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A POSTERIORI ERROR ESTIMATION FOR MAGNUS-TYPE INTEGRATORS
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and Mechthild Thalhammer3

Abstract. We study high-order Magnus-type exponential integrators for large systems of ordinary
di↵erential equations defined by a time-dependent skew-Hermitian matrix. We construct and analyze
defect-based local error estimators as the basis for adaptive stepsize selection. The resulting procedures
provide a posteriori information on the local error and hence enable the accurate, e�cient, and reli-
able time integration of the model equations. The theoretical results are illustrated on two numerical
examples.
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1. Introduction and overview

Problem. We study systems of linear ordinary di↵erential equations
(
 0(t) = A(t) (t) = � iH(t) (t), t > t0,

 (t0) =  0 given,
(1.1)

defined by a time-dependent Hermitian matrix H : R ! Cd⇥d. Although the considerations below also apply to
the situation of general A(t), the assumption of a Schrödinger type model avoids the di�culty of having to take
into account possible order reduction [28] and guarantees a unitary evolution. It is moreover strongly motivated
by the applications in solid state physics in our interest, which involve Hubbard models of electrons in a solid.

The evolution operator (i.e., the fundamental solution) E = E(⌧ ; t0) of the system (1.1) is characterized by
the relation

d
d⌧ E(⌧ ; t0) = A(t0 + ⌧) E(⌧ ; t0), E(0, t0) = Id, (1.2)

with “relative” time ⌧ and “absolute” time t = t0 + ⌧ , such that the solution of the initial value problem (1.1)
is given by

 (t) =  (t0 + ⌧) = E(⌧ ; t0) 0.
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For A(t) of the form (1.1), the evolution operator E(⌧ ; t0) is unitary.

Magnus-type integrators. The numerical solution of large linear systems of the type (1.1) has been exten-
sively studied in the literature. Attention has recently focussed on commutator-free Magnus-type methods (CFM)
introduced in [13]. These are constructed as compositions of exponentials of linear combinations of A(t) evaluated
at di↵erent times t. Earlier mathematical work has centered around the construction of CFM methods which
are convenient to evaluate without storing excessive intermediate results, where the optimal balance between
computational e↵ort and accuracy is sought. Already in [13], the coe�cients for high-order CFM methods were
derived based on nonlinear optimization of the free parameters in the order conditions to minimize local error
constants. With this objective, methods of orders 4–8 were constructed in [1], and applied to strongly correlated
electron systems in [2].

Alternative approaches to the construction of favorable integrators based on the evaluation of exponentials
rely on the Magnus expansion. In [10] the algebraic framework underlying a systematic construction of classical
Magnus integrators is discussed. The seminal references to the classical Magnus approach are [23, 27], where
the former in particular reveals the underlying algebraic structure. In [12], unconventional schemes involving
evaluation of some commutators are introduced which are favorable for matrices of a certain structure (where
commutators contribute additional powers in the stepsize). Generally, it is di�cult to assess the tradeo↵ between
the incorporation of commutators, which are usually expensive to compute and store, and the use of additional
exponentials in commutator-free methods, see for example [12,15]. A similar problem-dependent tradeo↵ between
evaluation of commutators and computation of exponentials also has to be taken into account in the construction
of error estimators, see Section 3 below.

Yet another interesting approach was applied to the Schrödinger equation in [6,7], where all the calculations
are performed in the underlying Lie algebra, and practical evaluation of the arising integrals is deferred to the
last stage, see also [22]. This leads to the derivation of particular Magnus-type integrators in [7].

An a priori theoretical error analysis for classical Magnus integrators of second and fourth order has first been
given in [20] for discretizations of Schrödinger equations. The critical quantities appearing in the error bounds
involve commutators such as [A(t), A(t0)] of the system matrix evaluated at di↵erent time points, which are
estimated under appropriate regularity assumptions on the exact solution. The proof is based on estimates of the
truncation error of the (infinite) Magnus series and estimates of the quadrature error in an integral representation
of the remainder. The mathematical error analysis implies a mild stepsize restriction for methods of higher order.
The analysis has been extended to parabolic problems in [28], where order reductions are observed, however.
In this paper, we construct and analyze defect-based error estimators within a general framework that makes
it possible to cover both classical and commutator-free Magnus-type integrators. Although we do not explicitly
elaborate on non-standard integrators as introduced in [12], our approach for the construction of error estimators
extends also to such classes of methods.

Error estimation. Reliable error estimation to serve as the basis for adaptive step-size selection for the time
propagation is of particular value in large-scale applications. Previous work, however, is mainly concerned with
the derivation of a priori error bounds, but does not treat the construction of a posteriori error estimators
which were successfully applied for instance for exponential operator splitting methods [4,5]. A posteriori error
estimation and adaptive step selection for Magnus-type integrators is for instance discussed in [25], where
classical Magnus integrators are endowed with a global error estimator based on integration of an adjoint
problem as suggested in [14]. In [11], an economical error estimator is proposed which is also particular to
classical Magnus integrators, and does not extend to the case based on more than one exponential. We will only
briefly touch the question of the implied trade-o↵ in the e�ciency as compared to our proposed estimators in
Section 3.4, more so since our main focus is on commutator-free integrators.

Alternatively to the Magnus-type approaches, splitting methods could be used to eliminate the time-
dependence by freezing the independent variable and propagating it separately, see [9]. This allows to employ
e�cient high-order adaptive splitting methods proposed and analyzed for instance in [3, 5]. For these, a large
body of theory has been developed in recent years, see for instance [8, 16, 26] and references therein. In [24],
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it was concluded that for the considered problem class, Magnus-type integrators used in conjunction with a
Lanczos approach excel over splitting or partitioned Runge-Kutta methods.

The main objective of the present work is to construct and analyze defect-based a posteriori error estima-
tors for Magnus-type integrators; for the purpose of comparison, widely used classical Magnus integrators are
considered as well. Although only symmetric schemes appear in this paper, our considerations are fully general.
We explicitly give the proof details for the second order exponential midpoint rule, which were also verified by
computer algebra. Working out the detailed expressions for higher order methods is not feasible without massive
use of such technology, which is beyond the scope of the present work. We stress, however, that this pertains
only to theoretical aspects and does not negatively influence the construction and practical use of the resulting
error estimators.

Notation for commutators. We employ the common denotation ad⌦(A) := [⌦, A] = ⌦A � A⌦ for the
commutator of two matrices ⌦, A 2 Cn⇥n, and the symbol adk refers to repeated application of the commutation
operator,

ad0
⌦(A) = A,

adm
⌦ (A) =

⇥
⌦, adm�1

⌦ (A)
⇤

= ⌦ adm�1
⌦ (A)� adm�1

⌦ (A) ⌦, m 2 N.
(1.3)

2. Magnus-type integrators

We consider Magnus-type one-step methods for the approximation of (1.1) on a time grid (t0, t1, . . . , tn, . . . ),

 n+1 = S(⌧n; tn) n ⇡  (tn+1) = E(⌧n; tn) (tn), ⌧n = tn+1 � tn, n = 0, 1, 2, . . . .

In the sequel, for describing the particular schemes under consideration, we use a simplified notation and consider
a single step starting from t = t0 with stepsize ⌧ ,

 1 = S(⌧ ; t0) 0 ⇡  (t0 + ⌧). (2.1)

Furthermore, in order to avoid unnecessary overloading of notation, we suppress the dependence on t0 of
“internal” objects involved in the definition of the integrators. Only the dependence on the stepsize ⌧ is indicated;
see for instance (2.2) below.

Commutator-free Magnus-type (CFM) integrators. We first focus on higher-order commutator-free
Magnus-type integrators [13]. These approximate the exact flow in terms of products of exponentials of linear
combinations of the system matrix evaluated at di↵erent times, avoiding evaluation and storage of commutators.

A high-order CFM scheme is thus defined by (2.1), with

S(⌧ ; t0) = SJ(⌧) · · · S1(⌧) = e⌦J (⌧) · · · e⌦1(⌧), ⌦j(⌧) = ⌧Bj(⌧), j = 1, . . . , J,

Bj(⌧) =
KX

k=1

ajk Ak(⌧), Ak(⌧) = A(t0 + ck⌧),
(2.2)

where the coe�cients ajk, ck are chosen such that the method realizes a certain convergence order p. For
convenience, we collect the coe�cients in

c = (c1, . . . , cK) 2 [0, 1]K , a =

0

B@
a11 . . . a1K
...

. . .
...

aJ1 . . . aJK

1

CA 2 RJ⇥K . (2.3)
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Examples of symmetric CFM integrators.

(i) The second-order exponential midpoint scheme (p = 2), given by

J = 1, K = 1, c = 1
2 , a = 1,

is a simple instance of a Magnus-type integrator. Thus,

S(⌧ ; t0) = e⌧A(t0+ ⌧
2 ). (2.4)

(ii) A fourth-order commutator-free integrator (p = 4) based on two Gaussian nodes and comprising two matrix
exponentials is defined by

J = 2, K = 2, c =
⇣

1
2 �

p
3

6 , 1
2 +

p
3

6

⌘
, a =

 
1
4 +

p
3

6
1
4 �

p
3

6

1
4 �

p
3

6
1
4 +

p
3

6

!
. (2.5a)

(iii) An optimized fourth-order scheme (p = 4) from [1] is

J = 3, K = 3, c =

0

BB@

1
2 �

p
15

10

1
2

1
2 +

p
15

10

1

CCA , a =

0

BB@

37
240 + 10

87

p
15
3 � 1

30
37
240 � 10

87

p
15
3

� 11
360

23
45 � 11

360

37
240 � 10

87

p
15
3 � 1

30
37
240 + 10

87

p
15
3

1

CCA . (2.5b)

(iv) A sixth-order commutator-free integrator (p = 6) based on three Gaussian nodes and comprising six matrix
exponentials is given by

J = 6, K = 3, c =
⇣

1
2 �

p
15

10 , 1
2 , 1

2 +
p

15
10

⌘
,

a =

0

BBBBB@

0.2158389969757678 � 0.0767179645915514 0.0208789676157837
� 0.0808977963208530 � 0.1787472175371576 0.0322633664310473

0.1806284600558301 0.4776874043509313 � 0.0909342169797981
� 0.0909342169797981 0.4776874043509313 0.1806284600558301

0.0322633664310473 � 0.1787472175371576 � 0.0808977963208530
0.0208789676157837 � 0.0767179645915514 0.2158389969757678

1

CCCCCA
,

(2.6)

see [1].

Classical Magnus integrators. A di↵erent, indeed the more classical, approach to the approximation of (1.1)
is directly based on the Magnus expansion [27]: The solution to a time-dependent system (1.1) can be represented
by

 (t0 + ⌧) = E(⌧ ; t0) 0 = e⌦(⌧) 0, (2.7a)

where ⌦(⌧) satisfies

⌦0(⌧) =
X

k�0

Bk

k!
adk

⌦(⌧)(A(t0 + ⌧)), ⌦(0) = 0, (2.7b)

with the Bernoulli numbers Bk.
Classical Magnus integrators rely on appropriate truncation of the Magnus expansion (2.7b) and suitable

approximation ⌦(⌧) to the arising multi-dimensional integral representation for ⌦(⌧) by numerical quadrature,
and defining  1 by (2.1) with

S(⌧ ; t0) = e⌦(⌧) ⇡ e⌦(⌧). (2.8)

A detailed exposition on this approach is given for example in [10] and in [16].
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This type of integrator is, in general, considered as computationally expensive due to the requirement to
compute and store commutators of large matrices. For problems of a particular structure, however, as in the
semiclassical regime, or when commutators turn out to be of higher order O(⌧k) than O(1) as expected generi-
cally, this approach may excel over the commutator-free methods, see [1, 7].

Examples of classical symmetric Magnus integrators. Again we denote

Ak(⌧) = A(t0 + ck⌧), (2.9)

with a set of nodes defined by c = (c1, . . . , cK) 2 [0, 1]K .

(i) The exponential midpoint scheme (2.4) (order p = 2) is also a classical Magnus integrator, with K = 1 and

c = 1
2 , ⌦(⌧) = ⌧A1(⌧). (2.10)

(ii) A commonly used fourth-order Magnus integrator (p = 4) is based on two Gaussian nodes, with K = 2 and

c =
⇣

1
2 �

p
3

6 , 1
2 +

p
3

6

⌘
, ⌦(⌧) = 1

2⌧
�
A1(⌧) + A2(⌧)

��
p

3
12 ⌧

2
⇥
A1(⌧), A2(⌧)

⇤
. (2.11)

(iii) A sixth-order Magnus integrator (p = 6) based on three Gaussian nodes (K = 3) is given by

c =
⇣

1
2 �

p
15

10 , 1
2 , 1

2 +
p

15
10

⌘
,

↵1(⌧) = ⌧A2(⌧), ↵2(⌧) =
p

15
3 ⌧

�
A3(⌧)�A1(⌧)

�
, ↵3(⌧) = 10

3 ⌧
�
A1(⌧)� 2 A2(⌧) + A3(⌧)

�
,

C1(⌧) =
⇥
↵1(⌧),↵2(⌧)

⇤
, C2(⌧) = � 1

60

⇥
↵1(⌧), 2↵3(⌧) + C1(⌧)

⇤
,

⌦(⌧) = ↵1(⌧) + 1
12 ↵3(⌧) + 1

240

⇥� 20↵1(⌧)� ↵3(⌧) + C1(⌧),↵2(⌧) + C2(⌧)
⇤
, (2.12)

adhering to the notation from equation (251) of [10].

3. Defect-based A POSTERIORI local error estimators

The local error of (2.1) is
 1 �  (t0 + ⌧) = L(⌧ ; t0) 0, (3.1a)

with the local error operator
L(⌧ ; t0) = S(⌧ ; t0)� E(⌧ ; t0). (3.1b)

We aim for designing asymptotically correct computable estimators

eL(⌧ ; t0) 0 ⇡ L(⌧ ; t0) 0

for the local error of CFM and classical Magnus integrators, based on the notion of the defect of the numerical
approximation. The idea is related to [4, 5].

Remark 3.1. In the remainder of this section, L(⌧ ; t0) is simply called the local error. The associated defect
operator D(⌧ ; t0) defined in (3.3) below is simply called the defect. The error estimator eL(⌧ ; t0) 0 will be based
on (approximate) evaluation of the defect at  0.
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3.1. Basic idea of the construction

We proceed from the fact that a one-step approximation (2.1) of order p is characterized by the property
L(⌧ ; t0) = O(⌧p+1), or equivalently, L(0; t0) = 0 and

dq

d⌧qL(⌧ ; t0)
��
⌧=0

= 0, q = 1, . . . , p. (3.2)

With the defect
D(⌧ ; t0) = d

d⌧ S(⌧ ; t0)�A(t0 + ⌧)S(⌧ ; t0), (3.3)

the local error, as a function of ⌧ , is the solution of

d
d⌧L(⌧ ; t0) = A(t0 + ⌧)L(⌧ ; t0) +D(⌧ ; t0), L(0; t0) = 0, (3.4a)

whence by the variation-of-constants formula,4

L(⌧ ; t0) =
Z ⌧

0

⇧(⌧,�)D(�; t0) d� =:
Z ⌧

0

bD(�; t0) d�, (3.4b)

with
⇧(⌧,�) = E(⌧ ; t0) E(��; t0 + �) = E(⌧ � �; t0 + �), ⇧(⌧, ⌧) = Id.

Repeated di↵erentiation of (3.4a) gives

dq

d⌧qL(⌧ ; t0) =
q�1X

k=0

�q�1
k

�
dq�1�k

d⌧q�1�k A(t0 + ⌧) dk

d⌧kL(k)(⌧) + dq�1

d⌧q�1D(⌧ ; t0),

thus the relations (3.2) are equivalent to

dq

d⌧qD(⌧ ; t0)
��
⌧=0

= 0, q = 0, . . . , p� 1. (3.5)

Therefore the integrand
bD(�; t0) = ⇧(⌧,�)D(�; t0) (3.6a)

in (3.4b) also satisfies
dq

d�q
bD(�; t0)

��
�=0

= 0, q = 0, . . . , p� 1. (3.6b)

For the integral in (3.4b) we now consider an approximation of order O(⌧p+2) based on Taylor expansion,

L(⌧ ; t0) =
Z ⌧

0

bD(�; t0) d� ⇡
Z ⌧

0

�p

p!
bD(p)(0; t0) d� = ⌧p+1

(p+1)!
bD(p)(0; t0)

⇡ ⌧
p+1

bD(⌧ ; t0) = ⌧
p+1 ⇧(⌧, ⌧)D(⌧ ; t0) = ⌧

p+1D(⌧ ; t0).
(3.7a)

Here, “⇡” means asymptotic approximation at the level O(⌧p+2), where the approximation error depends on
dp+1

d�p+1
bD(�; t0). The local error estimate

⌧
p+1D(⌧ ; t0) = L(⌧ ; t0) +O(⌧p+2)

defined by (3.7a) involves a single evaluation of the defect D(⌧ ; t0) for the given stepsize ⌧ . The deriva-
tive d

d⌧ S(⌧ ; t0) involved in the definition (3.3) of D(⌧ ; t0) is not directly computable but, as shown below, it can
be expressed in a derivative-free way, and this enables a computable, asymptotically correct approximation

eD(⌧ ; t0) = D(⌧ ; t0) +O(⌧p+1). (3.7b)

4The two-parameter matrix family ⇧(⌧, �) is called an evolution system associated with A(t). The representation (3.4b) can
be interpreted as a consequence of the general nonlinear variation-of-constants formula, also called the Gröbner-Alekseev Lemma,
see Theorem I.14.5 of [17].



A POSTERIORI ERROR ESTIMATION FOR MAGNUS-TYPE INTEGRATORS 203

The resulting practical error estimator is denoted by

eL(⌧ ; t0) = ⌧
p+1

eD(⌧ ; t0) = L(⌧ ; t0) +O(⌧p+2). (3.7c)

The error of this approximation will be analyzed in more detail in Section 4.
In view of the form of the schemes of types (2.2) or (2.8) considered here, D(⌧ ; t0) contains terms of the

type d
d⌧ e⌦(⌧), in particular with ⌦(⌧) of the form ⌦(⌧) = ⌧B(⌧). Therefore we first collect representations for

derivatives of matrix exponentials, for the purpose of constructing derivative-free approximations (3.7b).

3.2. Derivatives of matrix exponentials

Fréhet derivative of the matrix exponential. An induction argument shows that the Fréchet derivative
of matrix powers ⌦k with respect to ⌦ 2 Cd⇥d, evaluated at V 2 Cd⇥d, is given by

�
d

d⌦⌦m
�
(V ) =

mX

k=0

⌦m�1�k V ⌦k =
m�1X

k=0

� m
k+1

�
adk

⌦(V ) ⌦m�1�k, m 2 N,

see Section III.4, (4.3) of [16]. This implies that the Fréchet derivative of

e⌦ =
X

m�0

1
m! ⌦m

takes the form �
d

d⌦e⌦
�
(V ) =

X

m�0

1
(m+1)! adm

⌦ (V ) e⌦, (3.8a)

see Section III.4, Lemma 1 of [16].
An alternative representation even more useful for our purpose is given by the integral formula (see [19],

Sect. 10.2, (10.15))5
�

d
d⌦e⌦

�
(V ) =

Z 1

0

es⌦ V e�s⌦ ds · e⌦. (3.8b)

Time derivative. For a given time-dependent matrix ⌦ = ⌦(⌧), the matrix-valued function e⌦(⌧) satisfies a
linear di↵erential equation. In particular, (3.8a) implies6

d
d⌧ e⌦(⌧) =

�
d

d⌦e⌦
���

⌦(⌧)
(⌦0(⌧)) = �(⌧) e⌦(⌧), with �(⌧) =

X

m�0

1
(m+1)! adm

⌦(⌧)(⌦
0(⌧)).

For a time-dependent matrix of the form appearing in the integrators considered,

⌦(⌧) = ⌧B(⌧), (3.9)

we have ⌦0(⌧) = B(⌧) + ⌧B0(⌧) and

adm
⌦(⌧)(⌦

0(⌧)) = ⌧m+1 adm
B(⌧)(B

0(⌧)), m 2 N,

which implies
d
d⌧ e⌧B(⌧) = �(⌧) e⌧B(⌧),

with �(⌧) = B(⌧) +
X

m�0

1
(m+1)!⌧

m+1adm
B(⌧)(B

0(⌧))

= B(⌧) + ⌧B0(⌧) + 1
2⌧

2[B(⌧), B0(⌧)] + 1
6⌧

3[B(⌧), [B(⌧), B0(⌧)]] + . . . .

(3.10a)

5The integrand in this formula is also denoted by Ades⌦ (V ) in the literature [16], but since this operator is not used again later
in this paper, this notation is not called for.

6For ⌦(⌧) = ⌦(⌧) from (2.7) we have �(⌧) = A(t0 + ⌧).
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A computable approximation for the time derivative d
d⌧ e⌧B(⌧) with error O(⌧p+1) is obtained by truncating

the sum in (3.10a), i.e.,

e�(⌧) e⌧B(⌧) = d
d⌧ e⌧B(⌧) +O(⌧p+1), with e�(⌧) =

pX

m=0

1
m!⌧

m adm
B(⌧)(B

0(⌧)). (3.10b)

Alternatively, for ⌦(⌧) of the form (3.9), the representation (3.8b) together with the substitution ⌧s = � gives7

d
d⌧ e⌧B(⌧) = �(⌧) e⌧B(⌧),

with �(⌧) = B(⌧) +
Z ⌧

0

F (�; ⌧) d�, F (�; ⌧) = e�B(⌧) B0(⌧) e��B(⌧),
(3.11a)

and replacing the integral in (3.11a) by a quadrature formula of order p also leads to a computable approximation
for the time derivative d

d⌧ e⌧B(⌧) in the form

e�(⌧) e⌧B(⌧) = d
d⌧ e⌧B(⌧) +O(⌧p+1), where e�(⌧) = quadrature approximation of �(⌧) with error O(⌧p+1).

(3.11b)
Here one may apply conventional interpolatory quadrature or, as a better choice avoiding evitable additional
evaluation of exponentials, Hermite-type quadrature involving evaluations of a number of derivatives of the
integrand F (�; ⌧) at � = 0 or � = ⌧ , which depend on commutators adm

B(⌧)(B0(⌧)). See (3.18) below for a
typical example.

The special case where only evaluations of the integrand at � = 0 are used, corresponds to the truncated
expansion e�(⌧) from (3.10b). We may call this “Taylor quadrature”, since it is based on Taylor expansion of
the integrand w.r.t. � for given ⌧ ; we denote it by Tp(F, 0, ⌧). For a typical example, see (3.17) below.

On the basis of such an approximation e�(⌧) ⇡ �(⌧) ⇡ A(t0 + ⌧), computable asymptotically correct approx-
imations eD(⌧ ; t0) of the defect D(⌧ ; t0) defined in (3.3) can be constructed. In the sequel we describe some
variants.

3.3. Local error estimators for CFM integrators.

For CFM integrators (2.2), the defect is given by (3.3),

D(⌧ ; t0) = d
d⌧ S(⌧ ; t0)�A(t0 + ⌧)S(⌧ ; t0)

=
�

d
d⌧ SJ(⌧)

�SJ�1(⌧) · · · S1(⌧) + . . . + SJ(⌧) · · · S2(⌧)
�

d
d⌧ S1(⌧)

��A(t0 + ⌧)S(⌧ ; t0)
= �J(⌧)SJ(⌧)SJ�1(⌧) · · · S1(⌧) + . . . + SJ(⌧) · · · S2(⌧) �1(⌧)S1(⌧)�A(t0 + ⌧)S(⌧ ; t0),

with Sj(⌧) = e⌦j(⌧) = e⌧Bj(⌧), and e�j related to Bj as in (3.10a). An asymptotically correct, computable
approximation

eD(⌧ ; t0) = e�J(⌧)SJ(⌧)SJ�1(⌧) · · · S1(⌧) + . . . + SJ(⌧) · · · S2(⌧) e�1(⌧)S1(⌧)�A(t0 + ⌧)S(⌧ ; t0)
= D(⌧ ; t0) +O(⌧p+1)

is obtained by approximating, for j = 1, . . . , J , the �j(⌧) according to (3.10) or (3.11). This leads to di↵erent
approximations e�j(⌧) for the �j(⌧) and corresponding defect approximations eD(⌧ ; t0) and local error estimators
eL(⌧ ; t0), see (3.7c).

(i) Second-order exponential midpoint scheme (2.4): Here, J = 1 and S(⌧ ; t0) = S1(⌧) = e⌧B(⌧) with B(⌧) =
B1(⌧) = A(t0 + ⌧

2 ). Thus,

eD(⌧ ; t0) = e�(⌧)S(⌧ ; t0)�A(t0 + ⌧)S(⌧ ; t0). (3.12)

7In some references, like III.4.5 of [16], �(⌧) is denoted by dexp�1
B(⌧)(B

0(⌧)), we choose a more compact notation, however.
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Using Taylor quadrature (3.10b) with p = 2, i.e.,

e�(⌧) = B(⌧) + ⌧B0(⌧) + 1
2⌧

2[B(⌧), B0(⌧)],

(3.12) takes the form

eD(⌧ ; t0) =
�
B(⌧) + ⌧B0(⌧) + 1

2⌧
2[B(⌧), B0(⌧)]�A(t0 + ⌧)

�S(⌧ ; t0)
=
�
A(t0 + ⌧

2 ) + 1
2⌧A

0(t0 + ⌧
2 ) + 1

4⌧
2[A(t0 + ⌧

2 ), A0(t0 + ⌧
2 )]�A(t0 + ⌧)

�S(⌧ ; t0). (3.13a)

Provided that evaluation of A00 is available, another asymptotically correct simplification is

eD(⌧ ; t0) =
�� 1

8⌧
2 A00(t0 + ⌧) + 1

4⌧
2 [A(t0 + ⌧), A0(t0 + ⌧)]

�S(⌧ ; t0). (3.13b)

Application of eD(⌧ ; t0) to  0 does not require evaluation of an additional matrix exponential. For instance,
in practice application of (3.13b) means: Compute

eD(⌧ ; t0) 0 =
�� 1

8⌧
2 A00(t0 + ⌧) + 1

4⌧
2 [A(t0 + ⌧), A0(t0 + ⌧)]

�
 1,

since S(⌧ ; t0) 0 =  1.
As an alternative, we approximate the integral representation of the type (3.11a) for �(⌧) using the second-
order trapezoidal quadrature,

Z ⌧

0

F (�; ⌧) d� ⇡ Q2(F, 0, ⌧) = 1
2⌧
�
F (0; ⌧) + F (⌧ ; ⌧)

�
, (3.14)

with F (�; ⌧) = e�B(⌧) B0(⌧) e��B(⌧) as in (3.11a). This gives the approximation

e�(⌧) = B(⌧) + 1
2⌧
�
B0(⌧) + e⌧B(⌧)B0(⌧) e�⌧B(⌧)

�
.

Then, (3.12) takes the form

eD(⌧ ; t0) =
�
B(⌧) + 1

2⌧(B
0(⌧) + e⌧B(⌧)B0(⌧) e�⌧B(⌧))�A(t0 + ⌧)

�S(⌧ ; t0)
=
�
B(⌧) + 1

2⌧B
0(⌧)�A(t0 + ⌧)

�S(⌧ ; t0) + 1
2⌧ S(⌧ ; t0) B0(⌧)

=
�
A(t0 + ⌧

2 ) + 1
4⌧A

0(t0 + ⌧
2 )�A(t0 + ⌧)

�S(⌧ ; t0) + 1
4⌧ S(⌧ ; t0)A0(t0 + ⌧

2 ). (3.15)

This involves evaluation of one additional matrix exponential, namely S(⌧ ; t0)A0(t0 + ⌧
2 ) 0.

(ii) Fourth-order scheme of the type (2.5a): Here, J = 2 and S(⌧ ; t0) = S2(⌧)S1(⌧) = e⌧B2(⌧) e⌧B1(⌧). Thus,

eD(⌧ ; t0) = e�2(⌧)S2(⌧)S1(⌧) + S2(⌧) e�1(⌧)S1(⌧)�A(t0 + ⌧)S(⌧ ; t0). (3.16)

Using Taylor quadrature (3.10b) with p = 4, i.e.,

e�j(⌧) = Bj(⌧) + ⌧B0
j(⌧) + 1

2⌧
2[Bj(⌧), B0

j(⌧)] + 1
6⌧

3[Bj(⌧), [Bj(⌧), B0
j(⌧)]]

+ 1
24⌧

4[Bj(⌧), [Bj(⌧), [Bj(⌧), B0
j(⌧)]]], j = 1, 2,

(3.17)

results in evaluation of eD(⌧ ; t0) according to (3.16) requiring the evaluation of one additional matrix expo-
nential, namely S2(⌧)e�1(⌧)S1(⌧) 0, provided the intermediate value S1(⌧) 0 is stored.
As an alternative, we consider the fourth-order modified trapezoidal quadrature of Hermite type,

Z ⌧

0

F (�; ⌧) d� ⇡ Q4(F, 0, ⌧) = 1
2⌧
�
F (0; ⌧)+F (⌧ ; ⌧)

�
+ 1

12⌧
2
⇣

@
@� F (�; ⌧)

��
�=0

� @
@� F (�; ⌧)

��
�=⌧

⌘
. (3.18)



206 W. AUZINGER ET AL.

For F (�; ⌧) = e�Bj(⌧) B0
j(⌧) e��Bj(⌧) as in (3.11a) we have

@
@� F (�; ⌧)

��
�=0

= [Bj(⌧), B0
j(⌧)],

@
@� F (�; ⌧)

��
�=⌧

= e⌧Bj(⌧) [Bj(⌧), B0
j(⌧)] e

�⌧Bj(⌧).

For the integral representation of the type (3.11a) for the �j(⌧) this gives, for j = 1, 2,

e�j(⌧) = Bj(⌧) + 1
2⌧
�
B0

j(⌧) + e⌧Bj(⌧)B0
j(⌧) e�⌧Bj(⌧)

�

+ 1
12⌧

2
�
[Bj(⌧), B0

j(⌧)]� e⌧Bj(⌧) [Bj(⌧), B0
j(⌧)] e

�⌧Bj(⌧)
�
.

(3.19a)

Thus, with Sj(⌧) = e⌧Bj(⌧),

e�j(⌧)Sj(⌧) = C+
j (⌧)Sj(⌧) + Sj(⌧) C�

j (⌧), C±
j (⌧) = 1

2

�
Bj(⌧) + ⌧B0

j(⌧)
�± 1

12⌧
2[Bj(⌧), B0

j(⌧)].(3.19b)

Then, (3.16) takes the form

eD(⌧ ; t0) =
�
C+

2 (⌧)�A(t0 + ⌧)
�S2(⌧)S1(⌧) + S2(⌧)

⇣�
C+

1 (⌧) + C�
2 (⌧)

�S1(⌧) + S1(⌧)C�
1 (⌧)

⌘
. (3.20)

This requires the evaluation of two additional exponentials (again provided the intermediate value S1(⌧) 0

is stored), but only first-order commutator expressions are involved in the evaluation of C±
j (⌧). Again, the

basic scheme and the defect are evaluated in parallel.
(iii) For higher-order schemes as for instance (2.6), the evaluation of the defect of course becomes more expensive.

For schemes of order 6, for instance, applying the sixth order Hermite-type quadrature

Z ⌧

0

F (�; ⌧) d� ⇡ Q6(F, 0, ⌧) = 1
2⌧(F (0; ⌧) + F (⌧ ; ⌧)) + 1

10⌧
2
⇣

@
@� F (�; ⌧)

��
�=0

� @
@� F (�; ⌧)

��
�=⌧

⌘

+ 1
120⌧

3
⇣

@2

@�2 F (�; ⌧)
��
�=0

+ @2

@�2 F (�; ⌧)
��
�=⌧

⌘
,

(3.21)
with F (�; ⌧) = e�Bj(⌧) B0

j(⌧) e��Bj(⌧) as before, and

@2

@�2 F (�; ⌧)
��
�=0

= ad2
Bj(⌧)(B

0
j(⌧)),

@2

@�2 F (�; ⌧)
��
�=⌧

= e⌧Bj(⌧) ad2
Bj(⌧)(B

0
j(⌧)) e�⌧Bj(⌧),

is a reasonable option, and evaluation of D(⌧ ; t0) is straightforward as for lower-order schemes. We give no
further details here.

3.4. Local error estimators for classical Magnus integrators.

Classical Magnus integrators are of the form (2.8), where again ⌦(⌧) is of the form ⌧B(⌧). Thus,

D(⌧ ; t0) = d
d⌧ S(⌧ ; t0)�A(t0 + ⌧)S(⌧ ; t0)

= d
d⌧ e⌧B(⌧) �A(t0 + ⌧) e⌧B(⌧) = �(⌧) e⌧B(⌧) �A(t0 + ⌧) e⌧B(⌧), (3.22)

which can be approximated on the basis of (3.10b) or (3.11b).
As an example we consider the fourth-order scheme defined by (2.11), where

B(⌧) = 1
2

�
A(t0 + c1⌧) + A(t0 + c2⌧)

��
p

3
12 ⌧ [A(t0 + c1⌧), A(t0 + c2⌧)],

with

B0(⌧) = 1
2

�
c1A

0(t0 + c1⌧) + c2A
0(t0 + c2⌧)

�

�
p

3
12 [A(t0 + c1⌧), A(t0 + c2⌧)]

�
p

3
12 ⌧

�
c1 [A0(t0 + c1⌧), A(t0 + c2⌧)] + c2 [A(t0 + c1⌧), A0(t0 + c2⌧)]

�
.
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Table 1. Additional computational e↵ort for error estimators.

CFM estimator Classical Magnus estimator

p Variant adk Additional exp Variant adk Additional exp

2 (3.13) k = 1 0 (3.13) k = 1 0
(3.15) k = 0 1 (3.15) k = 0 1

4 (3.17) k = 3 1 (3.24) k = 3 0
(3.19) k = 1 2 (3.25) k = 1 1

Using Taylor quadrature (3.10b) with p = 4 as in (3.17), i.e.,

e�(⌧) = B(⌧) + ⌧B0(⌧) + 1
2⌧

2[B(⌧), B0(⌧)] + 1
6⌧

3[B(⌧), [B(⌧), B0(⌧)]]
+ 1

24⌧
4[B(⌧), [B(⌧), [B(⌧), B0(⌧)]]],

results in evaluation of eD(⌧ ; t0) in the form

eD(⌧ ; t0) =
�e�(⌧)�A(t0 + ⌧)

�S(⌧ ; t0), (3.23)

without evaluation of an additional matrix exponential, but involving evaluation of nested commutators.
Alternatively, approximating the integral representation (3.11a) by the modified trapezoidal rule (3.18) gives

the same expressions as in (3.19),

e�(⌧) = B(⌧) + 1
2⌧
�
B0(⌧) + e⌧B(⌧)B0(⌧) e�⌧B(⌧)

�

+ 1
12⌧

2
�
[B(⌧), B0(⌧)]� e⌧B(⌧) [B(⌧), B0(⌧)] e�⌧B(⌧)

�
,

(3.24)

and, with S(⌧ ; t0) = e⌧B(⌧),

e�(⌧)S(⌧ ; t0) = C+(⌧)S(⌧ ; t0) + S(⌧ ; t0) C�(⌧), C±(⌧) = 1
2

�
B(⌧) + ⌧B0(⌧)

�± 1
12⌧

2[B(⌧), B0(⌧)]. (3.25)

Then, (3.22) takes the form

eD(⌧ ; t0) =
�
C+(⌧)�A(t0 + ⌧)

�S(⌧ ; t0) + S(⌧ ; t0) C�(⌧). (3.26)

This requires evaluation of one additional exponential and a number of evaluations of commutators.
Remark: In [11], another way of estimating the local time-stepping error for classical Magnus integrators was
discussed. A local extrapolation strategy explicitly resorting to the Baker–Campbell–Hausdor↵ formula [16]
allows to construct error estimators by economically reusing evaluations of commutators and/or exponentials.
Again a tradeo↵ between using more (nested) commutators or exponentials has to be taken into consideration,
likewise as in our approach. In [11], an estimator for a classical Magnus integrator is for instance constructed
without introducing an additional exponential, but at the cost of the computation of additional nested commu-
tators. Our estimator (3.23) has precision p + 1 and is thus asymptotically correct, while the estimator [11] is
based on comparison with a method of lower order p� 2.

In Table 1 we give an overview of the additional computational e↵ort required by the di↵erent variants of
error estimators for the cases p = 2 and p = 4, in terms of the degree of nested commutators involved and the
number of additional exponentials which need to be evaluated.
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4. Asymptotic analysis

By construction, for a scheme of order p all local error estimators eL(⌧ ; t0) = ⌧
p+1

eD(⌧ ; t0) are asymptotically
correct for ⌧ ! 0, i.e., they satisfy (3.7c),

eL(⌧ ; t0)� L(⌧ ; t0) = O(⌧p+2). (4.1)

In the following we provide a more precise characterization of the error of the error estimate, i.e., of the deviation
eL(⌧ ; t0)� L(⌧ ; t0), in the following sense.

• First of all, the O(⌧p+2) deviation (4.1) is influenced by two di↵erent contributions, caused by
(i) approximation of the local error L(⌧ ; t0) in terms of the exact defect D(⌧ ; t0), see (3.7a),
(ii) approximation of the defect D(⌧ ; t0) by a computable approximation eD(⌧ ; t0) via quadrature, see (3.7b)

and Sections 3.3 & 3.4.
For a discussion of these two contributions see Section 4.1.

• A more detailed analysis of the nature of these sources of error depends on the given scheme and type of
error estimator at hand. We expect that certain commutator expressions involving higher derivatives of A(t)
enter the error constants behind (4.1). Without massive use of computer algebra, which is beyond the scope
of the present work, working out the detailed expressions is not feasible. Therefore in Section 4.2 we confine
ourselves to the case of the second-order exponential midpoint scheme.

4.1. Classification of terms influencing the deviation (4.1)

The approximation errors can be characterized as follows.

ad (i): The approximation (3.7a) can be interpreted as an Hermite-type quadrature for the local error inte-
gral (3.4b), involving only a single evaluation8 of the defect D(⌧ ; t0) (cf. [4, 5]). The corresponding
quadrature error has the Peano representation

⌧
p+1 D(⌧ ; t0)� L(⌧ ; t0) =

Z ⌧

0

Kp+1(�) dp+1

d�p+1
bD(�; t0) d�, bD(�; t0) = ⇧(⌧,�)D(�; t0), (4.2a)

with kernel
Kp+1(�) =

�(⌧ � �)p

(p + 1)!
· (4.2b)

ad (ii): Applying quadrature to integrals as in (3.11a), with integrands of the type

F (�; ⌧) = e�B(⌧) B0(⌧) e��B(⌧),

results in eD(⌧ ; t0) ⇡ D(⌧ ; t0). The Peano representations of the corresponding quadrature errors read as
follows; here, derivatives of F (�; ⌧) are to be understood as partial derivatives w.r.t. �.

p - th order Taylor quadrature (3.10b).

Tp(F, 0, ⌧)�
Z ⌧

0

F (�; ⌧) d� =
Z ⌧

0

� 1
p! (⌧ � �)pF (p)(�; ⌧) d�

= � 1
(p+1)! ⌧

p+1F (p)(0; ⌧) +O(⌧p+2),
(4.3a)

with
F (p)(�; ⌧) = e�B(⌧) adp

B(⌧)(B
0(⌧)) e��B(⌧).

8This quadrature formula is based on higher-order Hermite interpolation and corresponding evaluations of dq

d⌧qD(⌧ ; t0)
��
⌧=0

, q =
0, . . . , p� 1, which vanish for a scheme of order p, see (3.5).
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Second-order trapezoidal rule (3.14).

Q2(F, 0, ⌧)�
Z ⌧

0

F (�; ⌧) d� =
Z ⌧

0

1
2 �(⌧ � �)F 00(�; ⌧) d� = 1

12 ⌧
3 F 00(0; ⌧) +O(⌧4), (4.3b)

with
F 00(�; ⌧) = e�B(⌧) ad2

B(⌧)(B
0(⌧)) e��B(⌧).

Fourth-order modified trapezoidal rule (3.18).

Q4(F, 0, ⌧)�
Z ⌧

0

F (�; ⌧) d� =
Z ⌧

0

� 1
24 �

2(⌧ � �)2 F (4)(�; ⌧) d� = � 1
720 ⌧

5 F (4)(0; t) +O(⌧6),

(4.3c)
with

F (4)(�; ⌧) = e�B(⌧) ad4
B(⌧)(B

0(⌧)) e��B(⌧).

An analogous representation holds for higher-order Hermite-type quadrature schemes like (3.21).

4.2. The exponential midpoint scheme (2.4)

For the exponential midpoint scheme we now describe the terms influencing the deviation (4.1) in more
detail.9 First we take a closer look at the asymptotic behavior of the defect and the local error itself.

The leading term of the local error L(⌧ ; t0). For S(⌧ ; t0) = e⌧B(⌧) = e⌧A(t0+ ⌧
2 ), with S(0; t0) = Id, the

defect is

D(⌧ ; t0) = d
d⌧ S(⌧ ; t0)�A(t0 + ⌧)S(⌧ ; t0)

=
�
�(⌧)�A(t0 + ⌧)

�S(⌧ ; t0)

=
⇣
A(t0 + ⌧

2 ) +
Z ⌧

0

e�A(t0+ ⌧
2 ) 1

2A0(t0 + ⌧
2 ) e��A(t0+ ⌧

2 ) d� �A(t0 + ⌧)
⌘
S(⌧ ; t0),

(4.4a)

satisfying
D(0; t0) = 0. (4.4b)

The derivatives of �(⌧) at ⌧ = 0 can be derived from the asymptotic expansion (3.10a) in the following way.
For the moment, we suppress the argument ⌧ ,

� = B + ⌧B0 + 1
2⌧

2[B,B0] + 1
6⌧

3[B, [B,B0]] +O(⌧4).

Thus, straightforward di↵erentiation yields

�0 = 2B0

+ ⌧
�
B00 + [B,B0]

�

+ 1
2⌧

2
�
[B,B00] + [B, [B,B0]]

�
+O(⌧3).

Furthermore,

�00 = 3B00 + [B,B0]
+ ⌧
�
B000 + 2 [B,B00] + [B, [B,B0]]

�
+O(⌧2),

9Not all detailed calculations are given here. The results of these calculations have been verified by computer algebra for a
general matrix A(t) of dimension 2.
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and

�000 = 4B000 + 3 [B,B00] + [B, [B,B0]] +O(⌧).

Together with B(m)(⌧) = 2�mA(m)(t0 + ⌧
2 ) this gives

�(0) = A(t0),
�0(0) = A0(t0),
�00(0) = 3

4A00(t0) + 1
2 [A(t0), A0(t0)],

�000(0) = 1
2A000(t0) + 3

4 [A(t0), A00(t0)] + 1
2 [A(t0), [A(t0), A0(t0)]].

(4.5)

We now consider the integral expression (3.4b) for the local error,

L(⌧ ; t0) =
Z ⌧

0

⇧(⌧,�)D(�; t0) d�. (4.6)

From (4.4a) and (4.6) the fact that, by construction, D(⌧ ; t0) = O(⌧2) and L(⌧ ; t0) = O(⌧3) is not directly
recognizable. A concrete representation is obtained by expanding the defect further; for complexity reasons we
will confine ourselves to exactly identifying the asymptotically leading terms. To this end we introduce

D1(⌧ ; t0) = d
d⌧D(⌧ ; t0)�A(t0 + ⌧)D(⌧ ; t0). (4.7a)

We temporarily use a simplified notation, where, e.g., (4.4a) is written in the form

D = S 0 �AS = (��A)S.

In this notation, and with S 0 = AS +D, we obtain

D1 = D0 �AD
=
�
(��A)0 + [�, A]

�S + (��A)D, (4.7b)

and
D1(0; t0) =

�
�0(0)�A0(t0)

�
+ [�(0), A(t0)] = 0, (4.7c)

since �(0) = A(t0) and �0(0) = A0(t0). Thus, D1(⌧ ; t0) = O(⌧).10

For
D2(⌧ ; t0) = d

d⌧D1(⌧ ; t0)�A(t0 + ⌧)D1(⌧ ; t0), (4.8a)

with S 0 = AS +D and D0 = AD +D1 we obtain

D2 = D01 �AD1

=
�
(��A)00 + 2 [�0, A] + [A + �, A0] + [[�, A], A]

�S
+ 2
�
(��A)0 + [�, A]

�D
+ (��A)D1,

(4.8b)

and together with (4.4b) and (4.7c),

D2(0; t0) = �00(0)�A00(t0). (4.8c)

Together with (4.5) this gives

D2(⌧ ; t0) = D2(0; t0) +O(⌧) = 1
2 [A(t0), A0(t0)]� 1

4A00(t0) +O(⌧). (4.8d)

10 Of course, this also follows directly from D(⌧ ; t0) = O(⌧2).



A POSTERIORI ERROR ESTIMATION FOR MAGNUS-TYPE INTEGRATORS 211

By integration we finally obtain

L(⌧ ; t0) =
Z ⌧

0

⇧(⌧,�1)D(�1; t0) d�1

=
Z ⌧

0

⇧(⌧,�1)
Z �1

0

⇧(�1,�2)
Z �2

0

⇧(�2,�3) d�3 d�2 d�1D2(0; t0) +O(⌧4)

=: I3(⌧)| {z }
=O(⌧3)

D2(0; t0) +O(⌧4).

For problems of the type (1.1), with unitary evolution, the triple integral I3(⌧) satisfies kI3(⌧)k2  1
6⌧

3, and
together with (4.8d) we conclude:

Proposition 4.1. Consider the solution of (1.1) by the exponential midpoint scheme (2.4). If A 2 C3
, then

the local error (3.1) satisfies

kL(⌧ ; t0)k2  1
12⌧

3
��[A(t0), A0(t0)]� 1

2A00(t0)k2 +O(⌧4). (4.9)

The leading term of the deviation of the local error estimate. As stated at the beginning of Section 4.1,
the deviation eL(⌧ ; t0)� L(⌧ ; t0) consists of two parts.
(i) Asymptotically correct approximation of L(⌧ ; t0) in terms of the exact defect D(⌧ ; t0), see (3.7a): From (4.2)

we obtain for p = 2

⌧
3 D(⌧ ; t0)� L(⌧ ; t0) =

Z ⌧

0

1
6 �(⌧ � �)2 d3

d�3

�
⇧(⌧,�)D(�; t0)

�
d�. (4.10a)

Together with
@

@� ⇧(⌧,�) = �⇧(⌧,�)A(t0 + �),

we obtain
d
d�

�
⇧(⌧,�)D(�; t0)

�
= ⇧(⌧,�) @

@�D(�; t0) + @
@� ⇧(⌧,�)D(�; t0)

= ⇧(⌧,�)
�

@
@�D(�; t0)�A(t0 + �)D(�; t0)

�
= ⇧(⌧,�)D1(�; t0),

and
d2

d�2

�
⇧(⌧,�)D(�; t0)

�
= d

d�

�
⇧(⌧,�)D1(�; t0)

�

= ⇧(⌧,�)
�

@
@�D1(�; t0)�A(t0 + �)D1(�; t0)

�
= ⇧(⌧,�)D2(�; t0),

d3

d�3

�
⇧(⌧,�)D(�; t0)

�
= d

d�

�
⇧(⌧,�)D2(�; t0)

�

= ⇧(⌧,�)
�

@
@�D2(�; t0)�A(t0 + �)D2(�; t0)

�
= ⇧(⌧,�)D3(�; t0), (4.10b)

with D1 and D2 as defined above, and with

D3(⌧ ; t0) = d
d⌧D2(⌧ ; t0)�A(t0 + ⌧)D2(⌧ ; t0). (4.11a)

By a straightforward but tedious computation we can obtain

D3 = D02 �AD2

=
�
(��A)000 + 3 [�00, A] + [2 A + �, A00]

+ 3 [�0, A0] + [[�, A], A0] + 3 [[�0, A], A] + 2 [[�, A0], A] + [[A, A0], A]
�S

+
�
3 (��A)00 + 6 [�0, A] + [A + �, A0] + 3 [[�, A], A]

�D
+ 3
�
(��A)0 + [�, A]

�D1

+ (��A)D2,

(4.11b)
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and together with (4.4b), (4.7c), and (4.8c) we conclude

D3(0; t0) = (�000(0)�A000(t0)) + 3 [�00(0), A(t0)] + [2 A(t0) + �(0), A00(t0)]
+ 3 [�0(0), A0(t0)] + [[�(0), A(t0)], A0(t0)] + 3 [[�0(0), A(t0)], A(t0)]
+ 2 [[�(0), A0(t0)], A(t0)] + [[A(t0), A0(t0)], A(t0)]
+ (�(0)�A(t0))(�00(0)�A00(t0)).

(4.11c)

Together with (4.5) this gives

D3(⌧ ; t0) = D3(0; t0) +O(⌧)
= �[A(t0), [A(t0), A0(t0)]] + 3

2 [A(t0), A00(t0)]� 1
2 A000(t0) +O(⌧).

(4.11d)

Using ⇧(⌧,�) = Id + O(⌧), by integration we obtain (see (4.10))

1
3⌧ D(⌧ ; t0)� L(⌧ ; t0) =

Z ⌧

0

1
6 �(⌧ � �)2 ⇧(⌧,�)D3(�; t0) d� = 1

72⌧
4D3(0; t0) +O(⌧5) (4.12)

= ⌧4
�� 1

72 [A(t0), [A(t0), A0(t0)]] + 1
48⌧

4[A(t0), A00(t0)]� 1
144⌧

4 A000(t0)
�

+O(⌧5).

(ii) Asymptotically correct approximation of D(⌧ ; t0) by eD(⌧ ; t0): We have
eD(⌧ ; t0)�D(⌧ ; t0) =

�e�(⌧)� �(⌧)
�S(⌧ ; t0).

For the approximate defect eD(⌧ ; t0), version (3.13a), according to (4.3a) with p = 2,
1
3⌧
eD(⌧ ; t0)� 1

3⌧D(⌧ ; t0) = 1
36⌧

4 [A(t0), [A(t0), A0(t0)]] +O(⌧5), (4.13a)

where we have used S(⌧ ; t0) = Id + O(⌧). For the approximate defect eD(⌧ ; t0), version (3.15), according
to (4.3b),

1
3⌧
eD(⌧ ; t0)� 1

3⌧ D(⌧ ; t0) = 1
72⌧

4 [A(t0), [A(t0), A0(t0)]] +O(⌧5). (4.13b)
Adding (4.12) and (4.13) we finally obtain an estimate for the deviation between the numerical realization

of the local error estimate and the true local error:

Proposition 4.2. Consider the solution of (1.1) by the exponential midpoint scheme (2.4). If A 2 C4
, then

the deviation

eL(⌧ ; t0)� L(⌧ ; t0) = 1
3⌧
eD(⌧ ; t0)� L(⌧ ; t0) of the local error estimate satisfies

k eL(⌧ ; t0)� L(⌧ ; t0)k2  ⌧4
��c [A(t0), [A(t0), A0(t0)]]� 1

48 [A(t0), A00(t0)] + 1
144A000(t0)

��
2

+O(⌧5), (4.14)

where c = 1
72 for the approximate defect

eD(⌧ ; t0), version (3.13a), and c = 0 for the approximate defect

eD(⌧ ; t0),
version (3.15).

5. Implementation and numerical examples

An algorithmic realization of the fourth-order CFM integrator (2.5) interlaced with the evaluation of the
defect-based error estimator (3.7c), (3.16), (3.17), formulated as pseudo-code, is given as follows:

 = S1(⌧) 0

d = e�1(⌧) 
d = S2(⌧) d // (apply 1 additional matrix exponential)
 = S2(⌧) (=  1)
d = d + e�2(⌧) �A(t0 + ⌧) // (= approximative defect of  1)
` = ⌧ d/5 // (= local error estimate for  1, scheme of order p = 4)

The other versions considered are implemented in a similar fashion.
We now briefly illustrate our theoretical results by computing the empirical orders of the local error and the

deviation of the error estimator. To determine the error experimentally, we resort to a reference solution which
was computed on a very fine temporal grid.
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5.1. Hubbard model

The first test problem we consider is a Hubbard model describing the movement and interaction of electrons
within an oxide solar cell [18], with11 A(t) 2 C400⇥400. The explicit time-dependence here originates from an
external electric field associated with a photon. Through a Wannier function projection one can map the low
energy degrees of freedom onto a set of Wannier orbitals, where each is localized around one vanadium lattice
site. Hence, the layers of the solid can be modeled by electrons hopping with amplitude vij from a Wannier
function around site i to one around site j. The Coulomb interaction U between the electrons can be calculated
through the constrained random phase approximation, we use U = 3.

This model yields the finite-dimensional Hamiltonian

H =
1
2

X

ij�

vijc
†
j�ci� +

X

ij��0

Uij n̂i�n̂j�0 . (5.1)

Here, the 2nd quantization operators ci� and c†j� take an electron away from site i with spin � 2 {", #} and add
it on site j. The occupation number operator n̂i� = c†i�ci� tests if there is an electron at site i with spin �.

The time-dependence in the Hamiltonian (5.1) is introduced through the photon which excites the system out
of equilibrium, and which can be described by a classical electric field pulse, see [18]. In our model, we choose
ei !(t) with !(t) = 1

10 exp
�� 1

6 (t� 6)2 cos
�

7⇡
4 (t� 6)

��
, which appears in o↵-diagonal entries of H(t) depending

on the geometry underlying the model of the investigated solid.
The Hamiltonian can thus be represented by

H(t) = D + f(t)HS + i g(t)HA,

with a real diagonal matrix D, a real symmetric matrix HS and a real antisymmetric matrix HA. The model is
described in detail in [21].

The oscillating and quickly attenuating electric field generated by the impact of a photon in this model makes
adaptive time-stepping a relevant issue. Thus, the problem can serve to illustrate our theoretical results on local
error estimation.

In the following tables, we give the Euclidean norms of the local error L(⌧ ; t0) and of the deviation eL(⌧ ; t0)�
L(⌧ ; t0) of defect-based local error estimators eL(⌧ ; t0). As initial state we choose the ground state of the system
at t0 = 0.

Tables 2 and 3 give the results for the exponential midpoint scheme, where the evaluation of the integrals
appearing in the specification of the error estimator is realized by Taylor quadrature (3.10b) and Hermite-type
quadrature (3.14), respectively. As to be expected from the analysis given in Section 4, see Proposition 4.2, the
latter variant is more precise by a factor ⇡2.

Tables 4 and 5 give the results for the fourth-order CFM integrator (2.5a), where the evaluation of the
integrals appearing in the specification of the error estimator is realized by Taylor quadrature (3.10b) (p = 4)
and the modified Hermite-type quadrature (3.18), respectively.

Tables 6 and 7 give the results for the fourth-order classical Magnus integrator (2.11), where the evaluation
of the integrals appearing in the specification of the error estimator is realized by Taylor quadrature (3.10b)
(p = 4) and the modified Hermite-type quadrature (3.18), respectively.

11The dimension of the matrix in this model grows exponentially with the number of considered sites in the Hubbard model of
the solid and quickly reaches the limitations of computer hardware, making the issue of an e�cient time integrator crucial. For our
illustrations in this paper, we choose a manageable model.
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Table 2. Local error and deviation of the defect-based error estimator for the exponential
midpoint scheme applied to (5.1), where Taylor quadrature (3.10b) (p = 2) is used for the
evaluation of eD.

⌧ kL(⌧ ; t0)k2 Order k eL(⌧ ; t0)� L(⌧ ; t0)k2 Order

6.250e�02 7.357e�05 2.97 1.794e�05 4.03
3.125e�02 9.120e�06 3.01 1.090e�06 4.04
1.563e�02 1.130e�06 3.01 6.686e�08 4.03
7.813e�03 1.405e�07 3.01 4.135e�09 4.02
3.906e�03 1.750e�08 3.00 2.570e�10 4.01

Table 3. Local error and deviation of the defect-based error estimator for the exponential
midpoint scheme applied to (5.1), where the trapezoidal quadrature rule (3.14) is used for the
evaluation of eD.

⌧ kL(⌧ ; t0)k2 Order k eL(⌧ ; t0)� L(⌧ ; t0)k2 Order

6.250e�02 7.357e�05 2.97 3.908e�06 4.13
3.125e�02 9.120e�06 3.01 2.564e�07 3.93
1.563e�02 1.130e�06 3.01 1.666e�08 3.94
7.813e�03 1.405e�07 3.01 1.064e�09 3.97
3.906e�03 1.750e�08 3.00 6.723e�11 3.98

Table 4. Local error and deviation of the defect-based error estimator for the fourth order
CFM integrator (2.5a) applied to (5.1), where Taylor quadrature (3.10b) (p = 4) is used for
the evaluation of eD.

⌧ kL(⌧ ; t0)k2 Order k eL(⌧ ; t0)� L(⌧ ; t0)k2 Order

6.250e�02 2.309e�07 5.04 2.619e�08 6.06
3.125e�02 7.146e�09 5.01 3.962e�10 6.05
1.563e�02 2.223e�10 5.01 6.073e�12 6.03
7.813e�03 6.931e�12 5.00 9.324e�14 6.03
3.906e�03 2.164e�13 5.00 1.374e�15 6.08

Table 5. Local error and deviation of the defect-based error estimator for the fourth order
CFM integrator (2.5a) applied to (5.1), where the modified trapezoidal quadrature rule (3.18)
is used for the evaluation of eD.

⌧ kL(⌧ ; t0)k2 Order k eL(⌧ ; t0)� L(⌧ ; t0)k2 Order

6.250e�02 2.309e�07 5.04 2.339e�08 6.07
3.125e�02 7.146e�09 5.01 3.544e�10 6.04
1.563e�02 2.223e�10 5.01 5.442e�12 6.03
7.813e�03 6.931e�12 5.00 8.358e�14 6.02
3.906e�03 2.164e�13 5.00 1.249e�15 6.06
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Table 6. Local error and deviation of the defect-based error estimator for the fourth order
classical Magnus integrator (2.11) applied to (5.1), where Taylor quadrature (3.10b) (p = 4) is
used for the evaluation of eD.

⌧ kL(⌧ ; t0)k2 Order k eL(⌧ ; t0)� L(⌧ ; t0)k2 Order

6.250e�02 1.328e�07 4.67 7.132e�08 6.01
3.125e�02 4.733e�09 4.81 1.073e�09 6.05
1.563e�02 1.569e�10 4.91 1.633e�11 6.04
7.813e�03 5.041e�12 4.96 2.508e�13 6.02
3.906e�03 1.593e�13 4.98 3.699e�15 6.08

Table 7. Local error and deviation of the defect-based error estimator for the fourth order
classical Magnus integrator (2.11) applied to (5.1), where the modified trapezoidal quadrature
rule (3.18) is used for the evaluation of eD.

⌧ kL(⌧ ; t0)k2 Order k eL(⌧ ; t0)� L(⌧ ; t0)k2 Order

6.250e�02 1.328e�07 4.67 1.968e�08 6.11
3.125e�02 4.733e�09 4.81 2.879e�10 6.09
1.563e�02 1.569e�10 4.91 4.323e�12 6.06
7.813e�03 5.041e�12 4.96 6.546e�14 6.05
3.906e�03 1.593e�13 4.98 1.132e�15 5.85

Table 8. Local error and deviation of the defect-based error estimator for the exponential
midpoint scheme applied to (5.2), where Taylor quadrature (3.10b) (p = 2) is used for the
evaluation of eD.

⌧ kL(⌧ ; t0)k2 Order k eL(⌧ ; t0)� L(⌧ ; t0)k2 Order

1.250e�01 3.343e�03 2.97 4.519e�04 3.97
6.250e�02 4.198e�04 2.99 2.839e�05 3.99
3.125e�02 5.254e�05 3.00 1.777e�06 4.00
1.563e�02 6.569e�06 3.00 1.111e�07 4.00
7.813e�03 8.212e�07 3.00 6.943e�09 4.00

Table 9. Local error and deviation of the defect-based error estimator for the exponential
midpoint scheme applied to (5.2), where the trapezoidal quadrature rule (3.14) is used for the
evaluation of eD.

⌧ kL(⌧ ; t0)k2 Order k eL(⌧ ; t0)� L(⌧ ; t0)k2 Order

1.250e�01 3.343e�03 2.97 5.604e�05 4.11
6.250e�02 4.198e�04 2.99 3.420e�06 4.03
3.125e�02 5.254e�05 3.00 2.124e�07 4.01
1.563e�02 6.569e�06 3.00 1.326e�08 4.00
7.813e�03 8.212e�07 3.00 8.282e�10 4.00
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Table 10. Local error and deviation of the defect-based error estimator for the fourth order
CFM (2.5a) applied to (5.2), where Taylor quadrature (3.10b) (p = 4) is used for the evaluation
of eD.

⌧ kL(⌧ ; t0)k2 Order k eL(⌧ ; t0)� L(⌧ ; t0)k2 Order

1.250e�01 1.892e�06 4.99 1.441e�07 5.95
6.250e�02 5.917e�08 5.00 2.271e�09 5.99
3.125e�02 1.850e�09 5.00 3.556e�11 6.00
1.563e�02 5.780e�11 5.00 5.551e�13 6.00
7.813e�03 1.806e�12 5.00 6.530e�15 6.41

Table 11. Local error and deviation of the defect-based error estimator for the fourth order
CFM (2.5a) applied to (5.2), where the modified trapezoidal quadrature rule (3.18) is used for
the evaluation of eD.

⌧ kL(⌧ ; t0)k2 Order k eL(⌧ ; t0)� L(⌧ ; t0)k2 Order

1.250e�01 1.892e�06 4.99 1.184e�07 5.96
6.250e�02 5.917e�08 5.00 1.864e�09 5.99
3.125e�02 1.850e�09 5.00 2.919e�11 6.00
1.563e�02 5.780e�11 5.00 4.556e�13 6.00
7.813e�03 1.806e�12 5.00 6.154e�15 6.21

Table 12. Local error and deviation of the defect-based error estimator for the fourth order
classical Magnus integrator (2.11) applied to (5.2), where Taylor quadrature (3.10b) (p = 4) is
used for the evaluation of eD.

⌧ kL(⌧ ; t0)k2 Order k eL(⌧ ; t0)� L(⌧ ; t0)k2 Order

1.250e-01 5.154e-06 4.97 4.206e-07 5.96
6.250e-02 1.618e-07 4.99 6.612e-09 5.99
3.125e-02 5.064e-09 5.00 1.035e-10 6.00
1.563e-02 1.583e-10 5.00 1.618e-12 6.00
7.813e-03 4.947e-12 5.00 2.109e-14 6.26

Table 13. Local error and deviation of the defect-based error estimator for the fourth order
classical Magnus integrator (2.11) applied to (5.2), where the modified trapezoidal quadrature
rule (3.18) is used for the evaluation of eD.

⌧ kL(⌧ ; t0)k2 Order k eL(⌧ ; t0)� L(⌧ ; t0)k2 Order
1.250e�01 5.154e�06 4.97 2.014e�08 6.89
6.250e�02 1.618e�07 4.99 1.817e�10 6.79
3.125e�02 5.064e�09 5.00 1.991e�12 6.51
1.563e�02 1.583e�10 5.00 2.862e�14 6.12
7.813e�03 4.947e�12 5.00 6.848e�15 2.06
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5.2. Rosen–Zener model

As a second example, we solve a Rosen-Zener model from [12]. The associated Schrödinger equation in the
interaction picture is given by (1.1) with

H(t) = f1(t)�1 ⌦ Ik⇥k + f2(t)�2 ⌦R 2 C2k⇥2k, k = 50, (5.2a)

�1 =
✓

0 1
1 0

◆
, �2 =

✓
0 �i
i 0

◆
, (5.2b)

R = tridiag(1, 0, 1) 2 Rk⇥k, (5.2c)

f1(t) = V0 cos(!t) (cosh(t/T0))
�1 , f2(t) = V0 sin(!t) (cosh(t/T0))

�1 , ! = 1
2 , T0 = 1, V0 = 1 , (5.2d)

subject to the initial condition  (0) = (1, . . . , 1)T .
Tables 8–13 give the results analogous to those for the model (5.1), with the same observations of the empirical

convergence orders.
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