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This work is concerned with the study of fundamental models from nonlinear acoustics.
In Part I, a hierarchy of nonlinear damped wave equations arising in the description
of sound propagation in thermoviscous fluids is deduced. In particular, a rigorous jus-
tification of two classical models, the Kuznetsov and Westervelt equations, retained as
limiting systems for vanishing thermal conductivity and consistent initial data, is given.
Numerical comparisons that confirm and complement the theoretical results are provided
in Part II.
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1. Introduction

Mathematical models in the form of damped wave equations naturally arise in the
field of nonlinear acoustics, when describing the propagation of sound in thermo-
viscous fluids; the examination of nonlinear models is of particular importance in|
high-intensity ultrasonics and includes various medical and industrial applications,
see Ref. 1, 3, 8, 14 and references given therein.

Classical models. A widely-used model that neglects thermal effects is the
Kuznetsov equation, see Ref.17; if additionally local nonlinear effects are disre-
garded, the Westervelt equation is obtained, see Ref. 25.

For our investigations, it is advantageous to formulate the Kuznetsov and West-
ervelt equations as abstract evolution equations for the space-time-dependent acous-
tic velocity potential v; moreover, with regard to a compact and unifying represen-

tation of the considered hierachy of nonlinear damped wave equations, we introduce
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the auxiliary abbreviations

ﬂ](_O)ZVA> ﬂ3:C(2)7
55(0):%(2(170)+%), Be(o) =0, o€{0,1},
which involve the kinematic viscosity v, the quantity A = ”73 + % given by the ratio

of the bulk and shear viscosities up and u, the speed of sound ¢y, and the parameter|
of nonlinearity %, see Table 1. Setting o = 1, the Kuznetsov equation reads as

Dub(t) — B Adwi(t) — B Ags(1)
+0,(% B5(0) (9(0)” + Bo() [Vo)*) =0, te(,7), (L)
P(0) = o,  Fpp(0) = 11 ;
the Westervelt equation is included for o = 0.
The additional assumption of a preferred direction of propagation leads to the

Khokhlov—Zabolotskaya—Kuznetsov and the viscous Burgers equations, see Ref. 6,
26; however, we do not consider these special cases here.

(1.1a)

Extended models. Nonlinear damped wave equations that incorporate thermall
effects and hence generalise the Kuznetsov and Westervelt equations are found in|
the seminal works Ref. 2, 7 and the recent contributions Ref. 5, 13.

In the present work, we readdress the derivation of these extended models from|
the fundamental conservation laws for mass, momentum, and energy as well as an|
equation of state. As common, we split the basic state variables of acoustics, the
mass density o, the vector-valued acoustic particle velocity v, the acoustic pressure p,
and the temperature T, into constant mean values and space-time-dependent fluctu-
ations; furthermore, we employ a Helmholtz decomposition of the acoustic particle
velocity and assign the irrotational part to the gradient of the acoustic velocity,
potential, see Table 1. Accordingly to Ref.2, 18, we take first- and second-order
contributions with respect to the fluctuating quantities into account; denoting

@ —a(1+B)+uvn, B (o0)=a(wA+aB +0y B (VA —a)),
By =cf, @(xa)(ao) =a(l+00Z)c}, (1.2a)

Bs(0) = % (2(1-0)+ %), Belo)=0, o0,00€{0,1},
we attain the nonlinear damped wave equation
Duxeth () — 1 A0yt (1) + B3 (00) A0, (1)

— s DO (1) + By (00) A% (1)

+0u (% B5(0) (0@ (1) + Bo(o) [V (1)]*) =0, te (0,T),
P0) = o, 9 (0) =41, Bu) (™ (0) = o

[For the sake of distinctiveness, we indicate the dependence of the solution on the|
thermal conductivity a > 0; evidently, %a) — Bio) and Béa) (00) — 0 as well ag
B (ag) = 0if @ = 0,

(1.2b)
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State variables

Mass density ¢ = 0o + 0~
Vector-valued acoustic particle velocity v = vg + v~, vo =0
Associated acoustic velocity and vector potentials v~ = Vi) +V x S
Acoustic pressure p = pg + p~
Temperature T'= Ty + T~
Physical quantities
Shear (or dynamic) viscosity p
Bulk viscosity pp
Kinematic viscosity v = gﬂ
Prandt]l number Pr
Thermal conductivity a = &=
Specific heat at constant volume cy
Specific heat at constant pressure c,
Thermal expansion coefficient ay,
_ [<pPo
Speed of sound ¢o = 4/ C";—go
Parameter of nonlinearity %
IAuxiliary abbreviations and relations
A=c3oo -
a —
cveo @ (14+ a)
_ LB
A=5F+3
(7 =a(1+5)+a
B§a>(ao) =a(wA+a % + o0 % (vA — a)) with og € {0,1}
B3 = c2
Bia)(ao) =a(l+ 00 %) c3 with oo € {0,1}
B5(0) = & (2(1—0) + &) with o € {0,1}
0
Be(c) = o with o € {0,1}
(a)
(a) _ B3 (e0) _ 1 B .
00) = 2+— =5 (VA+ (1 —00)a =) with op € {0,1
By (o0) Bia)(ffo) 2 ( ( 0) A) 0 €{0,1}
a =14 Bs(0) 8p with o € {0,1}

r = Bs5(0) (Beet)” + Bo(0) Bee | V|2 with o € {0,1}

[Table 1. Overview of fundamental state variables with decompositions into constant mean values
and space-time-dependent fluctuations, decisive physical quantities, and auxiliary abbreviations.

The most general model studied in this work is given by (1.2) with o = 1
and o9 = 1; in contrast to Ref.4 (Eq.(1.19)) and Ref.5 (Eq.(4)), it contains
the additional term a % c2 A?%, which permits to decompose the differential op-
erator comprising the linear contributions into a heat operator and a wave op-
erator. Despite this discrepancy, we refer to (1.2) with ¢ = 1 and o9 = 1
as BLACKSTOCK—CRIGHTON-BRUNNHUBER—JORDAN-KUZNETSOV EQUATION oOr
briefly as BRUNNHUBER—JORDAN—KUZNETSOV EQUATION.

Other nonlinear damped wave equations known from the literature are embed-
ded in our general model, see Table 2. The value o = 0 corresponds to Westervelt-
type equations, where local nonlinear effects are disregarded; the special choice
oo = 0 is characteristic for a monatomic gas and also referred to as Becker’s as-
umption
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Brunnhuber—Jordan-Kuznetsov (BJK) —7=% . Brunnhuber—Jordan—Westervelt (BJW)

laozo laozo

Blackstock—Crighton-Kuznetsov (BCK) —7=0, Blackstock—Crighton—Westervelt (BCW)
Jvaao_*_ laﬂ@_*_

Kuznetsov (K) -y Westervelt (W)

Table 2. Overview of the considered hierachy of nonlinear damped wave equations. The
Brunnhuber—Jordan—Kuznetsov equation is cast into the general formulation (1.2) with o = 1
and op = 1, see also Table 1. The Blackstock—Crighton—-Kuznetsov equation arises in situations,

where the quantity (vA — a) % is negligible, for instance in the description of monatomic gases; it

is embedded in (1.2) for 0 = 1 and oo = 0. In both cases, the Kuznetsov equation results as limit-
ing system for vanishing thermal conductivity a — Ot and initial data satisfying the consistency
condition (1.3). Westervelt-type equations do not take into account local nonlinear effects; this is
reflected by the absence of the term c2 |V|2 — (9y%)? and corresponds to the value o = 0.

Main result. In this work, our central aim is to rigorously justify that the
Kuznetsov and Westervelt equations (1.1) are retained as limiting systems of the
nonlinear damped wave equation (1.2) for vanishing thermal conductivity, provided
that the initial data satisfy the consistency condition

by — B Adpy — B3 Aty + B (0) 1ha thr + 2 Bs(0) Vapy - Vahy = 0. (1.3)

With regard to numerical simulations included in Part II, we henceforth con-
sider (1.1)—(1.2) on a finite time interval [0, 7], subject to homogeneous Dirichlet
boundary conditions on a bounded space domain Q C R? where d € {1,2,3};
in order to realise (1.3), we prescribe 1y as well as i1 such that 1 + B5(0) ¢ i
non-degenerate and then determine vy from the relation

by = (14 B5(0) 1)~ (B Ahy + Bs Abg — 2 Bs(0) Viby - Vi) -

Evidently, in the general model (1.2), third-order time derivatives and fourth-orden
space derivatives occur; on the contrary, for the reduced model (1.1), it is natural
to consider a closed subspace

Xo C H*([0,T], H*())
as solution space. This explains that we study the associated equation
LOPO @) + N (D (t), @ (1)) + LS + Ny =0, te(0,T),
LEX(1) = dux(t) = B DO (1) + 5" (90) A”X(1) — B3 Ax (1)

t
+ 89 (00) / A2y (r) dr |
0

N(8(t), x(t)) = B5(0) Dux(t) Qe (t) + 2 Bs (o) VOrx(t) - V(1) ,

L5 = — o + B Ay — B (00) A4 + B3 At
Nn = — BR(U) 1[)‘) w1 —2 BR(O') VUH . an

(1.4)
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which follows from (1.2) by integration with respect to time; moreover, to re-
duce the spatial regularity requirements, we test this relation with elements
in Ly ([0, 7], H'(Q2)) and perform integration-by-parts. Imposing appropriate consis-
tency conditions such that the arising boundary terms vanish, we obtain the weak
formulation

/0 (Ot (1) — iz o(1))
+ 6 / (VO (t) — Vu [Vo(t)), | dt
T
=870 [ (VAU 0) = VAU Tu(D),,
T

— s / (A (1) = Aglu(t)) ,, dt

B (o / / (VA (7)|Vo(t)), drdt
+/0 ( (w<“><),w<“<>)\ ()>L2 dt=0, wveLi([0,T], HY(Q)).

[Provided that the initial data fulfill suitable regularity and smallness assumptions,
we show existence of a weak solution

W@ e ([0, 7], B*() n W2 (0.7], B () n WA (0.7, H¥(Q) . (1.5)

see Proposition 3.1; as our proof relies on Schauder’s fixed point theorem, it does
not include uniqueness. Main tools in the derivation of Proposition 3.1 are a priori
energy estimates, combined with an auxiliary result that ensures that the first time
derivative of the solution and its inverse remain uniformly bounded. The natural
approach to test (1.2) with the second time derivative of the solution and to consider|
the lower-order energy functional

Eo (1)) = 0@ ®)||;, + 85 (00) || A0 @ ()7 + [|Va @ (8|7,

turns out to be insufficient, since higher-order space and time derivatives remain;
by introducing the higher-order energy functional

& (1) = [Vour Wl + 57 (00) [VAGL D D)7, + [ A0 W),

we attain a bound of the form

T
a a a 2
sup 50(1/)( )(t)) + sup & (w( )(t)) +/ HA@MJJ( )(t)||L2 dt<C.
te[0,7T] te[0,T] 0

Evidently, the terms in & are associated with the Bochner—Sobolev spaces

w2 ([0,T), H' (Q)), Wi([0,T],H*(Q)), Wi([0,T],H*(Q)),

and hence comprise the regularity implicated by the terms in &y; though, for the
pecification of certain constants, we found it useful to maintain & and relate
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terms. On the basis of the regularity result (1.5), we establish convergence towards
the solution of the Kuznetsov equation (1.1), that is

@ 5 ypin H2([0,T], HX(Q)) as a — 04,

see Theorem 4.1; due to the fact that ﬁéa)(ao) — 0 as a — 04, higher spatial
regularity cannot be achieved.

Methodology. As indicated before, the derivation of our main result, Theorem 4.1,
and of a fundamental auxiliary result, Proposition 3.1, relies on a priori energy|
estimates and a fixed point argument to resolve the nonlinearity. In order to keep
our approach applicable to nonlinear damped wave equations of a similar form, see|
for instance Ref.5 (Eq. (4)), we do not exploit the factorisation of the linear part
into a heat and a wave operator; a mathematical analysis for the special case of a|
monatomic gas, where such a decomposition holds as well, is found in Ref. 4. The
statement of Proposition 3.1 compares with the existence result deduced in Ref. 13;
however, in Ref. 13, a different approach based on maximal parabolic regularity ig
used and existence as well as uniqueness is established under stronger regularity
and compatibility requirements on the problem data.

Outline. Our work has the following structure. In Section 1.1, we collect basic nota-
tion concerning the underlying Lebesgue and Sobolev spaces. In Section 2, we specify,
the considered nonlinear damped wave equations arising in applications from non-
linear acoustics; this in particular includes the Brunnhuber—Jordan—Kuznetsov and
the Kuznetsov equations. For this purpose, we review physical and mathematical
principles that are relevant in the derivation of the Brunnhuber—Jordan—Kuznetsov|
equation and formally justify the Kuznetsov equation as limiting system for van-
ishing thermal conductivity and consistent initial data, see Section 2.1; additional
details on the derivation are found in Appendix A. The considered hierarchy of]
nonlinear damped wave equations is introduced in Section 2.2.

Section 3 is devoted to the derivation of a fundamental auxiliary result that en-
sures existence and non-degeneracy of a weak solution to the Brunnhuber—Jordan
Kuznetsov equation and related models, see Proposition 3.1. We begin with the
specification of convenient unifying representations of the different general and re-
duced models, see Section 3.1. In view of Theorem 4.1, we introduce a weak formu-
lation of the general nonlinear damped wave equation, obtained by integration with|
respect to time, see Section 3.2. Moreover, with regard to the fixed-point argument
employed in the proof of Proposition 3.1, we state a suitable modification of the
general nonlinear damped wave equation; by testing with certain partial derivatives
of the solution, we obtain auxiliary relations involving lower- and higher-order en-
ergy functionals. Based on these identities, we deduce a priori energy estimates, see
Section 3.3. The existence result and its proof are given in Section 3.4.

By means of the regularity provided by Proposition 3.1, it is straightforward to
derive the main result of this work in Section 4; Theorem 4.1 rigorously justifies the
Kuznetsov and Westervelt equations as limiting systems of the general nonlinear




L‘June 10, 2018 19:16 WSPC/INSTRUCTION FILE
inalVersion'M3AS KaltenbacherThalhammer

Fundamental models in nonlinear acoustics: Part 1. Analytical comparison

damped wave equation for vanishing thermal conductivity and consistent initial
data.

1.1. Basic notation

Space domain and time interval. Throughout, we consider a bounded space
domain  C R¢ with regular boundary 99 and a finite time interval [0, T], see also
Section 3.2. In Sections 2 to 4, we are primarily interested in the most relevant
three-dimensional case; however, with regard to numerical illustrations, we admit
d e {1,2,3}.

Euclidian norm. Let v = (vy,...,v4)7 € R? and w = (wy,...,wq)T € RY. As
usual, the Euclidian inner product and the associated norm are denoted by

d
v-w:Zvjwj, lv| =+vv-v.
j=1

Space derivatives. For scalar-valued and vector-valued functions

f:Q—R:z=(21,...,24)7 — f(z),
F:Q—RY:z=(11,...,20)" — F(z) = (Fy(2),..., Fa(z))",
we denote by (9, f)4_, and (9, F’C)?, w—1 their spatial derivatives. Gradient, Lapla-
cian, and divergence are defined by

d d
Vf= (00 fren o) AF=3"02F, V-F=Y 0,F.

Jj=1 Jj=1

Lebesgue and Sobolev spaces. For exponents p € [1,00] and k € N>1, we denote
by L,(€,R) and WIIf(Q, R) the standard Lebesgue and Sobolev spaces; as common,
we set H*(Q,R) = WF(,R). In particular, the Hilbert space La(Q, R) is endowed
with inner product and associated norm given by

2

(f19),, = / f@ g de, ||f],, = / (F@)?de, fige La(UR):;

accordingly, for vector-valued functions that arise in connection with the gradient,
we set

(F|G)L2:/QF(:U).G(;U) dz, |F|,, = /Q|F(x)|2dx, F,G € Ly(Q,RY).

Bochner spaces. In Sections 3 and 4, we employ reformulations of the considered
nonlinear damped wave equations as abstract evolution equations on Banach spaces;
for mappings that involve certain space and time derivatives of a function, we write

(p(t)) = F(p,t) for short, see for instance (1.4). In the derivation of auxiliary
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estimates, we use standard notation for the norms of different Bochner—Lebesgue
and Bochner—Sobolev spaces; for example, we set

= t ,
HSDHLOO([QT],LOC(Q)) etS:[OS:‘%?H‘P()||LOO

see (3.17).

2. Fundamental models

In this section, we introduce fundamental models arising in nonlinear acoustics,
the Blackstock—Crighton-Brunnhuber—Jordan-Kuznetsov or briefly Brunnhuber
Jordan-Kuznetsov (BJK) equation, the Blackstock—Crighton-Kuznetsov (BCK)
equation, the Kuznetsov (K) equation, the Blackstock—Crighton—Brunnhuber
Jordan—Westervelt of briefly Brunnhuber—Jordan—Westervelt (BJW) equation, the
Blackstock—Crighton-Westervelt (BCW) equation, and the Westervelt (W) equa-
tion; these nonlinear damped wave equations form a hierarchy in the sense that some|
of them can be viewed as special cases of others, see Table 2. In Section 2.1, we
specify the physical and mathematical principles employed in the derivation of the
Brunnhuber—Jordan—-Kuznetsov equation, which is the most general model studied
in this work and provides the basis for reduced models such as the Kuznetsov and
'Westervelt equations. In Section 2.2, we review the considered nonlinear damped
wave equations and put them into relation. Our collection of models is by no means
complete, and we refer to Ref. 12 for recent references from the active field of mod-
elling in nonlinear acoustics as well as to the classical works Ref.7, 9, 11, 17, 19,
20, 21, 24.

2.1. Derivation of Brunnhuber—Jordan—Kuznetsov equation

Notation. The following considerations are characteristic of three space dimen-
sions. In order to distinguish between vector-valued and scalar-valued quantities,
we meanwhile employ the notation & for the space variable, v for the vector-valued
acoustic particle velocity, and S for the associated vector potential.

Physical quantities. The main physical quantities for the description of sound|
propagation in thermoviscous fluids are the mass density o, the acoustic particle
velocity ¢/, the acoustic pressure p, and the temperature 1T'. These space- and time-
dependent quantities are decomposed into constant mean values and space-time-
dependent fluctuations; in the situation relevant here, the mean value of the acoustic
particle velocity may be assumed to vanish. Consequently, the relations

o(Z,t) = 0o + 0~ (Z,t), T(&,t) =Ty + U(Z,t) = U.(Z, 1),
P(fat):po +p’\’(fﬂt)7 T(fv ) :T0+T~(fﬂt)a
are obtained.

Physical principles. A system of time-dependent nonlinear partial differential

equations governing the interplay of these quantities results from the conservatio
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aws for mass, momentum, and energy, supplemented with an equation of state.
The conservation of mass is reflected by the continuity equation

oo+ V- (0o¥)=0. (2.1a)
The conservation of momentum corresponds to the relation
(o) + TV - (00)+0(T-V)T+Vp=pnAi+ (up+3p) V(V-7), (2.1b)
where 1 and pp denote the shear and bulk viscosity, respectively. The relation
describing the conservation of energy reads

0(E+T-VE) +pV-7=aAT + (up — 2 ) (V-8 + L | Ve + (V) ||,

see Eq. (3c) in Ref. 2. Here, E denotes the internal energy per unit mass and a = #-
the thermal conductivity, defined by the kinematic viscosity v = g% and the Prandtl
number Pr; the subscript F' indicates that the Frobenius norm is used. Rewriting the
left hand side of this equation by means of the specific heat at constant volume and
pressure, cy and ¢, respectively, as well as the thermal expansion coefficient ay,

the conservation of energy is given by
Q(CvatT+Cv17'VT+ %Vﬁ)
- - T2
=aAT+ (ug — 2p) (V-0 + L u||VE+ (VD) ||,

see Eq. (3¢’) in Ref. 2. The heuristic equation of state for the acoustic pressure in|

(2.1¢c)

dependence of mass density and temperature is approximated by the first terms of
a Taylor-like expansion

_ ~ B (o~\2 AT
pNNAQQT+§(%T) + A (2.2)

involving certain positive coefficients A, B, A > 0, see Eq. (5d) in Ref.2 and also
Table 1.

Helmholtz decomposition. A Helmholtz decomposition of the acoustic particle
velocity into an irrotational and a solenoidal part

To=Vi+Vx5§ (2.3)

leads to a reformulation of the conservation laws (2.1) in terms of the acoustic
velocity potential 1) and the vector potential S. We note that some authors use

instead the relation v.. = —Vi + V x S which explains a differing sign in the
resulting nonlinear damped wave equations.

Derivation of reduced models. In order to derive reduced models from (2.1)
(2.2), three categories of contributions are distinguished. First, terms that are linear
with respect to the fluctuating quantities and not related to dissipative effects are
taken into account (first-order contributions). Second, quadratic terms with respect
to fluctuations and dissipative linear terms are included (second-order contribu-
tions). All remaining terms are considered to be higher-order contributions. Due to
the fact that the conservation laws contain at least first-order space or time deriva-
tives, zero-order terms with respect to the fluctuating quantities do not play a role
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further on. This classification and the so-called substitution corollary, which allows
to replace any quantity in a second-order or higher-order term by its first-order|
approximation, was introduced by LIGHTHILL in Ref. 18 and described by BLACK-
STOCK in Ref. 2.

Linear wave equation. A natural approach for the derivation of a single higher-
order partial differential equation is to combine the equations for conservation of
mass and momentum. Subtracting the time derivative of (2.1a) from the divergence
of (2.1b) and assuming interchangeability of space and time differentiation, the term|
OV - (0¥) = V- 9,(p?) cancels

V- (17V-(917)+Q(17~V)17) +Ap— o= pAA(Y - D)

here, we set A = £E %. Retaining only the first-order contribution Ap. — 90~
and replacing (2.2) by the first-order approximation o ~ £ p.., where A = 2 0o

Cp PO
cv Qo
acoustic pressure

and ¢y = denotes the speed of sound, yields a linear wave equation for the|

Oup~ — c(Q) Ap. =0.

Nonlinear damped wave equation (Brunnhuber—Jordan—Kuznetsov
equation). If additionally all second-order contributions are taken into account
in (2.1) and (2.2), a more involved procedure for eliminating o~., p~, and T.. leads
to a nonlinear damped wave equation for the acoustic velocity potential

Opeh — (a (1+8)+ VA) Aduy +a (14 B) vAA?O) — ¢ Adyp
(2.4a)
+a (L4 5) G A%+ 0 (55 5 (90)” + IVul?) = 0;

details of the derivation are included in Appendix A. As this equation coincides
with Eq.(1.19) in Ref.4 and Eq.(4) in Ref.5, aside from the extension of the
term a c2 A%y to a (1+ %) c2 A%, we refer to it as Brunnhuber—Jordan—Kuznetsov
equation. We point out that the differential operator defining the linear contribu-
tions is given by the composition of a heat operator and a wave operator

(0 —a (14 5)A) (Guts - vA MG — § Av)
+0u (5 4 () + Vo) =0.

see also Eq. (1) in Ref.4 and Eq. (1) in Ref. 5; due to the fact that relation (2.1c)
reflecting energy conservation involves the heat operator 9; — a A, its appearance
is quite intuitive. Our analysis, however, does not exploit the fact that the general
model is factorisable and thus also applies to Eq. (1.19) in Ref. 4 and Eq. (4) in Ref. 5.
A significant discrepancy of (2.4) compared to the model obtained by BLACKSTOCK,
see Eq. (7) in Ref. 2, is the presence of the term comprising A20;1), which is essential
for proving well-posedness, see Ref. 13

(2.4D)
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Limiting model (Kuznetsov equation). In situations where temperature con-
straints are insignificant, the Kuznetsov (K) equation

Butp — VA AOyp — 2 A + at(% B (9)” + \vw) -0, (2.5)

see Ref. 17, results from (2.4) by considering the formal limit a = & — 0 (but not]
mecessarily v — 04.). More precisely, setting

F($) = Ot — vA A0 — & A + 0, (& & (00)" +VwP2),

it is evident that any solution to (2.5) satisfies F(¢) = 0 and in particular fulfills
0:F (1) = 0, which corresponds to (2.4) with a = 0; on the other hand, integration|
of the condition 9, F () = 0 with respect to time implies that any solution to (2.4)
with a = 0 solves (2.5), provided that the prescribed initial data satisfy a consistency|
condition such that F(¢(-,0)) = 0. A rigorous justification of this limiting process
is given in Section 4.

2.2. Hierarchy of nonlinear damped wave equations

'We next introduce the considered hierarchy of nonlinear damped wave equations,
see also Table 2; we distinguish equations of Kuznetsov and Westervelt type, re-
spectively.

FEquations of Kuznetsov type.

(1) For convenience, we restate the Brunnhuber—Jordan-Kuznetsov equation (2.4)
in elaborate and factorised form

Ourt — (a (14 5) +vA) A0t +a (1+ 5) vA A0, — i A
+a(l+5) G A%+ 0u (55 5 ()" + IVel?) =0,
(00— a(t+5)A) (Out — vA Adw — & Av)

+0u (2 & (0)” + Vo) =0,

(BJK)

see also Eq. (1.19) in Ref.4 and Eq. (4) in Ref. 5.

(2) In the special case of a monatomic gas, where the identity A Pr = 1 holds, or,

B

more generally, when a (APr—1) £ = (VA —a) £ is negligible, i.e. vAZ ~a B,

the contribution involving A29;v formally reduces to

a(1+B)YvA A9 ~a (vA +aB) A%

if we replace in addition the term a (1 + £) 3 A% by ac} A%y, we retain the
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(1)

Equations of Westervelt type.

factorisable reduced model
Ot = (0 (14 ) +vA) At +a (vA +0 §) A0 — A0
+ack A%+ 0u (35 B ()" + V) =0,
(at —a A) <8tt1/1 - (Z/A +a %) Aatw — Cg A’l/))

+ att(ﬁ % (8t¢)2 + |V¢‘2> =0,

which we refer to as Blackstock—Crighton—Kuznetsov equation, see also Eq. (1)
in Ref.4 and Eq. (1) in Ref. 5.
As shown in Section 4, the Kuznetsov equation

8tt¢—yAA3tw—chw+8t(%§ (0)” + |v¢\2) —0, (K)

see also Eq. (3) in Ref. 4 and Ref. 17, is obtained from (BJK) and (BCK) in the
limit @ — 04; for this reduced model, the orders of the arising space and time
derivatives are significantly lowered.

(BCK)

In certain situations, local nonlinear effects reflected by |[Vi|? — % (9y1h)? are
0
negligible and thus the nonlinearity can be replaced by

2 2
52 4 (00)" + VY ~ 5 2+ 5) (0) 5
in accordance with our derivation of the Brunnhuber—Jordan—Kuznetsov equa-

tion, we keep the term a (1 + %) c2 A%). Altogether, this yields the nonlinear
damped wave equation

O = (a (L+ 5) + vA) A0t +a (1+ 5) vA A0 — i Aoy )
BIW
+a(1+%) 63A2w+% (2+§) 3tt(8t1/1)2 :O7

which we refer to as Brunnhuber—Jordan—Westervelt equation; as in (BJK), the
linear contributions are given by the composition of a wave and a heat operator.
In analogy to (BCK), the Blackstock—Crighton—Westervelt equation

) — (a (1+8)+ VA) Adyy +a (VA +a B) A*0pp — c§ A
+ aC(Q) AZ'(/J + ﬁ (2 + %) att(atw)z =0

is retained as a reduced model from (BJW), see also Eq. (2) in Ref. 4.
The Westervelt equation is given by

Oty = vA A — G A + 75 (2+ §) 0:(0)° = 0, (W)

(BCW)

see also Eq.(4) in Ref.4 and Ref. 25; as justified in Section 4, it results ag
limiting model from (BJK) for vanishing thermal conductivity and negligible
local nonlinear effects
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3. Auxiliary results

In this section, we state unifying representations of the nonlinear damped wave
equations studied in this work. Furthermore, we deduce reformulations of the
Brunnhuber—Jordan—-Kuznetsov equation and a priori energy estimates that are
needed in Section 4.

3.1. Unifying representations

'Abbreviations. In view of a unifying representation, it is convenient to introduce
switching variables og,0 € {0,1} and abbreviations for the arising non-negative
coefficients
Bl =a(l+5)+vA>0,
ﬁéa)(ao) :a(uA—i—a%—i—Uo%(uA—a)) >0,
53:C?}>07 Z?La)(O'()):CL(].-FO'(]%)C%>O,
Bs(0) = % 20-0)+E5)>0, Bslo)=0>0;

(3.1a)

we recall that the quantities a, %, VA, c3 > 0 are strictly positive. Besides, we set

(a)
Bé“)(ao)Z%252(”/\*(1_00)@%) >0. (3.1b)
1 (00) ’

[Evidently, these definitions imply the relations
() =ZvA, B0 =% (vA+a),
BIW=a+ R)vA, BPO0)=a(A+ad),
W) =a(t+5) G, B70) =ad, (3:1c)
1

in the limit a — 04, the following values are obtained
(00) =2 vA, B =vA, 87 (00) =0, B (00) =0. (3.1d)

With regard to the statement of Proposition 3.1 and Theorem 4.1, we introduce
uniform lower and upper bounds for coefficients involving a > 0; that is, we denote

ﬁozéw\, BO(O'()):%(VA—I—(I—O'Q)E%),
élzl//\, Blzﬁ(l—kg)—kuA,
BQ(O'Q)ZE(VA+E%+JQ§(VA76)),
Byloo) <a(l+o08)cf, ac(0,a.

(3.1e)

Unifying representations. Employing a compact formulation as abstract evo-
ution equation, the Brunnhuber—Jordan—Kuznetsov equation takes the following]




ﬁ

June

10, 2018 19:16 WSPC/INSTRUCTION FILE

inalVersion'M3AS KaltenbacherThalhammer

14  Barbara Kaltenbacher, Mechthild Thalhammer

form with g =0 =1

Optp(t) — BYI) Adgip(t) + Béa) (00) A28tz/)(t) — Ps A0(1)
+ 87 (00) A% (1) + 0 (§ 85(0) (9r0(1)” + () V(1)) = 0,

see (BJK); the equations (BCK), (BJW), and (BCW) are included as special cases,
see Table 2. Moreover, the Kuznetsov and Westervelt equations rewrite as

Outo(t) — B\ Adu(t) — B3 Av(t)
+ at(% 65(0’) (atw(t))2 + 56(0) |V'l/)(t)|2> _ O,

(3.1f)

(3.2)
when setting 0 = 1 or ¢ = 0, respectively.

3.2. Reformulations

'With regard to the proof of Theorem 4.1, we next state a weak formulation of
the general nonlinear damped wave equation (3.1), obtained by integration with|
respect to time; moreover, in view of the proof of Proposition 3.1, we introduce a|
reformulation of the general equation that presupposes non-degeneracy of the first
time derivative of the solution. Accordingly, in formulas (3.3)—(3.6), we denote by )
a solution to (3.1).

Initial and boundary conditions. Throughout, we study the general nonlin-
ear damped wave equation (3.1) on a finite time interval [0,7]. When performing
integration-by-parts, we need the boundary of the space domain to be sufficiently
smooth, namely dQ € C*. In order to avoid the presence of additional bound-
ary terms in (3.9) and (3.11), we impose homogeneous Dirichlet conditions on the
following space and time derivatives of the solution

Oup(t)] 5 =0, Ad(t)|,, =0, AP(t)],, =0, (3.3a)
8ttt7r/)(t)’ag =0, Aattw(t)‘ag =0; (3.3b)
in Ref.13, due to the fact that the proofs rely on maximal parabolic regularity|

and do not employ energy estimates, the first condition in (3.3b) does not occur.
Moreover, we suppose that the initial conditions

¢(0) = /(/)O ) atw(o) = ¢1 ) 31&#/}(0) = '()[}2 ’ (34)
are fulfilled; the needed regularity, compatibility, and smallness requirements on %y,
11, and 1 are specified in Proposition 3.1.

Reformulation by integration. With regard to (3.2), assuming interchangeabil-
ity of space and time differentiation, we set

F(y(t)) = 0ut(t) — B Ad(t) — B3 A1)

(3.5a)
+ B5(a) Qb (1) Bpab(t) + 2 Be(a) Vb (t) - Vab(t) ;
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straightforward differentiation shows that its time derivative is given by

OF (1)) = Ot (t) — B Adyab () — B3 Ay (t)
+ B5(0) Ot (t) 0 (t) + Bs (o) (Oparp(t ))2
+2B6(0) VOutp(t) - Vi (t) + 2 Be(o }Vaﬂ/} ‘

and that (3.1) rewrites as

O F ((1)) = (B — B) Aduw(t) — B (00) A20(t) — B (00) A%(1).

Provided that the prescribed initial data are sufficiently regular and satisfy the
consistency condition

o — B Ay — By Aty + B5(0) 1o 1 + 2 Be(0r) Vir - Viby = 0 (3.5b)

such that F'((0)) = 0, integration with respect to time implies
F(y(1) = (8" = 81") (200 (t) - Awl)
(3.5¢)
— 85 (00) (A%4() — A%9y) — 85 (00 / A2y

Reformulation by differentiation. A reformulation of (3.1) is obtained by
straightforward differentiation of the nonlinear term; suppressing for the sake of
notational simplicity the dependence on ¢ and o € {0, 1}, we set

oft) =1 +6s(0) (1),

r(t) o) (Bt (1))” + Bo(0) D | Ve (1) | 500
= 55 ) (Bup(D)” + 2 Bs(0) 04 (VOr(2) - Vai(t)) '

= B5(0) (8“1/;(15)) +2B6(0) VOuth(t) - Vo (t) + 2 Bs(0) | VO (t |

and, as a consequence, we obtain the relation

a(t) Dt (t) — B Adb(t) + 857 (00) A20,9(t) — B3 Ay (¢)

(a) 2 (3.6b)
+ 85 (c0) A%Y(t) +r(t) = 0;
provided that non-degeneracy of «(t) is ensured, this further yields
Ounth(t) = B sty A0 (t) + AL (00) 5y A20(2) — By 5ty A (1) 60
.6¢c

+ 85" (00) 5k A%(1) + 745 7(1) = 0.

Fixed-point argument. Our approach for the derivation of a priori energy esti-
mates uses a fixed-point argument based on a suitable modification of (3.6); that
is, we consider two functions ¢ and i that satisfy the initial conditions
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and replace o and 7 in relations (3.6b) and (3.6¢c) by
a(t) = 14 B5(0) 0u9(1) ,
D (t) = B5(0) Dt (1) e d(t) + 2 B6(0) Vb (t) - V(t) (3.8)
+2B6(0) VOr(t) - VOro(t) .

First energy identity. Our starting point is (3.6b) with « and r substituted
by o(®) and r(9); testing with 0y (t) yields

(al (am¢|&w )1, = B (A0u(t)|duy (1),
+ 85" ( 0) (AQatw |att¢ ) — B3 (AZ'W ’@tdj
+ /34(1(1) (00) (A*(t)|Ouib(t )L2 (7“ (t)|Ou(t )Lz =

In order to rewrite this relation as the time derivative of a function plus additionall
terms, we apply the identity

(a(¢)( Ot (t) |att1/) ) éat \/O[(T(t)attw(t)H2
— % (Bta(¢) att’(/J |att1/) )

under assumption (3.3a), integration-by-parts implies

(A0 (1)t (1), = — VO,

(A20,() |0t (1)), = (D0(8)|AD (1)), = 3 D]| Db (t HL,

(Aa |@w’) — (Vo) Vouwe(t),, = - 3o Vo, (39
(A% (1)[0wv (1) ,, —( (0] A0uyp(t)

= o, (80wm|Av(),, - [Agu |,

As a consequence, we have

2 a
so|\Ja@® o] +6” [Vaws)|7, + ZH ol adw o),
+ 5 o|vouwl,, +5<“’<oo>8t(A6tw |Aw (1)), = 81" (00) [0 W],
( 2 (t) — 5't01 t) Opeab(t) lattdj ) 0;

by means of the abbreviation

Bo(o(0.0) = [0 oo, + £ ool

+ & IVowollz, .

the following relation results
OB (6(0). (1) + 51 || VDl (1) H;
= = B (00) 0 (A0 ()| Aw(t) ,, + B (00) | A (1)
— (r'(t) = £ 0,0 (t) A tb(D)]0uo (1)),
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ntegration with respect to time finally yields
_ t
Bo(o(),0() + 5 [ [Vouvir)[, ar
Eo(to,v0) + B5" (00) (M| Abo) | — BL” (00) (AD (1) | Ap (1)),

+B£a)(00)/ HA({)W(T)HL dr (3.10b)
;
- /t (r(r) = 3 9! (7) 0utp(7)|Outp(7)) AT
note that we 0here set
Bo(wo. o) = 3 [VIFB@ w1 ], + 2522 A}, + % [Vl .100)

Second energy identity. On the other hand, we substitute @ and r in (3.6¢)
by a(®) and r(#); by testing with Ady4(t), we obtain

(Out ] A0m0() ,, - 81 | e ttw)]
+ B4 (00) (b A0 (0| 20w (1)) 63( g D) A (1))

+5(a)( ) (W Azw(t)‘Aattw(t))LQ + (WT t ‘Aattw t)>L =0.

2

Similarly to before, we employ integration-by- parts under assumption (3.3b) and
replace the arising space and time derivatives of (¢) by

Vm = —fBs(0) W V(1) , 8ta(¢>(t) — Bs(0) W e d(t):
this yields the identities
(Db ()| ADtb (1)), = — (Vb (1) |V Otb (1)) |
Jalvawl,

(m Aow(o]adu(®), = = (VAIO|V (g Aduv()),
~ (V20®)|V o M“W))Lz
(st v,

= — (Vg [A0uu() VAGL() | (3.1

Lo

2

1
19,

2
S VAd )H 1 (o |vaawol)

:—lat

\/T)(t VA tw( )‘ L
+ 55(0) (oot [A0uw(t) VA () - Vo)

— Bl (W Oud(t) |VAOY(D)] )uz’

2

2
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as well as

2

(m Aat¢(t)‘Aattw(t)) .

:lat

2

) - % (3ta<¢) (Aaﬂp( ))

+ BSéa) ((a(¢)

\/a(‘f’)(t Aaﬂ/}( )‘ L
2
NAOIO) (qb)(t A@,ﬂ/}() Lo

:lat

2

furthermore, we make use of the relation

(s A%0(0)|A00(1)) | =~
— (V20| s Aattw(t))L2 ~ (vav)

= — (Vach | Aouu(t) VAU(W))

~—

= — 0\ | VAG(D) - VAU())
+ 85(0) (Gratye | 0wt (1) VO (1) - VAV(D))
— 85(0) (Gakayye [ud () VAGW(2) - VAG(1))

VA@wuﬂi

2

*l7ts
al®) (t)

'With the help of the abbreviation

El(fﬁ(t)alb( ) = 3 [|Vouw(t HL
L Aatw(t)Hi )

+4

(875 @) ‘vAaﬁw( ) VAY(t ) * H \/OW

e

s oo (o))

Lo

Lo

2
A (0)

(vAw(t)‘V(WAaﬁw(t))) Ly
(¢) VAatt¢( ))

_a%géﬁﬂvA@¢ﬂ~VA¢U»L

2
VAd (1)

2

2

2

Lo

(3.12)

2

(3.13a)

(D) ()
vV T
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we thus obtain

BBy (6(1), (1)) + B

—_ — 4(1(1) (0‘0) 8t (W

(1¢) ttw( )
VAd(E) - mwu))L

2

VA

Lo

(a) 1
+ 87 00) | oA
+ (s " 0[a000))

+ 85 (00) B5(0) ( oy
ﬂé‘”(ao)ﬂsw) (

(1) VA - VOs(1))

2

@y |Oud(t) [VAd (1)) )L
| ouatt) (200:1)*)

() Varo(t) - VAU(D)) |
() VA1) - VAG())

2

_ Bs 65(0) (

1
@@

+ ﬁ4a (00) B5(0) ((a<¢)(t))2
- ﬂz(la) (00) Bs(o) ((aw)l(t))z

2

2

Performing integration with respect to time, finally leads to

~ t 2
B (00).00)) + 87 ||| e ou(o)| ar
= E1(%0,%0) + B (00) (W‘Vﬁwl : VA¢0)L

9000 (shg010-92003),

2

dr

2

2
VAaﬂp(T)‘

t
(a) 1
8% [ | b

t
"‘/0 (a(rb%(-,—) T(¢)(T)’A5tt1/)(7')> L dr

t
+ 85 (00) s o) /0 (e | Adi(r) VA7) - Var6(r)) | dr

(a) t
() (00)B5(0) / (
2 o (a(¢) 7—))2

t
. 50 ’
— 2 )/0 ((aw)l(ﬂ)z Oud(r) (Ad(r)) )L2 7

t
+ 5((1)(00) Bs(0) /0 (W

(3.13b)

Oued(7) |V A3, 1( )|) dr

Ly

(7) Voro(r) - VAY(T))  dr

Lo

t
~ 812(00) 65(0) | (e |oud(r) VGG - vAG() | dr;
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similarly to before, we here set

2
v

By (0, 0) = 3 vaQHL (UO) .
: (3.13c)

‘\/1+55
g

w/1+5 () %1 1/}1‘

Lo

3.3. Energy estimates

Objective. In the following, we deduce a priori estimates for the energy functionalg

Eo(6(0),00) = § [\ a@@auv(o)|, +E522 a0},

+ 5 Vo],
()(

2 (3.14a)
Bi(¢(t),4(t) = 5 Hvatt?/J HL 7

0’0)

| Sa. VA1)

2

=

)
2

2
1
o A@tw(t)‘ )

on bounded time intervals [0, T]; we recall that a(®) = 1 4 B5(c) 9;¢ and note that
the values at the initial time are given by

(@)
Eo(v0,10) = H\/l + Bs(0) ¥ 1/12H + L 4(00) ||A1/J1H2L2
+5 HW’lHL :

(3.14b)
(1/}071/}0 Y ||V1/12HL

2
o]

2

+ % | w2l

14 8:(c)
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see (3.7). In order to keep the formulas short, we introduce auxiliary abbreviations
for the basic components

En(6(0),6(0) = |y @ auv0), .
Eoa (0(1), (1)) = || A0 )7,
Eos(0(1) (1)) = || Vo), ,
Eo(¢(t),¢(t)) = 5 Eo1(o(t),v(t)) + w En2(o(t),9(t))
& Eo3(o(t), (1)),

Ell (¢( ) ) — ||vatt’¢) HL2 (314C)
Bia(6(0).6(0) = || o= V0w .
E13(¢( _H\/W ()‘ Ly’
By (6(0),(1)) = § B (906), 9(0) + 522 Bra (900, 0(0)

+ 3 B (8(t), (1)) ;

we in particular apply the relations
Eo1(¢(t),9(t)) <2 Eo(o(t),9(1)),  Eoa(o(t),¥(t) < & Eo(¢(t),4(1))

Ell((b(t)»z/)(t)) S 2-El (¢(t)7¢(t)) ’ E13 (¢(t)7¢(t)) S é El (¢(t)7w(t)) .
(3.14d)
Moreover, we denote
Eao(6(1), v(1)) = | \/W At )\ : 1

B (1), ¥(t)) = L Ex(6(t), 0(t)) = (o(t), (1)) .

Our essential premise in the proof of Proposition 3.1 is boundedness of the energy|
functionals by positive constants Fg, E1, Fo > 0, when inserting ¢ twice

sup Eo(o(t),¢(t)) < Eo, sup Ei(¢(t),s(t)) < Eq,
te[0,T] te[0,T]

T (3.14f)
[ Ex(0(0).60) at < Eo;
0
evidently, this yields the relations
sup Eo1(¢(t),6(t)) <2Eo, sup Eos(d(t),¢(t)) < %Eov
t€[0,T] t€[0,T] (3.14g)
sup E11(¢(t),6(t)) <2E1, sup Eiz(o(t),¢(t)) < B%EL

te[0,T) t€[0,T]

'We note that ﬂéa)(ao) — 0 if @ — 04; for this reason, Fye will be related to Fis,
employing uniform boundedness of a(?) from above and below
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Basic auxiliary estimates. Considering in the first instance regular bounded spa-
tial domains Q C R3, we exploit the Poincaré-Friedrichs inequality, the continuous
embeddings H' () < Lg(Q) as well as H2(Q) < Lo (£2), and assume elliptic reg-
ularity; the application of Holder’s inequality with exponent p = 3 and conjugate

exponent p* = by = 3 also shows H'(Q) <= Lg(€2) = L4(€2), since

I = [ ars ( [ra) ([ e w) =,

To summarise, we apply the estimates

1l < CoelIV I, . f € Ho(@),
10, < Cracor (1l s ANy < Cror (1l £e HYQ),
£l < Crwemz ||fll e fEHX (),
£l < CallAfll,»  f e HAQ)NHs ()

(3.15)

in all cases, the arising constant depends on the space domain.

Gronwall’s inequality. We use that a non-negative function f : [0,7] — R>( that
solves an integral equation of the form

= f(0 2 [ d t dr,
1) = 10)+7* [ fmyar+ [ o) ar
where v > 0 and ¢ : [0,7] — R>o, satisfies the relation
t t
£ty =" f(0) + / "D g(r) dr < (f(0)+ / g(7) dT>.
0 0

Setting f(t) = [|¢(t)||7, and applying Cauchy’s inequality as well as Young’s in-
equality with weight v = %, this in particular implies

eI, = e, +2 [ @emle),, o

<[, +2 [ o), el ar -
3.16

t t
<[, ++ [ el ar+7 [ ael, or

<3 (IO, +7 [ e, ar).

Auxiliary estimates ensuring non-degeneracy. We first prove that the time-
dependent function a(?) = 1+ 35(c) ;¢ defined in (3.6) is uniformly bounded from|
below and above

0<a=3<[a?],

(1
T IAE=ISTau)

<a=3 (3.17a)
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provided that the upper bound for the higher-order energy functional on the con-
sidered time interval [0, T satisfies the smallness requirement

Co = (CACLmESHﬁs(U)) ’ (3.17b)

see also (3.1), (3.14) and (3.15); we point out that the arising constant Cy > 0 does
not depend on a > 0. With regard to the relation

1= [a@w) = 1|, | < [« @]

COEl 12a

po S1H 0@ -1,

obtained by triangular inequalities, it remains to show boundedness of ||a(%)(t) —
1)L, for any ¢ € [0, 7). By means of (3.15), we have

[ @) =1, = 85 100, < Crorr 65(0) 00
<CACL HH2ﬂ5 HAaﬁ(ZS ||L

gch%&4ﬂﬂd®HvZ@q&hm”7§7§A&¢@HM
< \/CT)\/Bs E13 \/HaW’) H
< M¢1+ @) ~1]l,._.

see also (3.14). Due to the smallness requirement Cy Ey < 12, the positive solution|
to this inequality satisfies

n<A\/[2CoE1\1+n, n*—-2CyE1n—2CyE, <0,

(T]—C0E1)2§(2+CQ )C()El, 0<77<C0E1+\/2+C()E1)00E172,

this implies the stated relation, since

L<i-[la® () -1, _| < lle® )], <1+l ) -1]|,_ <3,

and in particular ensures non-degeneracy

1 _ 2
0<3=3<

= HﬁHLw([O,T]’Lw(Q)) =2. (3.17¢)

1
a

Auxiliary estimate for nonlinearity. We next deduce an auxiliary estimate for
the nonlinearity

r(?) = B5(0) 011 ¢ + 2 B (0) VOut - Vo + 2 Bs(0) Vo - Vo,

see (3.8) and recall (3.14). The estimation of the first term uses Cauchy’s inequality|
and relation (3.15); that is, we have

Db (1) Dot H < [0, 907, < Ot [0 @3 1906(0)| [0

< G Clo [[VOu )], [VOuo(0);,

< Cpp CL4<—’H1 E11(o(t), (1)) Ev1(o(t), o(t))
<ACERC} i By By (6(2),15(2))

1~
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For the third term, we apply the same arguments and use boundedness of a(?) by

@ = 2, see (3.17), to obtain

HV@M Vo), <[vowol}, [vasol,
=< CL4<—>H1 ||V8t1/1 ||H1 HV@t(b ||H1 S CPF CL4<—>H1 HAaﬂ/’ ||L ||Aat¢ H L
< CppCl,m ||O‘(¢) ||Loo | \/WA@U’ ||L2 | \/MT Ad:(t) ||L

< C?)F Cg4<—>H1 52 Eys (¢(t)v 1/1( )) Eqs (¢( )7 (b(t))

< T By gy (6(1), (1))

For the second term, we in addition employ Gronwall’s inequality, see (3.16) with
0 = Adg; this yields

Vo) - Vou);, < [IVauwv@lly, [Vo®l,
< CL4<—>H1 ||vatt¢ ||H1 ||V¢> ||H1 < CPF CL4<—>H1 ||A8tt¢ ||L2 ||Agz5 HL2

< Ot Chcn [00us 0, (31180l +37 [ a0, ar)

<30k O || s Ao,

2 _ t 2
< (18wl +7 [ |k a0l ar)
<3Cpp Cfu—ﬂl a Eao(o(t), (1)) (HA%HZ +aT? sup FEi3(o(t), ¢(t)))
te[0,T)

9ch.Cct

> WEZ(QS(t)uw(t)) (HA’L/}OHiQ + %TQEI) )

By the elementary inequality (a1 + az + a3)? < 3 (a? + a3 + a3), valid for positive
real numbers ai, as,as > 0, the estimate

[ 1w, ar
<3 [ ()"

+4(86(0))” [|VOu(r) - Vo3, ) dr

Db (7) 3tt¢(T)H2L +4(85(0)" | Vore(r) vors(r )H L

an [t
<1208 CL4<_,H1 ((55(0))2 + Mﬁ;#) E1/ Er(o(r),9(1)) dr

54 ChpCh 1 (B (0))?
ﬂ(a>

(||A¢o||L + 5 T? El) /Ot Ey(6(7), (7)) dr

follows. In order to deduce a bound that holds uniformly for a € (0, @], we use (3.1e);
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denoting

C1=12Cpp Cf, ((55(‘7))2 + %) 7

_54CHCL | (Bo(0))? Cn_ 3 (3.18a)
2= B, o U =45,
we arrive at the auxiliary estimate
! 2
[ o, ar
0
ot
<y El/ Ey(o(7),¢(7)) dr
0
¢
+ O, (HAU)OHQLz +C3T? E1> / Es(¢(7), (7)) dr (3.18b)
0

<O, B /0 By (6(r),9(r)) dr

+40 (|| a2, +03T2E1)/0 Es(6(r), (7)) dr.

First energy estimate. Our starting point is (3.10), which we restate for conve-
nience

. t
Bo(6(6), () + 5 / By (6(r), (7)) dr
= Eo(to,v0) + B (00) (At [Ado) ;= 85 (00) (A0 (1)] Av(1))
B84 (0 / |adw(n)|2, ar

t
+ %A (8ta(¢)( att'(/} ‘att'(/J >L2 dr —/0 (r(¢)(7)‘att’(/1(7'))L2 dr,

see also (3.14). In order to suitably estimate and absorb the terms arising on the
right-hand side, we proceed as follows.

(i) By means of Cauchy’s inequality and Young’s inequality, we have

B (00) | (Avn|Av) 1, | < B1(00) [[ A |, [ Avoll,,

(a) (a)
< B2 (| A, + B2 [ Adol, -

(ii) In a similar manner, incorporating an additional weight v; > 0, we obtain

GG >\<Aatw )| di(t )Lz Sﬁi“) (00) [|80:6)], |20 )],

< 28 (o) |28 (1)]; (13“ lav()];
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@
with regard to the relation ﬂéa)(ag) = Béa)(oo) ia) (00), we set y2 = w

such that

ﬁi (U(J)’(Aatw ’A1/) )

< 0 800, + S

||L2 @(‘0 (00)

@I,

This permits to absorb the first term involving [|Ady¢(t)]|7, and explains the
definition of the energy functional

Eo(6(6),0(0)) = Eo(6(), (1)) — 229 | Ao ()2
= 1\ a@ ) a2, + Eom) o), + & (|[Vae)]?,

for the second term, we apply Gronwall’s inequality, see (3.16) with ¢ = A,
which yields

t
v, <3llavl;, 57 [ agu];, ar

(iii) Again by Cauchy’s inequality, we have
(@uv(@)*|ous(r)) < |Gt ||L4 [ERAGIE

relation (3.15) and the uniform bound X =2, see (3.17), imply

t
%/ (atOé(¢( O (T |C7tt¢ )

0

IN

Bafo) / |0t} 19us (D], dr

OB, s (@) HHlﬁow) /||V8ttw W2 H\/a(Tattqs ]
chpcgw,,lma)\f/ \/Em—Eu ¥(r)) dr
< C2n 2, ol0) B / Ev (9(r), (7)) dr.

Provided that the smallness requirement

CEpCi, L1 bBslo)  [—
PFL4E—1H’/E0 < % (3.19)

is satisfied, see (3.1e), the resulting term

dr

a)

%/0 (ata(¢( 8tt’l/) ’attw ) T < ﬁ /0 E11(¢(T),¢(T)) dr

N o

can be absorbed by the corresponding term arising on the left-hand side
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(iv) Cauchy’s inequality and Young’s inequality with weight o > 0 as well as (3.15)
yield

(T(¢)(T)|att1/’(7))L2 SH’"( ||L2||6tt1/) HL2

% Hr(@(T)Hiz Wz Hattw HL2 > 2~,2 HT(Q5 HL2 + 72 Hattl/J ||H1

\ A

2 C2
< 272 [|7(#) T)HL2 + 71)572 En(o(1),%(7)) ;
with the special choice 42 = 8" such that PF72 -8 the second term
p 72 = 3¢z, =1

arising on the right-hand side of

t
(<¢> )| Outs (7)), ’
« t
< 55 / [r @, dar + 22 [ B (o), v(r) dr
0

can be absorbed.

The above considerations imply the estimate

Eo(6(t), w(#) + 47 / En (6(), 0(r)) dr
< Eo(to,0) + 85" (00) (UO) (| Avhy HL +5(a)( )( + B(“’(U )> HA%Hi2

t
) [ 18000, ar+ G [, o

together with (3.17) providing the uniform bound @ = 2 and (3.18), this yields

+ 87 (00) (14 54

a t
Bo((t), (1)) + 22 / Buy (6(r), (r)) dr
< Eo(tho, o) + s (UO)*El(%,% ) + B4 Cfo)( B<a>(g )H ¢0HL2

28" (00) (4 ey, [k d
+ B3 ( + B(")( )) ot 8" 0 )) "
+ 1% (Jawol}, + T ) [ Balor)v) ar

< Eo(to,v0) + %;(;0) Ex (o, %0) + B5") (00) (% + ﬁ<a> ) 1A 1/’0||L2

38{") (o0) czon =\ [
o (225 (14 ) + B ) [ et i) ar

, L t
15 (ol + 1B [ Bt v00) .

Employing again (3.15) and (3.17), we obtain Ey (1o, ¢o) < 4 C3rE1(10,0); with
the help of the bounds collected in (3.1e), which hold uniformly for a € (0,al, we
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finally arrive at the relation
Eo(¢(t), (1))
t
< ® (E1(¢0,1/)0) + HA%HZ + (1+ E) /0 E1(p(7), (7)) dr

+(lawlly, + B [ Bafotr. o) ar ). o0
By = o (T)

33 (o 3B.(o ci.C
= e {4Chy + 20 Bl (5 + ) 20 (14 4F) B

4CppCa CECQ max {1, Cs TQ}} ,

see also (3.18a). Due to the appearance of Ey (¢(t),¥(t)) and E(¢(7),%(7)) on the
right-hand side, further considerations are needed.

Second energy estimate. In order to deduce a suitable a priori estimate for the
higher-order energy functional, our starting point is

Bu(6(0), (1)) + /0 By (6(r), () dr

= Ex(Yo, %o) + B1(00) (G| VA% - Vo)

— 3(00) (s [VAG(H) - TAG())

+ B (00) / Eua(6(r), (7)) dr

2

2

. /Ot (ﬁm () (T)‘Aatt'@[](T))L? dr + R(t),

where we employ the convenient abbreviation
(a) '
R(t) = B3 (00)55(0')/0 (W
_ B (00)B5(0) / (
2 0 (a<¢) ()2
BsBs(a) ' 2
I /0 (e |20 () (800())°), ar
(a) '
a
48 (00) 350) [ (et
0
(a) '
— B4 (00)55(0)/0 (m

see also (3.13); similar arguments to before permit to estimate and absorb the arising]
terms

Ayt (1) VAS(7) - vatgz)(f))L dr

2

Oud(r) [VAO(T))  dr

(r) Vorg(r) - VAY(r)) dr

Lo

B () VAI Y (T) - vmp(T))L ar

2
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(i) The application of Cauchy’s inequality, Young’s inequality with

42 = B (00) _ B (00)
1 28{" (00) 2 ’

and the uniform bound 1 = 2, see (3.17), yields

B1(00) | (b [V A - Vo), |
< 890 H\/#VAW’ . \/ﬁvmﬁo\ .
< vlﬁi‘”(ao ’\/aw(o) A¢1’22 + 551 )<Uo> ‘\/aw VAdJo‘;
< 220 By (o, o) + 2y 1|V Ay,
< E1(vo, tho) + zﬂig)(fs; HVAQ/JOHL2 :

(ii) Using in addition Gronwall’s inequality, see (3.16) with ¢ = VA, and the

uniform bound @ = 32

5, see again (3.17), we obtain

() (00) | (e | VAG(0) - VAU(WD) |
< 87 (00) || s VA1) |, || S VA
< W | vagu) + 22 |t vave),
< B2 o (p(0), (1)) + S L VA,

82000) B, ((t), (1))

(@) (o 2 ' 2
s (19wl +7 [ 193000, o0

IN

IN

20 By (6(0), 0(0))

(@) (4 '
s (198w, +a7 [ Puaotr). ) ar)

(a) .
< 2000 By ((t), (1))
85 (o 2 B (o
* (65(%&)(7‘7(0;))2 HVAwOHLg (S;('l)(( ;)))2 / E12 )) dr
(a) .
< B70) By (6(t), (1))
t
+ 6;%;)((‘70) HV wOH[Q (5(()'1)3(7?’0))271/0 El (¢(7‘)71/)(7-)) dT;

this shows that the first term on the right-hand side can be absorbed to yield
Ey (¢(t), (1)) on the left hand side, which explains the definition of the energy
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functional

Ey (6(t), (1)) = By (6(t), (1)) — 2200 By, (o(t), (1))

iii) Recalling once more the abbreviation B(a) - Z (70) the bound
~ B{Y(00)’

B e) [ Bua(o(r).v(m) dr < st [ (o0, 0() ar

is obvious.
(iv) By Cauchy’s inequality, Young’s inequality with weight v3 = ﬂi“), and the
upper bound =+ = 2, we have

Q1=

t
[/ (b O a0,

IA

dr

2

Lo

WA&M/J( )‘ I
t 2 2 ?

o ) 2 ===

2+% /o H\/Wr (T)’LQ a7+ /0 H\/WA@W(T)‘LQ ar
t b

55“)/0 ||7ﬂ(¢)(7)HQL2 d7+%/0 Ba(¢(1),4(7)) dr;

together with estimate (3.18) for the nonlinearity, this implies

t
1@
/0 H NN (7)‘

IA

t
/ (a(¢)(T |A3tt1/) )) dr

0
< o B /0 Er(6(7), (7)) dr

+ (1 + ,3<a) (HA%HL +C3T? El)) /Ot EQ(¢(T)’¢(T)) dr.

Under the additional smallness requirement
C 2 25 1
& (lawol;, + CsT2Br) < £, (3.21)
we obtain the relation
t
/0 (a(d’%(q’) r(®) (7')|A3tt¢(7'))L2 dr

< L5 [ B0m).0) dr+ [ Bafo(r). () ars

thus, the second term involving EQ can be absorbed into the left hand side
and yields the integral over Fs
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'As an intermediate result, we attain a bound of the form

By (6(8), (1)) + / Ex(¢(), () dr

<d (El(l/JoM/Jo) + HVAwOHiQ +/ E1(¢(7), (7)) dT) +|R(t) (3.22)

(Dl = (Dl(T,El) = max{l,igﬁ“ﬁ(ao) 5 IBQ T+ B + ClEl}
o

The remaining terms are estimated with the help of Cauchy’s inequality and (3.15),
that is, we use that a product of functions satisfies the relation

(@) ea(n)es(n)) | < o1 22, s,

< sl e, les(r ||L2§CL e [[e1 @)l o2, les™l
< Ca Crconz |81 ()], 2, s (D],

IAs a consequence, by (3.14), inserting again é = 2, we obtain
|R(1)]

< 28" (00) B5(0 / \/E20 \/E12 7)) |[|[Vorg(r HL dr

+ B (00) 5 (0) /0 97|, Erz((r), (7)) dr

+ B3 55(0)/0 H8tt¢(7->HLm Eq3(p(7), (7)) dr

t
+2v2 8 (00) Bs(0) / VE20(6(r), (1) [Voue()||,_ [VAY(r)||,, dr
+2v3 5 (00) Bslo /yanqb W, Bz (o), 0(0) [Vaw)],, dr.

Recalling the upper bound @ = %, we employ the estimates

[Vor(7)||,_ < CaClL.com HVA@tqb

<\/>CACL e\ B (o(1),6(7))

Hatt(b HL < CA C'L < H? HAatt(b T)HL2

< \/>C'A Cr. . \/m7

moreover, the application of Gronwall’s inequality, see (3.16) with ¢ = VA, and
the elementary relation /a2 4+ y? < x +y, valid for positive real numbers z,y > 0

Mz,
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implies

[Vavel;, <svanli, +37 [ VAo, o7

<3 [|vavll?, +37a [ Bu(o().v() o7,
0

HVA?NT)HLQ < \/§HVA¢0HL2 + % \/T\//o E12(o(7),0(7)) d7.
Introducing the auxiliary abbreviations

Ri(t) = / By (6(7), (7)) y/Ba(6(r), 6(r)) dr,

0
Ry(t) = t By (6(1), (7)) B (¢(7),0(7)) AT/ B2 (o(7), (7)) dT,
0 0

as well as the constant

_ Bs(a) 24+/B3(00) 246
Ci = Ca Op oz 2422 max{&/é,ivgoz 200 \/T} (3.23)

this leads to the relation
[R(t)| < Cy
< ([ VB0 B0 00) B (00 0(0) o
+[[vayo|,, /0 t VE2(6(r).9(r) \/E1 (6(r). 6(r)) dr

98], [ VEGE.00) B0, 01) ar

+A \ E2(6(7), (7)) \//OTEl(czﬁ(?)ﬂ/)(?)) A7/ E1(¢(7), ¢(7)) dr

+Ry(t) + Rg(t)) .

'We next make use of the fundamental assumption

T
sup E1(o(t), ¢(t)) < Eq, /0 Ey(o(t),6(t)) dt < Es,

t€[0,T]

see also (3.14). Replacing the interval of integration [0, 7] by [0.4] and applyin
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Cauchy’s inequality, yields

Rg<t>s¢ / By (6(7), (7)) d7 / VEL(B(r). () /B2 (6(r). 6(r)) dr

<¢ / By (6(7), (7)) dﬁ / 1 (6(r), (7)) dT\/ / By (6(r), 6(r)) dr
< /B / By (¢(r), (7)) dr;

together with Young’s inequality, this shows

|R(®)] < Ci
) <; VE [ (B 00) + Ealotnvi) ) ar
e 3 198ul, (15 + [ Ba(otr)vio) o)
11V, (E2 " /Ot By (6(r), (7)) dT)
L1 \/El(/ot Ex(6(r), (7)) dr + T/Ot Ey((), (7)) dT)

+ Ri(t) + R2(t)>

<Cy

y (; [VAw|, (TF +E)

+ (219wl + 30+ DVE 4B [ B6).00r) a0
+(3Ivavll, +VE) [ B0
[ Eote o) Eafot o) ).

[Under the smallness requirement

Cu(3vas|,, +\/E) <1, (320
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the third term can be absorbed and we have

By (6(8), 6(8) + 1 / By (6(r), (7)) dr
< @ ( Eio. o) + [V,

# [ (14 BGDa@) BEe.ee) a). e

®2 = @Q(Tv ||VAQZJO||L27E17E2)

= maX{C’4,<I>1 ||VA1,Z)0||L2 + % (TEl +E2) ;

@+ (§[Vaw]l,, + 21+ 1)VE + B}

see (3.22) and (3.23). Combining this with estimate (3.20) for the lower-order energy|
functional

1%, (IIAwtl\%z+E1) Eo(¢(t), (1))

2
= Wm (E1(¢071/J0) + ’|A¢o||L2)

+ a4 +El)/0 By (¢(7),¢(7)) dr+i/0 By (¢(r), () dr

S TawIE, T (El(%’%) + Cpr || Athol| HVMJOHLQ)

+ it (4 B) [ Bl o) ar+ k[ Bao(),u) ar,

see (3.15), yields

t
1%, (HAJ(JH%#E) Eo(9(2), (1)) + Br(6(0), (1)) + 5 /0 Ea(0(r),9(r) dr
< (@2 + m) E1(vpo,v0)
+ (‘I’Q + W% HA7/10||L2) HVAwOHLQ

+ (024 sy 0+ B) [ Balem.vm) ar

+0, [ \Ba(0().0(7) B (6(7).01r)
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'Altogether, we obtain the relation
Bo(¢(t),9(t)) + Er(o(t), (1)) + /0 By (¢(7),4(r)) dr

< P <E1('l/10a¢0) + ||VA1Z}O||L2

+ [ (14 /Balo0)000)) Ea(ot).0i) ).
25 = 95(T, | o], [ V500l B, )
=4 max{l,@o (||A1/Jo||22 +F1)}

-1 __ Cpr
X max{1,¢’2 + T(1AwolZ, +5) , ®o + 1([Avol2, +B1) ||A¢O||L2 )

(3.26)

1 1 il
®2 43 (IAol3,+E1) (1 +E1)}’

which can be cast into the form

J(t) < @ (5 + / w(r) () dr> ,
F0) = Eo(6(0),0(0) + B1 (6(0),6(0) + [ Ea(o(r),0(7) ar

6 = E1(Yo,%0) + HVA%HL2 ;o w(t) =14 /Ex(o(t), (1)) ;

consequently, by Gronwall’s inequality, we finally have

f(t) < @0,

w:Tm/f\/E»g, /tw(T)dfgw, (3.27)
0

® = O(T, || Aol L, |WA¢0||L2751,F2) = Py~ Ps

Summary. For convenience, we summarise the previous considerations; we recall
that the constants Cy, Cy, Ca, Cs3, Cy and the quantities &g, 1, P2, P3, P are defined
n (3.17b), (3.18a), (3.23) as well as (3.20), (3.22), (3.25), (3.26), (3.27). Under the

smallness conditions

- CEpC Bs (o
CoBrs gy, Tluen®O.[5 <)

G (Jawls, s B <1, (3 Ivanl,, f )<}
see (3.17b), (3.19), (3.21), (3.24), the energy estimate

Eaf0(0),6(0) + Er(6(0,0(0)) + [ Ba(o(r). v(r) dr s

< O(T, || Aol L, HVA¢0||L27F1,E2) (El(%ﬂ/)o) + HVA%HLz)

holds for a € (0,a]; we note that the quantities Fj(to, o) and ||VAyl L, only
depend on the initial data and can be chosen sufficiently small

(3.284)
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3.4. Existence result

The proof of the following existence result uses Schauder’s fixed point theorem and
hence does not include uniqueness; as described in Remark 3.1 below, uniqueness
can be established under stronger conditions on the initial data.

Proposition 3.1. Consider the nonlinear damped wave equation (3.1) for a €
(0,a], and impose the homogeneous Dirichlet boundary conditions (3.3) as well as
the initial conditions (3.4). Suppose that the prescribed initial data satisfy the reg-
ularity and compatibility conditions

1/}0”1)[}1 GHB(Q)mHé(Q)7 A¢07A1/11»¢2 GH(%(Q)v

assume in addition that for |Avo||L,, |VAYe|L, and upper bounds €y, > 0 on
the initial energies
022, + 85 (00) [ All7, + Ve, <o
IVe2]ly, + B (00) IV A, + [ Aval7, <71,
the quantity
C2,C?

: Bs(
L4E > L 5( f + CO e
5 (3.29)

+ 5 (|avol, + CaT?e ) + Cu (3 [VAW],, + Ver)

M (e, 1) =

is sufficiently small, see (3.15), (3.17b), (3.18a), and (3.23) for the definition of the
arising constants. Then, there exists a weak solution

b e X = H2((0,7), H2()) N W2 (0, 7), H(9)) n W (0.T], B3 (@)
HZ(Q)={xe H*(Q):x € Hy()}, HI(Q)={xeH(Q):x,Axe Hy(D)},
to the associated equation
Outp(t) — o — (a) A(yp(t) — ) + /Béa) (00) A% (1(t) — o) — Bs A(1(t) — o)
#89ou) [ A%0(r) dr (o) (0 () D) — v )
+286(0) (VOu(t) - Vi(t) — Vb - Vihg) = 0,

obtained by integration with respect to time. This solution satisfies a priori energ
estimates of the form

Eo((0)) = [|0uw(®)], + 65 (00) |80 (1), + VO,

51( ) - Hvattw HL2 +ﬁ2 70) HVAatw t Hi + HAatw(t)HiQ’ (3.30)

sup & (v(t)) < Eo, sup &(¥(t) <Eq, / | A (t ||L dt < Es,

+elo. T +el0. T
|3 T T T
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which hold uniformly for a € (0,a|. In particular, the quantity M (Eo, E1) remains
sufficiently small to ensure uniform boundedness and hence non-degeneracy of the
first time derivative

0<a=35<|1+8) 0¥, 011 @) <

=2 < |1+ Bs(0) Au

3
2

Ql
I

)

0< =2.

IN

Q1=

-1
) HLOO([O,T],LOO(Q))

Rl

Proof. Asindicated before, our proof relies on a fixed-point argument. For suitably|
chosen positive constants Eg, E1, E5 > 0 and suitably chosen inital data

o € HI(Q), 1 € HY(Q), 12 € HY(Q),

such that M (Ey, E1) is sufficiently small, we introduce the nonempty closed subset

M= {¢> € X : 6(0) = 1o i (0) = 1, D (0) =

T
sup 50 (¢(t)) S EQ , Sup 81 ((b(t)) S El ,/ ||A6tt¢(t)||2Lz dt S EQ} .
t€[0,T) t€[0,T) 0

The nonlinear operator is defined by
T M—M:pr—1,
where % is the solution to
(1+ Bs(0) 0:9) D) — ﬂa) Adytp + 550 (00) A%0y%p — B3 Adw
+ B (00) A% + B5(0) Db e + 2 Bs(0) V) - Vb (3.31)
+2B6(0) VO - VOep = 0
that is, in (3.6b), we replace a and r by a(?) and r(%), see also (3.8).

(i) Well-definedness. As common, existence of a solution to (3.31) is shown by
Galerkin approximation in space and weak limits based on the a priori energy
estimate (3.28) deduced before; relation (3.28) also implies uniqueness and
ensures that 7 is a self-mapping on M.

(ii) Continuity. The set M is a weak* compact and convex subset of the Banach
space X; thus, for ensuring existence of a fixed point of 7 from the general ver-
sion of Schauder’s fixed point theorem in locally convex topological spaces, we
have to prove weak* continuity of 7T, see Ref. 10. For any sequence (¢(k))k€N>o
in M converging weakly* to some ¢, € M, the sequence of corresponding im-
ages defined by

Pp®) =T (p®) e M, k€N,
is bounded in X; hence, there exists a subsequence that converges to a func-
tion ¢, € M in the following sense
w(k) S, in X as k — 00,

- (3.32)
w®) 5y in X = ([0, T, WHQ)) as k — oo




£

June

10, 2018 19:16 WSPC/INSTRUCTION FILE

inalVersion’ M3AS KaltenbacherThalhammer

B8 Barbara Kaltenbacher, Mechthild Thalhammer

with compact embedding X — X. We apply a subsequence-subsequence ar-
gument for proving weak* convergence of ¥*) to T(¢,). For this purpose,
we consider an arbitrary weakly* convergent subsequence of (1)*))zcn., and
prove that its limit 1, concides with 7 (¢,). Due to boundedness in X: there
is a sub-subsequence (not relabeled in the following) which converges in the
sense of (3.32); the same type of convergence can be assumed for the corre-
sponding subsequence of preimages (also not relabeled) ((b(k)) kENso tO0 Py It
remains to verify the solution property . = T (¢.). -
(iil) Verification of solution property. We employ convenient abbreviations for the
linear and the nonlinear terms

LOx(t) = Bux(t) — B Adpx(t) + 55" (00) A2 (1) — B3 Ax(1)
t
(a) o A2y (1) dr
A7) [ A ar.

L = —py + B Adpy — B (50) A2 + Bs Aty
N ((t), x(t)) = Bs(0) Qe x(t) D b(t) + 2 B () VIx(t) - Vo (2),
No = = Bs(0) a1 — 2 Bs(0) Vi1 - Vo ;

the relation

(3.33)

LOp® £ 1 N (¢®) p®) 4 N =0

thus corresponds to the given reformulation of the defining equation, obtained|
by integration with respect to time. In order to verify that v, is a solution to

E(a)w* + »Cga) +N(¢*;w*) +N0 == 0,

we consider the difference

L") — 1) + N (¢®) p®)) — N (¢, 14)
— r(a) (w(k) _ w*) _|_N(¢(k) _ ¢*7¢(k)) +N(¢*7¢(’€) _ ¢*) )

Due to the fact that ¢*) = ¢, in X as k — oo, the linear contribution tends
to zero in Lo ([0, 7], H~1(£2)). The first terms in the nonlinearity satisfy

) Hattw(k)HLoo([o T],L4(2)) Hat (¢(k) - ¢*) ()
+2Gs(0 Hvatw(k)||LN([0,T],L4(Q)) IV (8™ = o) 1, o 71, Lac)
+2 Bs(0) || VO, (™) — ¢*)||L2(0T] La() HV%HL ([0.T],L4(2))
< Crocm ((B5(0) +286(0)) [ |6
+25(0) [ = |5 [oell )

and therefore tend to zero by the strong convergence of ¢*) and ¥(*) in X ]
for any v € Ly([0,T], L2(€2)), due to the fact that

A (™ — ) = 0'in Ly ([0, 7], La(2)) as k — oo,

X

o v € L‘)([O T] L‘)(Q))
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we further have
T
B5(0) /0 (0 (090 = 4.0 |00 )09, b = 025 k= o0,

which concludes the proof. e

Remark 3.1. (i) By Morrey’s inequality, for any element in the Sobolev|
space W;([O, T]) with p € [1, 00], there exists a unique representative that is Holder
continuous with exponent v = 1 — %; in this sense, the continuous embeddings
H'([0,T]) < C®7([0,T]) with v € [0, 3] and W2 < C%'([0,T7]) hold. As a conse-
quence, the regularity

¢ e H?([0,T], H2(Q)) N W2, ([0,T7, Hy () N Wi ([0, T], H3()),
ensured by Proposition 3.1, implies

¥ € CH([0,7], HZ(Q)) N €M ([0,T), Hy () n €™ ([0, T], H3 () -
Differentiability with respect to time follows by Rademacher’s theorem, which states

that any Lipschitz-continuous function is almost everywhere differentiable; more
precisely, choosing the unique continuously differentiable representative, we have

¢ e CH([0,T], H2(Q)) N C?([0,T), Hy () N C*([0,T], H2 () .

This also explains in which sense the initial conditions are satisfied.

(ii) Our result compares with Ref. 13, where under the stronger regularity re-
quirements vy € H*(Q), ¢y € H3(Q), 1o € H?(Q) and additional compatibility
conditions on the initial data existence and uniqueness of a solution

¥ € H?((0,00), La(22)) N W2, ((0,00), H'(22)) N H*((0,00), H*(2))
NW ((0,00), H*(Q)) N H"((0,00), H*(2)) N Lo ((0, 00), H*(2))

to the general model is proven.

4. Limiting systems

The transition from the Brunnhuber—Jordan—Kuznetsov equation to the Kuznetsovi
and Westervelt equations permits a significant reduction of the temporal order of
differentiation from three to two, which is for instance of relevance with regard to
numerical simulations. In this section, we rigorously justify this limiting process
under a suitable compatibility condition on the initial data.

Situation. We consider the unifying representation (3.1) including (BJK), (BCK),
(BJW), and (BCW), respectively; for the sake of clearness, we indicate the depen-
dence of the solution on the decisive parameter a > 0. We suppose that the as-
sumptions of Proposition 3.1 are satisfied; note that the prescribed initial data are
independent of a > 0 and that the fundamental smallness requirement on M (ey, ;)
or M (Ey, E1), respectively, can be fulfilled uniformly for a € (0,@]. The main result]

of this work, given below, ensures convergence in a weak sense towards the solutio
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of the Kuznetsov and Westervelt equation, respectively. In contrast to Proposi-
tion 3.1, the canonical solution space is now

XO = H2 ([07 T]v HE(Q)) N WO20 ([07 T]v H(} (Q)) )
that is, we employ the regularity properties

T
/ 1800 )2 + ess sup [[VOp@ (1)), < oo;
0 t€[0,T]

s

due to the fact that ,Béa) (00) = 0 as @ — 04 and hence the terms

éa) (00) HA@HP ||L2 52(1) (00) || VA (t HL

arising in the energy estimates (3.30) vanish, the higher regularity of the solution
space X can not be achieved.

Theorem 4.1. In the situation of Proposition 3.1, assume in addition that thd
iprescribed initial data satisfy the consistency condition

by — B Adpy — B3 Aty + B5(0) 1ha thr + 2 Bs(0) Vapy - Vahy = 0. (4.1)

For any a € (0,a], let (@ : [0,T] — Ly(Q) denote the solution to the nonlinea
damped wave equation

Druath () = B A0 (1) + 5" (00) A0, (8) — B3 MO (1)
+ 81 (00) A2 (1) + 00 (5 B5(0) (00 (1) + Bo() [V (8)]*) = 0
under homogeneous Dirichlet boundary conditions and the initial conditions
W) =, YD) =91, 9 (0) =2,

or of the following reformulation obtained by integration and application of (4.1)
Dt (t) = B A0 (1) — (B — BL”) (A0 (1) — Avyy)
B8 (00) (AP (1) — A%o) — 8 A (1) + B (o / A2 (7)

+ B5(0) 0uh(@ () b (@ (t) + 2 B (o) VO (t) - V() (1) = 0,

respectively, see (3.1) and (3.5). Then, as a — 04, the family (w(a))ae(o.ﬁ] converges
to the solution (©) : [0,T] — Lo(Y) of the limiting system

B O () — B ADp O () — B3 A (1)
+ B5(0) 9O (1) O (t) + 2 B (o) VOV (t) - VO () = 0,

see (3.2); more precisely, for the solution to the associated weak formulation, ob-
tained by testing with v € L1([0,T], H} () and performing integration-by-parts,
convergence is ensured in the following sense

(4.2)

0@ 5 O in Xy as a— 04
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roof.

(i) Convergence. In the present situation, as a consequence of Proposition 3.1, &

(ii) Verification of solution property. In order to verify that ¥ is a solution|

sequence of positive numbers (ax)ren with limit zero exists such that the asso-
ciated sequence (w(“k))keN converges to a function 1(*) € X, in the following
sense

) 200 in X as k — oo,

@) 5 (0 iy X — Hl([O,T], W41(Q)) as k — 00.

to (4.2), we make use of the fact that any function (@) satisfies
Llarpla) 4 g 4 A (@) @) 4 Ny =0,
see (3.33), and prove that the difference
L) qpar) _ £(0)4,(0) +N(¢(ak),¢(ak)> _N(¢(0)7¢(0))
— (ﬁ(ak) — 5(0)) Pplaw) 4 20 (w(ak) — 1/,(0))
_|_j\/‘(¢(ak) _ 1/}(0)7¢(ak)) +N(¢(0)7¢(ak) _ 1/,(0))

tends to zero in a weak sense. On the one hand, testing the reformulation of the
general model with v € L1([0,7], H}(Q2)) and employing integration-by-parts,
yields

[ (e - coyueropi), a

0 Lz

- [ (6 - 50 (wave v,

— B (00) (VA (1) Vo (b)) ., ) dt

T t
By (a0) (ar)
- Bgak)(a_o) 0 0 (VAQ/} * (T)|V'U(t))L2 dT dt?

which tends to zero, since

1908, oy VI (00 VAV, o

are uniformly bounded for a; € (0,a]. On the other hand, it is seen that

/OT (5(0) (w(ak)(t) —© ) ‘U@)) dq

Ls
- [ ((0etw 0 -0 w) o),
=8 (80 (1) = ) [u(1)

Lo

~ s (AW O wO@) o), ) a
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tends to zero by the weak convergence in Xy. For the nonlinear part, the
same argument as given in the proof of Proposition 3.1 applies. We finally
note that convergence of the family (¢(a))ae(0,a] follows from a subsequence-
subsequence argument and uniqueness of the solutions to the Kuznetsov and
Westervelt equations. Altogether, we thus obtain

/oT (Ouv @), + B (Ta (1) Vo(t)
+ B3 (v¢(“)(t)]Vv(t))L2
+ (81 = B0 (VO (t) — Vi |Vo(t)
— B89 (00) (VAP (1) — VAY|Vo(t))

_ @Ea) (UO)/O /0 (VA?Z)(‘I) (T)|Vv(t))L2 dr
+ Bs(0) (atﬂ/J(a) (t) 6t¢(a) (t) |U(t))L2
+2 B5(0) (VO () - Vo (0)]o(1)) ,, ) at

a0y [T (0) (0) (0)

=0 / (@@ @]o®) ,, + 62 (Vo (1) Ve(r))
+ 85 (VO (1) [V (t))
+ B5(0) (0 (£) 9 O (1) |v (1)) L
+265(0) (VOO (1) - VOO W)]e(t) ) dt

which concludes the proof. te

Remark 4.1. Under stronger regularity and compatibility requirements on the
initial data, the solution space considered in Ref. 16 for the Kuznetsov equation is

Xo MWL ([0,T], La(€2)) N H?([0,T], Hy () N WZ ([0, T), Hy (2))
NWL([0,T], H*(Q)),

see Theorem 1.1 in Ref.16 with u = 0;%; in this situation, also uniqueness of]
a solution in Xy is proven in Ref.16. Similar statements hold for the Westervelt
equation, see Ref.15. For more general results on the Westervelt and Kuznetsov,
equations, considered as equations in L,-spaces, we refer to Ref. 22, 23.
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Appendix A. Detailed derivation of most general model

In the following, we deduce the Blackstock—Crighton—Brunnhuber—Jordan—
Kuznetsov equation (2.4) from the conservation laws for mass, momentum, and
energy as well as a heuristic equation of state relating mass density, acoustic pres-
sure, and temperature, see (2.1) and (2.2). For notational simplicity, we include
detailed calculations for the one-dimensional case; the extension to higher space
dimensions is then straightforward. In order to indicate that only terms which are
linear or quadratic with respect to the fluctuating quantities are taken into account,
we introduce a (small) positive real number £ > 0 and set

0=00+c0~, V=600, p=pot+ep~, T=Top+eT.; (A1)

here, we anticipate that inserting the Helmholtz composition (2.3) into the funda-
mental relations permits a decoupling into irrotational and rotational parts. More-
over, to identify terms that are related to dissipative effects, we replace g, pt, cv, ¢,
as well as A and a by

oup, Ow, dcy, dcp, YA, Ma,

where d,v,\ > 0 denote (small) positive real numbers that will be adjusted laten
on.

Fundamental relations. For convenience, we restate the fundamental equa-
tions (2.1) and (2.2) employing (A.1). In a single space dimension, the relation
reflecting conservation of mass (2.1a) reads

€010~ + €00 0aath + € 000n Dt + €% 0 Dnat) = 0. (A.2a)

Omitting higher-order contributions, i.e. terms of the form o(¢?), the relation de-
scribing conservation of momentum (2.1b) simplifies as follows

€ 0o azt’(/} + gazp"v —€d (MB + % M) a’xzwxd}

+ 52 at@w 3z1/1 + 52 O~ aactﬂ} + 252 Qo 8951/) azmd} =0.
Substracting the e 9,1 multiple of (A.2a), leads to
_ 4 2 0o 2
a"c (5 00 6t1/1 +ep~ €d (NJB + 3 ,u) aqu;Z) +¢€ 2 (3z¢) ) (A2b)
+ &% 00 Ot = 0.

Neglecting contributions of the form o(¢?), we obtain the following relation reflecting
the conservation of energy (2.1c) in a single space dimension

sé%m&ww—e)\a&ﬂf +edeyvoe 0, T, =0. (A.2¢)
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Omitting higher-order contributions, the equation of state (2.2) reduces to
z—:pwzsim%-s —gw—ksvTT (A.2d)

Linear wave equation. Reconsidering the equations (A.2a)—(A.2d) and incorpo-
rating only first-order contributions, i.e. terms of the form O(e), yields

Don + 00022 =0, 5 (000 +pu) =0, po= £9~-
Integration with respect to the space variable shows that a solution of the system
010~ = — 00022, pn = ﬁQN =—000Y,
is also a solution of the original system. The relation for the acoustic pressure implies

2
o == G O

together with the identity A = 3 oo, this leads to a linear wave equation for the
acoustic velocity potential

8ttw - Cg 5’w¢ =0.
Nonlinear damped wave equation. The above considerations explain the ansatz
2

on=—R0p+eo F
with space-time-dependent real-valued function F' determined by (A.2a). Insert-
ing this representation into (A.2a)—(A.2d), neglecting higher-order contributions,
employing the identity

2
Dt Ortp = 5 0:(0e¢))”,

and integrating (A.2b) with respect to space, we arrive at

62 8,5F =£ % 8ttw — Eaxxl/) + 82 % ((%th 3;81/1 + 6xx1/) 8t¢) y (A3a)
£000) +ep. — 0 (up + 5 p) Opath +° L (arw) — &2 292‘ (8t1/1)2 =0, (A.3b)
55%90 Opat) — XA Opa T +6cv00 0T =0, (A.3c)
sgoﬁthrspN:62AF+52%%(6}¢) +eya T (A.3d)

On the one hand, we insert (A.3d) into (A.3b), differentiate the resulting equation|
with respect to time, and insert (A.3a) to obtain

€00 Ot — & ADygtp — €6 (up + & 1) Dot + €7 A T
+ 62 (B 1) D 0,40 0y + 2% 0o D) D) + €2 00 Drath Orth = 0

replacing the second-order contribution €2 gy Oyt Op1) with &2 Q—j’ Opsth Optp + o(£?),
see (A.3a), further yields

ev0T. =— gQO—T"@ttw +¢ ATO Opa® +€0 (uB + %u) % -
2 B ol &0 g,(9,y)° — 2 0lb 9, (9,)°.
A

(A.4)
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On the other hand, differentiating (A.3c) with respect to time, we have
€0 Y 00 Dyatt) — a Dpr (e NOTL) + cv 00 0 (€0 0 T) = 0;
with the help of (A.4), this yields

€ O = ( 5 ave T €64 20 (np+3 M)) Ot
+ €A Con E (,U,B + 3 :u) 8za:mztw

Ccp—Cv A
(5 -+ ey - CVQUTO) zrtw

avy

+ 5 5 Cvago 2o a;x:mc'(/)
+2 8 4500 (0)" + < 0u(0:0)"
2
- %% 2Aacv x;ct(&ﬂb) - %ﬁ aut( ;c¢)

'With the special scaling

d=+e, v=vee, A=c¢,
we arrive at the relation
e Ot —eVE (i + & (e + 4 1) ) Orarttt
+e® o (s + 3 ,u) Ozzaxtyd
— (5 Ay 2 /e CP_VCV CVQOTO) Ozt
R
+e2 B 29, (0,)° + 2 0 (0,90
— Ve B i O (00)
neglecting the higher-order terms

— A 2 2
52 \/gcpa — CVQOTO mﬂ% 3 \/> A gAacv xaxt (8tw> ) 2f€v90 xaxt (&ﬂb) )

v

awzt (amz/}) ? -

omitting then € > 0 and employing the relations

+(up+3n)=vAh, A=cjoo, =a(l+3),

('V Qo0

see Table 1, finally leads to the nonlinear damped wave equation
5m¢ - ((l (]- + E) + VA) 8xxttw +a (1 + ) VA axmzztw c() :vzt/w
+a (1 + ) &) Opzaz) + Ot (202 A (3t1/1) ( xw)Z) =

see also (2.4); it is remarkable that the differential operator defining the linear
contributions factorises as follows

(0= a (14 5) Ora ) (Our = VA Ouwt — & 00a) ¥+ 00 (557 § (90)” + (020)”) =




