2)).

Differentiability with respect to time follows by Rademacher’s theorem, which states
that any Lipschitz-continuous function is almost everywhere differentiable; more
precisely, choosing the unique continuously differentiable representative, we have

b € CH([0,T], H()) N C2([0, T, Hy (2)) N C*([0,T], H3()).

This also explains in which sense the initial conditions are satisfied.

(ii) Our result compares with Ref. 13, where under the stronger regularity
requirements vy € H4(Q), 1 € H3(Q), ¥2 € H*(Q) and additional compatibility
conditions on the initial data existence and uniqueness of a solution

W € H3((0,00), L2(2)) N WZ((0,00), H' (2)) N H?((0,00), H*(12))
N W ((0, 00), H*(Q)) N H'((0, 00), H(2)) N Lo ((0, 00), H*(12))

to the general model is proven.

4. Limiting Systems

The transition from the Brunnhuber—Jordan—Kuznetsov equation to the Kuznetsov
and Westervelt equations permits a significant reduction of the temporal order of
differentiation from three to two, which is for instance of relevance with regard to
numerical simulations. In this section, we rigorously justify this limiting process
under a suitable compatibility condition on the initial data.
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Situation. We consider the unifying representation (3.1) including (BJK), (BCK),
(BJW), and (BCW), respectively; for the sake of clearness, we indicate the depen-
dence of the solution on the decisive parameter a > 0. We suppose that the assump-
tions of Proposition 3.1 are satisfied; note that the prescribed initial data are inde-
pendent of @ > 0 and that the fundamental smallness requirement on M (€, €;) or
M (Ey, E1), respectively, can be fulfilled uniformly for a € (0,@]. The main result of
this work, given below, ensures convergence in a weak sense towards the solution of
the Kuznetsov and Westervelt equation, respectively. In contrast to Proposition 3.1,
the canonical solution space is now

Xo = H*([0,T], H3(2)) N WZ ([0, T], Hy (2)),

that is, we employ the regularity properties

T
/ HA@ttw(“) (t)”i2 + ess sup Hvaﬁw(a) (t)HL2 < 005
0 t€[0,T7]

due to the fact that ﬂéa)(ao) — 0 as a — 04 and hence the terms

B (o0) | A (1)|3,, 85 (00) VRG],

arising in the energy estimates (3.30) vanish, the higher regularity of the solution
space X cannot be achieved.

Theorem 4.1. In the situation of Proposition 3.1, assume in addition that the
prescribed initial data satisfy the consistency condition

g — ﬂ§0) Ay — B3 Ay + B5(0) b2 1 + 2 Bs(0) Vibr - Vipg = 0. (4.1)

For any a € (0,a), let ¥(®:[0,T] — Ly(Q) denote the solution to the nonlinear
damped wave equation

Dottt (£) = B D0t () + B (00) A0 (1) = By A (1)
+ 605" (00) A (1) + Ou (% B5(@) (@ (1))* + Bo(0) [V (1) |2) =0

under homogeneous Dirichlet boundary conditions and the initial conditions

PD(0) =g, P (0) =1, IV (0) = 1o,

or of the following reformulation obtained by integration and application of (4.1)

B @ (1) — B A (8) — (B — BO) (A8 @ (1) — Aghy)
t
+ 85 (00) (A2 () — A%4g) — B A (1) + B (a0) /0 A2 (r)dr

+ B5(0) Outp V(1) 0™ (1) + 2 Bs(0) VO D (t) - V@ (t) = 0,
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respectively, see (3.1) and (3.5). Then, as a — 04, the family (¢(a))ae(0ﬁ] converges
to the solution (%) : [0, T] — La(Q) of the limiting system
O™ () — 81" A0 () — 85 ApO) (1)
+ B5(0) 0@ (8) 9 O (t) + 2 B (0) VOO (2) - VO (t) = 0, (4.2)

see (3.2); more precisely, for the solution to the associated weak formulation,
obtained by testing with v € L1([0,T], H3(2)) and performing integration-by-parts,
convergence is ensured in the following sense:

V@ 29O i Xy asa— 04,

Proof.

(i) Convergence. In the present situation, as a consequence of Proposition 3.1, a
sequence of positive numbers (ay)ren with limit zero exists such that the asso-
ciated sequence (w(“k))keN converges to a function (?) € X in the following
sense:

Pl 2p© in Xy as k — oo,
P - O in X = HY([0,T],W}(Q)) as k — .

(ii) Verification of solution property. In order to verify that (%) is a solution
to (4.2), we make use of the fact that any function ¢(**) satisfies

Llar)yplar) 4 Eéa"') + N (@) plar)y 4 NG =0,
see (3.33), and prove that the difference
L@ qpar) — £04O) L A (gplar) ghlar)y — A1) 4(0)
= (L) — £Oyplar) 4 £O) (lan) _ 40))
+N(¢(ak) _ ¢(0),¢(ak)) +N(¢(0)’¢(ak) _ ¢(0))

tends to zero in a weak sense. On the one hand, testing the reformulation of the
general model with v € L1([0,T], H}()) and employing integration-by-parts,
yields

/OT ((gak) _ L)) (g

v(t))L2 dt
T
:/0 (81 = B (VO (8) | Vo(t)) 1. = 55" (00)
X (VAR (8| To(t)) 1, )t

_ﬂéak)(ao) T ot -
e | [ 800 vuo), arat,
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which tends to zero, since

Hvaﬂb(a’”) HL(X,([O,T],L2(Q))7 V éak)(ao) HVA’(/}(C“C) HLOO([O,T],LQ(Q))7

are uniformly bounded for a; € (0,a]. On the other hand, it is seen that
T
| €00 - 60 @) o), a
0

T
- / (O™ (1) = 6O @) [0(8)) .
0 a
O (A () () — O (1) |0(1))
a 0
= B (AW (1) =0 (1) [0(t)) ) dt
tends to zero by the weak convergence in Xj. For the nonlinear part, the same
argument as given in the proof of Proposition 3.1 applies. We finally note that
convergence of the family (¢(a))ae(0,a] follows from a subsequence—subsequence

argument and uniqueness of the solutions to the Kuznetsov and Westervelt
equations. Altogether, we thus obtain

T
/o (@@ (1) [0(t)) 2, + B (VO D (1) | Vo(t)) 1,
+ B3 (VYWD () | Vo)), + (B — BV (V@ (1) — Vb | Vo(t)) 1,
— B8 (a0) (VAP (1) — VAP, | Vu(t)) 1,
T pt
(a) a
— 6 (00) / / (VAP () | Vo(t)), dr
+ B5(0) (B @ (1) @ (8) | 0(1)) 1,
+2 B5(0) (VO™ (t) - V') (t) |v(t)) , ) dt

a—04
—

T
/0 (@@ (1) |0(t)) 1, + B (VOO (1) | Vo(8)) 1,

+B5 (VO (8) | Vo) 1, + B5(0) (0O (t) 0@ () | v(t)) L,
+28s(0) (VOO (t) - VO () | v(t)) L, ) dt,

which concludes the proof. O
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Remark 4.1. Under stronger regularity and compatibility requirements on the
initial data, the solution space considered in Ref. 16 for the Kuznetsov equation is

Xo N WZ,(10,T7, La()) N H3([0,T], Hy (2)) n W ([0, T], Hp ()
N W ([0, 71, H* (%),

see Theorem 1.1 in Ref. 16 with u = Jyt); in this situation, also uniqueness of
a solution in X is proven in Ref. 16. Similar statements hold for the Westervelt
equation, see Ref. 15. For more general results on the Westervelt and Kuznetsov
equations, considered as equations in L,-spaces, we refer to Refs. 22 and 23.

Appendix A. Detailed Derivation of Most General Model

In the following, we deduce the Blackstock—Crighton-Brunnhuber—Jordan—
Kuznetsov equation (2.4) from the conservation laws for mass, momentum, and
energy as well as a heuristic equation of state relating mass density, acoustic pres-
sure, and temperature, see (2.1) and (2.2). For notational simplicity, we include
detailed calculations for the one-dimensional case; the extension to higher space
dimensions is then straightforward. In order to indicate that only terms which are
linear or quadratic with respect to the fluctuating quantities are taken into account,
we introduce a (small) positive real number ¢ > 0 and set

0=0+eo~, v=e0¥, p=potep., T=To+eT; (A1)

here, we anticipate that inserting the Helmholtz composition (2.3) into the funda-
mental relations permits a decoupling into irrotational and rotational parts. More-
over, to identify terms that are related to dissipative effects, we replace pg, pt, cv, cp
as well as A and a by

5/‘37 (S/J,, §CV7 501)7 7A7 A a,
where 0,7, A > 0 denote (small) positive real numbers that will be adjusted later on.

Fundamental relations. For convenience, we restate the fundamental equa-
tions (2.1) and (2.2) employing (A.1). In a single space dimension, the relation
reflecting conservation of mass (2.1a) reads

€ 0y0m + € 00 gt + €2 00 Opth + €2 0 D) = 0. (A.2a)

Omitting higher-order contributions, i.e. terms of the form o(e?), the relation
describing conservation of momentum (2.1b) simplifies as follows:

4
€00 0ptV) + € Opp~ — €0 (uB t3 u) -

+ g2 O¢ 0~ 8m¢ + g2 O~ 8zt¢ +2 g? 00 &ﬂﬁ amc¢ =0.
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Substracting the e 9,1 multiple of (A.2a), leads to

4
Oy (5 000 +eps —€6 <,uB + 3 ,u) Opath + €2 %((‘Lw)Q) + &2 0 0pt) = 0.
(A.2b)

Neglecting contributions of the form o(g?), we obtain the following relation reflecting
the conservation of energy (2.1c) in a single space dimension:

Cp — Cy
ed L

00 Ozx) — XA OpaT~ + 6y 00 KT~ =0. (A.2¢)

Omitting higher-order contributions, the equation of state (2.2) reduces to

A , B

A
2
Epn =€ — 00 +e° =502 +ey—=—T.. A.2d
00 203 T, ( )

Linear wave equation. Reconsidering Eqs. (A.2a)—(A.2d) and incorporating only
first-order contributions, i.e. terms of the form O(¢), yields

A
00~ + 0002200 =0,  02(00 0 +p~) =0, po = 0

Integration with respect to the space variable shows that a solution of the system

A
010~ = =00 0gz®), P~ = o O~ = —00 01,

is also a solution of the original system. The relation for the acoustic pressure
implies

2
_ 9% .
o~ == O

together with the identity A = cZ oo, this leads to a linear wave equation for the
acoustic velocity potential

att¢ — C(Q) 8mw =0.
Nonlinear damped wave equation. The above considerations explain the ansatz

Q2
sz_zoat¢+€goF

with space-time-dependent real-valued function F' determined by (A.2a). Insert-
ing this representation into (A.2a)—(A.2d), neglecting higher-order contributions,
employing the identity

1
Oatp Orp = 5 0 (00)?,
and integrating (A.2b) with respect to space, we arrive at

62 (9tF =& % 8tt¢ — & 8zz¢ + 52 % (amtw amlp + 8zz¢ 8t¢) ) (A3a)
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4 2
EQoatl/J'i‘EPN_E(;('“B‘F_'“) Ouat) + €° QO( 9z1)° _52&(@1/1)2:0»

3 2A
(A.3b)
) Cpa—VCv 00 0pa®) — X OpeT + €6 cy000: T =0, (A.3c)
B o A
000 +ep. =e? AF 4 £2 Zﬂ(&ﬂp) +57T0 (A.3d)

On the one hand, we insert (A.3d) into (A.3b), differentiate the resulting equation
with respect to time, and insert (A.3a) to obtain

4 A
€Qoatt¢—€Aamm¢—55<MB+§M> amtl/J-FEW?atva
0

B 2
e (Z - 1) 05,1 00 + 22 00 Dt Dt + <2 00 Dt O = 0

replacing the second-order contribution €2 og 0,1 9y with &2 % Oye1) Opth + 0(£2),
see (A.3a), further yields

007 AT, 4 To
€7 0T L0 G +e AO Ozat) + €6 <MB t3 M) " ot
B 00T T
e R 0 0w)? - < 0 0,00 (A4)

On the other hand, differentiating (A.3C) with respect to time, we have

) Cpa_ cv 00 Ozatt) — 0. 0pz(EXNOT) + ey 00 Or(e 6 OT-) = 0;
1%

with the help of (A.4), this yields

€ Opt) — A _a +ed i uB + é,u Orattt)
3 cvoo 00 3

1 4
+e A - (NB + = ﬂ) ammmmt¢
cv 00 00 3
A — A A
—le—+ ey M a:a:tw a wwwww
Q0 ay  cvooly 5 cv oo Qo
2B o 2, 2 2 EAB _a 2
+&? 124 Opt (0p))™ + €7 04t (0n0)) 5 A 2Acy Ozt (Op1))
B e\ a

With the special scaling

6:\/57 ’7:\/557 A:€,



FA 1

ctober 13, 2018 11:47 WSPC/103-M3AS 1850052

Fundamental models in nonlinear acoustics: Part I. Analytical comparison 2453

we arrive at the relation

1 4
€0 —e /e < ‘ + — <,UB + = M)) Opatt)
cvoo 0o 3

a 1 4
+ 62 - (NB + = ﬂ) ammmmt¢

cv 00 00 3

— (5 é + 52 \/E M A ) aa:a:tw é 8mvwww
00 ay  cvooly 0
2 B Qo 2.2 2
+e€ 8tt(8t¢) +e att( z¢) \/_ Ozt (O11)

A 24 A2A

ammt (am¢)2 =0

—&

neglecting the higher-order terms

— A
52 \/g @ v ammtwy € \/_ o

— 2
oy cyoolo A 2A Ot (0z1)7,

zzt(atw)27 52\/5 a
Cv Qo

L—a(l—i-E)
V00 A)

see Table 1, finally leads to the nonlinear damped wave equation

omitting then £ > 0 and employing the relations

1 4
_0</J/B+§/1'):VA7 A:C(Q)Qm

B B
atttw - (a <1 + Z) + VA) aa:a:tt’(/} +a ( A) vA aa:a:xxt’(/} CO wwtw

B

see also (2.4); it is remarkable that the differential operator defining the linear
contributions factorises as follows:

<at —a <1 + g) 8atz) (att - VA ammt - Cg 8zz)¢

+0u (512 20 + 0.07) =
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