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a b s t r a c t

Mathematical models based on systems of reaction–diffusion equations provide fun-
damental tools for the description and investigation of various processes in biology,
biochemistry, and chemistry; in specific situations, an appealing characteristic of the
arising nonlinear partial differential equations is the formation of patterns, reminiscent
of those found in nature. The deterministic Gray–Scott equations constitute an elemen-
tary two-component system that describes autocatalytic reaction processes; depending
on the choice of the specific parameters, complex patterns of spirals, waves, stripes, or
spots appear.

In the derivation of a macroscopic model such as the deterministic Gray–Scott
equations from basic physical principles, certain aspects of microscopic dynamics,
e.g. fluctuations of molecules, are disregarded; an expedient mathematical approach
that accounts for significant microscopic effects relies on the incorporation of stochastic
processes and the consideration of stochastic partial differential equations.

The present work is concerned with a theoretical and numerical study of the
stochastic Gray–Scott equations driven by independent spatially time-homogeneous
Wiener processes. Under suitable regularity assumptions on the prescribed initial states,
existence, as well as the uniqueness of the solution processes, is proven. Numerical
simulations based on the application of a time-adaptive first-order operator splitting
method and the fast Fourier transform illustrate the formation of patterns in the
deterministic case and their variation under the influence of stochastic noise.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

This work is concerned with the theoretical study and numerical simulation of the stochastic Gray–Scott equations,
which constitute a two-component system of reaction–diffusion equations driven by a spatial time homogeneous Wiener
process. Despite its comparatively simple structure, the underlying system of deterministic nonlinear partial differential
equations exhibits a large variety of complex patterns for different choices of the specific parameters.
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Biochemical and chemical kinetics reactions have been a rich source for the observation of spatial–temporal patterns;
the derivation and investigation of suitable mathematical models for such phenomena remain a challenging question.

A famous example of non-equilibrium thermodynamics is the Belousov–Zhabotinsky reaction, discovered by Boris
Belousov at the beginning of the 1950s; he succeeded in stimulating a reaction of chemical substances that led to periodic
changes of their concentrations, visible as oscillations in colour.

An elementary mathematical model for this kind of nonlinear chemical oscillators is the Brusselator, a system of
reaction–diffusion equations proposed by Prigogine, Lefever [1, Eq. (3.6)]; in a dimensionless formulation, the considered
system of nonlinear partial differential equations has the structure

⇢
@tu(x, t) = ru�u(x, t) + hu

�
u(x, t), v(x, t)

�
,

@tv(x, t) = rv �v(x, t) + hv

�
u(x, t), v(x, t)

�
,

(1.1a)

where the real-valued space–time-dependent functions u, v : I ⇥ [0, T ] ⇢ Rd ⇥ R ! R are associated with the
concentrations of the chemical substances, � represents the Laplacian with respect to the spatial variables, the constants
ru, rv > 0 denote the diffusion coefficients, and the nonlinear functions hu, hv : R2 ! R describe the reactions.

Alan Turing suggested that the main mechanisms of morphogenesis are captured by mathematical models for systems
of chemical substances, which react together and diffuse through tissue. In a seminal work [2], he studies reaction–
diffusion equations that have a similar form as (1.1a) on different geometries of the domain, amongst others on spheres
and rings, and explains the development of patterns from almost uniform initial states by instabilities of homogeneous
equilibria; we refer to such patterns as Turing patterns.

In the present work, we focus on a classical mathematical model for isothermal autocatalytic reaction processes that
goes back to Gray, Scott [3–6]; depending on the choice of the feed and removal rates of the reactants, Turing patterns
of spirals, waves, stripes, or spots appear. The deterministic Gray–Scott equations are cast into the form (1.1a) with cubic
reaction terms

hu(u, v) = �u (1 � u) � g(u, v) , hv(u, v) = ��v v + g(u, v) ,
g(u, v) = u v2 ,

(1.1b)

involving certain constants �u,�v > 0.
Related systems of reaction–diffusion equations are also studied in other contexts. Kierstead, Slobodkin [7] describe

the survival of phytoplankton populations in body of water. Segel, Jackson [8] consider predator–prey interaction models
with diffusion; based on a linear stability analysis, they demonstrate that spatially uniform equilibria which are stable for
homogeneously distributed populations become unstable through dispersal effects. Levin, Segel [9] study the dynamics
of plankton populations. Klausmeier [10] discusses a model for semi-arid ecosystems on sloped terrains. Murray [11,12]
describes coat patterns in animal tails; numerical simulations on surfaces with periodic and homogeneous Neumann
boundary conditions, respectively, show patterns of stripes and spots that are similar to the markings observed on the
tails of felines.

Reaction–diffusion systems like (1.1a) constitute prevalent macroscopic models for microscopic phenomena; however,
as their derivation relies on fundamental balance laws and Fick’s law of diffusion, significant aspects of microscopic
dynamics such as fluctuations of molecules are disregarded. An appropriate mathematical approach to establish more
realistic models is the incorporation of a random noise mimicking these fluctuations.

Biancalani et al. [13] introduce a microscopic model of the Brusselator that includes stochastic fluctuations.
Compartment-based approaches use a division of the domain into certain compartments and a simulation of the number
of molecules in each compartment; Cao, Erban [14] investigate the dependence of stochastic Turing patterns on the
compartment size. In McKane et al. [15], it is shown how a stochastic amplification of a Turing instability gives rise to
spatial–temporal patterns. Treatments of the stochastic Brusselator in different respects are found in [16–18].

The main theoretical contribution of this paper is to show (or derive) the existence and uniqueness of a solution for
the Gray–Scott equations driven by independent spatially time-homogeneous Wiener processes. Besides, some numerical
simulations are presented as an illustration. Here, the employed numerical approximation is based on a first-order
operator splitting method and the fast Fourier transform; in order to enhance the reliability of the computations, we
adapt the time stepsizes accordingly to the sizes of the nonlinear terms for particular realisations.

The theory of stochastic partial differential equations provides the basis of our investigations; for a comprehensive
treatment of the fundamentals as well as an extensive bibliography, we refer to the monographs [19–22].

This manuscript has the following structure. In Section 2, we introduce compact reformulations of the deterministic and
stochastic Gray–Scott equations as well as the needed hypotheses on the driving Wiener processes and the initial states,
subsequently, we state the main result ensuring the existence and uniqueness of the non-negative solution processes. In
Section 3, to complement our theoretical analysis, we present numerical simulations for the Gray–Scott equations in two
space dimensions that illustrate the formation of patterns in the deterministic case and their variation under the influence
of stochastic noise. Finally, in the Appendix A we define the multiplication operator and summarise the most important
inequality.
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2. Stochastic Gray–Scott equations

In this section, we state the mathematical formulation of the stochastic Gray–Scott equations, introduce the underlying
spaces, review basic auxiliary results on spatially time homogeneous Wiener processes as well as associated stochastic
integrals, and specify the hypotheses under which a solution exists. We begin with the mathematical formulation of
the stochastic Gray–Scott equations. In the system, u and v are concentrations of two reactants U and V , normalised as
dimensionless units. The parameters f and k represent the feed rate and removal rate of the reactants. We recall that the
parameters ru, rv > 0 correspond to the diffusion coefficients. These parameters have a significant effect at the form of
the observed patterns. The equation is given as follows

8
><

>:

du(t, x) =
�
ru�u(t, x) � u(t, x)v2(t, x) + f (1 � u(t, x))

�
dt

+ �uu(t, x) � dW1(t, x), x 2 I, t > 0,
dv(t, x) =

�
rv�v(t, x) + u(t, x)v2(t, x) � (f + k)v(t, x)

�
dt

+ �vv(t, x) � dW2(t, x), x 2 I, t > 0,

(2.1)

where I = [0, 1]d be a bounded domain, d = 1, 2, A = � be the Laplace operator with periodic, or Dirichlet boundary
conditions. The initial conditions are given by u0 and v0. Since the white noise is an approximation of a continuously
fluctuating noise with finite memory being much shorter than the dynamical timescales, the representation of the
stochastic integral as a Stratonovich stochastic integral is appropriate.

For suitable initial conditions and choices of the parameters, the formation of patterns is observed in the Gray–Scott
equations. For convenience, we suppose that the constants that determine the strength of the multiplicative stochastic
noise are positive, i.e. �u, �v � 0; evidently, the deterministic Gray–Scott equations (1.1) are retained from (2.1) for the
special case (�u, �v) = (0, 0).

In this work, we focus on situations where the Gray–Scott equations (2.1) are driven by independent spatially time-
homogeneous Wiener processes; as relevant concrete examples, we study the Gray–Scott system driven by fractional
Gaussian field. Let

A =

⇣
⌦,A,

�
A(t)

�
t2[0,T ]

,P
⌘

be a complete probability space with associated filtration satisfying the standard assumptions; for our purposes, it suffices
to consider a finite time interval. Let {�k : k 2 Zd} be a family of one-dimensional standard Brownian motions defined over
A. Here, we consider our equation on the d dimensional torus. In the case of a single dimension, a complete orthonormal
system of the underlying Lebesgue space L

2(I) := L
2(I,R) is given by sine and cosine functions

 m(x) =

8
<

:

p
2 sin

�
2⇡mx

�
if m � 1 ,

p
2 if m = 0 ,

p
2 cos

�
⇡ 2mx

�
if m  �1 ,

(2.2)

The extension to higher space dimensions relies on tensor products, i.e., for a multiindex m = (m1, . . . ,md) 2 Zd we have

�m(x) =

dY

j=1

�mj
(xj) , x 2 I. (2.3)

The corresponding eigenvalues are given by

�m = � 4⇡2
dX

j=1

m
2
j
, m = (m1, . . . ,md) 2 Zd . (2.4)

The spatially time-homogeneous Wiener process can be expressed in terms of the orthogonal system, i.e.,

W (t, x) =

X

k2Zd

�k k(x)�k(t).

where the family {�k : k 2 Zd} is a family of independent and identically distributed standard Brownian motions. For
simplicity, we assume in our work that �k = (↵ � D�k)�� , k 2 Zd, with certain positive constants adjusted in the numerical
examples. Going back to our equation (2.1), we impose the following hypothesis.

Hypothesis 2.1. The Wiener processes W1 and W2 are spatially time-homogeneous Wiener processes such that

Wj(t, x) =

X

k2Zd

(↵ � D�k)��j k(x)�k(t), j = 1, 2,

with �j > d

2 .
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In our case, Hypothesis 2.1 means that the sum defined by

S(� ) :=

X

k2Zd

(↵ � D�k)�2� (2.5)

is bounded for �1 and �2. For simplicity we assume that �1 = �2 = � . Since the solutions u and v of the Gray–Scott
system have to be non-negative, the initial conditions u0 and v0 have to be non-negative. Besides, we have to impose
some regularity assumptions on the initial condition to get existence and uniqueness of the solution.

Hypothesis 2.2. Let u0, v0 2 L
2(I) such that

1. u0 � 0 and v0 � 0;
2. u0 and v0 belong to L

6(I), in particular we have E|u0|
6
L6

< 1 and E|v0|
6
L6

< 1.

3. u0 and v0 belong to H
1
4 (I), in particular E|u0|

4
H
1
4

< 1 and E|v0|
4
H
1
4

< 1.

In system (2.1) we interpreted the stochastic integral as a Stratonovich integral. White noise is an idealisation; real
fluctuating forcing has a finite amplitude and a finite timescale; white noise is an idealisation of delta-function-correlated
noise. If now the white noise is approximated by a continuously fluctuating noise with finite memory (much shorter
than dynamical timescales), i.e., by noise with a finite correlation time ⌧ , and then the limit is taken for ⌧ ! 0, the
Wong–Zakai Theorem gives as the appropriate representation of the white noise the Stratonovich integral. In this sense,
the Stratonovich integral models the natural one, the drawback is that the Stratonovich integral is not a martingale,
and, therefore, the Itô isometry and Burkholder–Davis–Gundy inequality cannot be applied to the Stratonovich integral.
Although here in the article we analyse a more general system, where the integral is interpreted as an Itô integral. To
show that the system (2.1) has a unique solution, we first transform the system (2.1) into a system, where the integral
can be interpreted in the Itô sense by adding a correction term, and, then, we show that the correction term behaves
nicely. One can find a survey of some facts about the Stratonovich integral in Chapter 4.5.2 in [22]. In this way, it can be
shown that the solution to (2.1) and the solution to

8
><

>:

du(t, x) =
�
ru�u(t, x) � u(t, x)v2(t, x) + f � (f � �uS(�1))u(t, x)

�
dt

+ �uu(t, x)dW1(t, x), x 2 I, t > 0,
dv(t, x) =

�
rv�v(t, x) + u(t, x)v2(t, x) � (f + k � �vS(�2))v(t, x)

�
dt

+ �vv(t, x)dW2(t, x), x 2 I, t > 0,

(2.6)

are equivalent. For simplicity we will combine the coefficient and consider the following system
8
><

>:

du(t, x) =
�
ru�u(t, x) � u(t, x)v2(t, x) + ⇢ + ↵uu(t, x)

�
dt

+ �uu(t, x)dW1(t, x), x 2 I, t > 0,
dv(t, x) =

�
rv�v(t, x) + u(t, x)v2(t, x) + ↵vv(t, x)

�
dt

+ �vv(t, x)dW2(t, x), x 2 I, t > 0

(2.7)

where ⇢,↵u and ↵v are real-valued number, not necessarily positive and the stochastic integral is interpreted in the sense
of Itô. For this system we can show the following Theorem.

Theorem 2.1. Let us assume that u0, v0 are satisfying Hypothesis 2.2 and the Wiener processes W1 and W2 Hypothesis 2.1.
Then there exists a couple of progressively measurable processes (u, v) solving the system of equations (2.7) and for all � < 1
P(u 2 C(0, T ;H�2(I))) = 1. In addition, we have

1. for p = 2, 4, or 6, and for all T > 0, there exists a constant C > 0 such that

E sup
0tT

|u(t)|p
Lp

 C and E sup
0tT

|v(t)|p
Lp

 C .

2. for p = 4, there exists a constant C > 0 such that for all T > 0,

E sup
0tT

|u(t)|2
H
1
p

 C and E sup
0tT

|v(t)|2
H
1
p

 C .

From Theorem 2.1 and the assumption on the Wiener processes we can prove the existence of a unique solution to
the original equation.

Corollary 2.2. If Hypotheses 2.1 and 2.2 are satisfied, then there exists a couple of progressively measurable processes (u, v)
solving the system of equations (2.1). In addition, we have

1. for p = 2, 4, or 6, and for all T > 0, there exists a constant C > 0 such that

E sup
0tT

|u(t)|p
Lp

 C and E sup
0tT

|v(t)|p
Lp

 C .
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2. for p = 4, there exists a constant C > 0 such that for all T > 0,

E sup
0tT

|u(t)|2
H
1
p

 C and E sup
0tT

|v(t)|2
H
1
p

 C .

Proof of Corollary 2.2. In particular, assuming, for the time being, that the correction term is finite, we get as a new
system

8
><

>:

du(t, x) =
�
ru�u(t, x) � u(t, x)v2(t, x) + f (1 � u(t, x))

�
dt

+ �uu(t, x)dW1(t, x) + �uS(�1)u(t, x) dt, x 2 I, t > 0,
dv(t, x) =

�
rv�v(t, x) + u(t, x)v2(t, x) � (f + k)v(t, x)

�
dt

+ �vv(t, x)dW2(t, x) + �vS(�2)v(t, x) dt, x 2 I, t > 0.

(2.8)

Replacing f by f � �uS(�1) and (f + k) by (f + k) � �vS(�2) an application of Theorem 2.1 gives that there is a solution
(u, v) to (2.8) both processes being P-a.s. continuous in H

�
2(I) and satisfying (1) and (2). Now, if the process arising by the

correction term given by (A.27), i.e.,

⇠j(t) =
1
2

Z
t

0

X

i,k2Z

�
u(s)

���k

�
H

X

k2Z

(↵ � D�k)�2�j ds

is continuous in H
�
2(I) and satisfies the properties (1) and (2), then we are done. However, this follows by the properties

of u and v. ⇤

Proof. The proof of Theorem 2.1 consists of several steps. First, we show that the system with a truncated nonlinearity
can be uniquely solved. In a second step, we show that the solution is a.s. non-negative. In the third step, we give a
uniform estimate of u+v in H

1
4 (I). From Sobolev embeddings we get uniform bounds with the L

1-norm. Finally, by these
uniform bounds we can globalise the solution in the last step.

Step (i) Fix m 2 N. Since we would like to relax the condition on the initial conditions, we first approximate the
nonlinear term uv2 as follows. Let us define

gm(x) :=

8
<

:

x if 0 <x  m,

2 (m, (m + 1)) if m < x < m + 1,
(m + 1) if m + 1  x.

Between the interval (m,m+ 1) we interpolate the function by a polynomial function, such that gm is twice continuously
differentiable. In particular,

g
0

m
(x) |x=x0= 1, for x0 = m, g

0

m
(x) |x=x0= 0, for x0 = m + 1,

and

g
00

m
(x) |x=x0= 0, for x0 = m,m + 1.

Let us define the mapping Fm by

Fm : L
2(I) ⇥ L

4(I) �! L
1(I),

(u, v) 7�! Fm(u, v);

by

Fm(u, v)(x) := gm(u(x))g2
m
(v(x)), x 2 I.

The mapping Fm is Lipschitz with Lipschitz constant 2(m + 1)2. By Theorem 6.24 [20, p. 178] the following system
⇢
dum(t, x) = [ru�um(t, x) � Fm(um(t, x), vm(t, x)) + ⇢ + ↵uum(t, x)] dt + �u um(t, x)dW1(t, x),
um(0, x) = u0(x), x 2 I,

(2.9)

and
⇢
dvm(t, x) = [rv�vm(t, x) + Fm(um(t, x), vm(t, x)) + ↵vvm(t, x)] dt + �vvm(t, x)dW2(t, x),
vm(0, x) = v0(x), x 2 I,

(2.10)

has a unique pair of solution {um, vm}, each component belonging to C([0, T ]; L2(I)) \ L
2([0, T ];H1

2 (I)).
Step (ii) As the next step, we show that each component of the pair of the solution {um, vm} is non-negative. To show

this, we can follow e.g. Theorem 2.3 in [23], or [24, Theorem 2.6.2, p. 42]. Here, we summarise only the idea. In fact it
remains to approximate the operator � by, e.g., its Yosida approximation to be able to apply the Itô formula. Let

g�(r) =
r
2

� + r
, r 2 (��, 1),
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and

G�(r) := g�((r�)2), r 2 R.

Then, G� belongs to C
2 and G�(r) = G

0

�(r) = G
00

� (r) = 0 for all r 2 [0, 1), |G0

�(r)|  2r�, and 0  G
00

� (r)  8. Now, define
�� : L2(I) ! R by

��(w) =

Z

I

G�(w(⇠ )) d⇠ , w 2 L
2(I).

Observe, �� is twice uniformly continuous on bounded subsets, and such that the Itô formula can be applied (see Theorem
4.32 [20, p. 107]). Applying the Itô formula to ��(um(t)) where um(t) solves (2.9), we get

E��(um(t)) + ruE
Z

t

0
h�um(s),D��(um(s))i ds = ��(u0) � E

Z
t

0
hum(s)vm(s)2,D��(um(s))i ds

+↵uE
Z

t

0
hum(s),D��(um(s))i ds +

� 2
u

2
E
Z

t

0
Tr

⇣
D
2
G�(um(s))[M(um(s))Q

1
2 ][M(um(s))Q

1
2 ]

⇤

⌘
ds,

Note, that

h�um(s),D��(um(s))i =

Z

I

(rum(s, x))2�00

� (um(s, x)) dx � 0.

Due to (A.19), we know

E
Z

t

0
Tr

�
D
2
G�(um(s))[M(um(s))][M(um(s))]

�
ds  8E

Z
t

0
|u

�

m
(s)|2

L2 ds.

A similar argument works for vm.

hum(s)vm(s)2,D��(um(s))i =

Z

I

(um(s, x)�)2v2
m
(s, x) dx  (m + 1)2

Z

I

|um(s)�|
2
L2 ,

and

hum(s),D��(um(s))i  |u
�

m
(s)|2

L2 .

Collecting all together and applying the Grownwall Lemma give E��(um(t)) = 0. Taking the limit � ! 0 gives the assertion.
Similarly, one can proof that vm is P-a.s. non-negative.

Step (iii) In this step we will show that there exist some bounds on E|um|
p

Lp
, which are uniform in m 2 N.

Claim 2.1. For any even integer 2  p < 1 and initial condition satisfying E|u0|
p

Lp
,E|v0|

p

Lp
< 1, there exist constants

C1, C2, C3 > 0 such that

E sup
0sT

|um(s)|
p

Lp
 C(T )(C0 + E|u0|

p

Lp
), 8m 2 N.

For any even integer 2  p < 1, there exist constants C1, C2, C3 > 0 such that

E
Z

T

0

Z

I

u
p�2
m

(s, x)(rum(s, x))2 dx ds  C(T )(C0 + E|u0|
p

Lp
), 8m 2 N.

Proof. Let us put first p = 2. The calculations are straight forward using the variational approach. Let us remind that we
have Eq. (2.9) and the definition of the multiplication operator M defined in (A.9)

dum(t) = ruAum(t) dt � Fm(um, vm)(t) + ↵uum(t) + �uM(um(t))dW1(t),

respectively,

dum(t) = ruAum(t) dt � Fm(um, vm)(t) + ↵uum(t) +

X

k,l2Z

hum(t), li lhk�k(t),

with hk = (↵ � D�k)�
�
2  k and �k are i.i.d. mutually independent standard Brownian motion. Now, since �(x) = |x|

2
L2
,

D�(x)[h] = hx, hi, D2�(x)[h1, h2] = hh1, h2i, applying the Itô formula (see Theorem 4.17, [20, p. 105]) to �(x) = |x|
2
L2

and
integration by parts give

d�(u(t)) = d

Z

I

u
2
m
(t, x) dx = 2

Z

I

um(t, x)�um(t, x) dx dt

� 2
Z

I

um(t, x)gm(um(t, x))g2
m
(vm(t, x)) dx dt + 2

Z

I

um(t, x)(⇢ + ↵uum(t, x)) dx dt



E. Hausenblas, T.A. Randrianasolo and M. Thalhammer / Journal of Computational and Applied Mathematics 364 (2020) 112335 7

+ 2
X

k2Z

hum(t),M(um(t))hkid�k(t) + Tr
h
D
2�(um(t))[M(um(t))Q

1
2 ][M(um(t))Q

1
2 ]

⇤

i
dt

= �2
Z

I

(rum(t, x))2 dx dt � 2
Z

I

um(t, x)gm(um(t, x))g2
m
(vm(t, x)) dx dt

+ 2
Z

I

um(t, x)(⇢ + ↵uum(t, x)) dx dt

+ 2
X

k2Z

hum(t),M(um(t))hkid�k(t) + Tr
h
D
2�(um(t))[M(um(t))Q

1
2 ][M(um(t))Q

1
2 ]

⇤

i
dt.

Taking the expectation, integrating, and taking into account that the stochastic integral vanishes, we get

1
2
E
Z

t

0

Z

I

u
2
m
(s, x) dx ds + 2

Z
t

0

Z

I

(rum(s, x))2 dx ds

 E|u0|
2
L2

+ 2
Z

t

0

Z

I

um(s, x)f (1 � um(s, x)) dx ds + �u

Z
t

0

X

k2Z

|M(um(s))hk|
2
L2
ds.

By estimate (A.19) and Hypothesis 2.1 we have
Z

t

0
Tr

h
D
2�(um(s))[M(um(s))Q

1
2 ][M(um(s))Q

1
2 ]

⇤

i
ds  S(�1)

Z
t

0
|um(s)|2

L2
ds,

and therefore, by the Young inequality, we get

1
2
E|um(t)|2

L2
+ 2

Z
t

0
E|um(s)|2

H
1
2
ds + 2E

Z
t

0

Z

I

um(s, x)gm(um(s, x))g2
m
(vm(s, x)) dx ds

 E|u0|
2
L2

+ C(") (2⇢)2 +

Z
t

0
E|um(s)|2

L2
ds + (↵u + CS(� ))

Z
t

0
E|um(s)|2

L2
ds.

Grownwall’s Lemma gives that there exists a constant C = C(T ) > 0 such that

1
2
E|um(t)|2

L2
+ 2

Z
t

0
E|um(s)|2

H
1
2
ds  E|u0|

2
L2

+ C(T ), 8t 2 [0, T ]. (2.11)

To estimate the supremum over the time, i.e. E sup0tT |um(t)|2
L2
, we have to apply the Burkholder–Davis–Gundy

inequality to estimate the stochastic integral
X

k2Z

hum(t),M(um(t))(↵ � D�k)�� hkid�k(t).

Thus, inequality (A.19) gives

E sup
0st

���
Z

s

0

X

k2Z

hum(r), um(r)hkid�k(r)
���
L2

 C E
✓Z

t

0
|um(s)|4

L2
ds

◆ 1
2

 C E sup
0st

|um(s)|2
L2
t
1
2 .

Again, we have by (A.19)
Z

t

0
Tr

⇣
D
2�(um(s))[M(um(s))Q

1
2 ][M(um(s))Q

1
2 ]

⇤

⌘
ds  S(�1)

Z
t

0
|um(s)|2

L2
ds,

Fix T
⇤ > 0. Integrating up to time T

⇤, taking expectation, rearranging, using the Hölder and Young inequality, and taking
into account the positivity of um(t, x), lead to

E sup
0tT⇤

Z

I

u
2
m
(t, x) dx + 2ru

Z
T

⇤

0
E
Z

I

(rum(t, x))2 dx dt (2.12)

+ 2
Z

T
⇤

0
E
Z

I

um(t, x)gm(um(t, x))g2
m
(um(t, x)) dx dt

 E|u0|
2
L2

+ 2⇢
Z

T
⇤

0
E
Z

I

um(t, x) dx dt

+ 2↵u

Z
T

⇤

0
E
Z

I

u
2
m
(t, x) dx dt + 2CQ

1 �uE
Z

T
⇤

0
|um(t)|2

L2
dt + C E sup

0sT⇤

|um(s)|2
L2
T

⇤
1
2 .
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Rearranging we get

E sup
0tT⇤

Z

I

u
2
m
(t, x) dx + 2ru

Z
T

⇤

0
E
Z

I

(rum(t, x))2 dx dt

+ 2
Z

T
⇤

0
E
Z

I

um(t, x)gm(um(t, x))g2
m
(um(t, x)) dx dt

 E|u0|
2
L2

+ C (2⇢)2 +

Z
T

⇤

0
E|um(t)|2

L2
dt

+ 2↵u

Z
T

⇤

0
E|um(t)|2

L2
dt + 2CQ

1 E
Z

T
⇤

0
|um(t)|2

L2
dt + C E sup

0sT⇤

|um(s)|2
L2
T

⇤
1
2 .

In case
p
T ⇤C 

1
2 , we get by subtracting E sup0sT⇤ |um(s)|2

L2
on both sides

1
2
E sup

0tT⇤

Z

I

u
2
m
(t, x) dx + 2ru

Z
T

⇤

0
E
Z

I

(rum(t, x))2 dx dt (2.13)

+ 2
Z

T
⇤

0
E
Z

I

um(t, x)gm(um(t, x))g2
m
(um(t, x)) dx dt

 E|u0|
2
L2

+ C1 + C2

Z
T

⇤

0
E|um(t)|2

L2
dt.

Taking into account (2.11) we get

1
2
E sup

0tT⇤

Z

I

u
2
m
(t, x) dx + 2ru

Z
T

⇤

0
E
Z

I

(rum(t, x))2 dx dt (2.14)

+ 2
Z

T
⇤

0
E
Z

I

um(t, x)gm(um(t, x))g2
m
(um(t, x)) dx dt + 2f

Z
T

⇤

0
E|um(t)|2

L2
dt

 E|u0|
2
L2

+ C1E|u0|
2
L2

+ C2 + C(T ⇤).

Given T , we can decompose [0, T ] as [0kN�1[kT
⇤, (k+1)T ⇤], and apply inequality (2.14) to each interval [kT ⇤, (k+1)T ⇤],

k = 0, . . . ,N � 1. In this way, we extend the estimate to the whole interval [0, T ] to prove that the family {um : m 2 N}

can be bounded uniformly for all m 2 N in the supremums norm over time. In particular, we proved the assertion (1) of
Theorem 2.1 for the family {um : m 2 N}.

Let p = 4 and �(u) =
R
I
u
p(x) dx. Then D�(u)[h] = p

R
I
u
3(x) h(x) dx and D

2�(u)[h1, h2] = 12
R
I
u
2(x) h1(x)h2(x) dx.

Recalling that um is non-negative, we obtain by the Itô formula applied to �(x) = |x|
p

Lp

�(u(T )) ��(u0) =

Z

I

u
4
m
(T , x) dx �

Z

I

u
4
m
(0, x) dx =

Z
T

0

Z

I

h
ru4u3

m
(t, x)r2

um(t, x)

� 4u3
m
(t, x)gm(um(t, x))g2

m
(vm(t, x)) + 4(⇢ � ↵uum(t, x))u3

m
(t, x)

i
dx dt

+

Z
T

0
4 �uu4

m
(t, x)dW1(t, x) +

Z
T

0
Tr

⇣
D
2�(um(t))[M(um(t))Q

1
2 ][M(um(t))Q

1
2 ]

⇤

⌘
dt.

Continuing gives

�(u(t)) � �(u0) + ru12
Z

t

0

Z

I

u
2
m
(s, x)(rum(s, x))2 dx ds

+ p

Z
t

0

Z

I

u
3
m
(t, x)gm(um(t, x))g2

m
(vm(t, x)) dx ds

= �(u(T )) ��(u0) + 4
Z

t

0

Z

I

(⇢ � ↵uum(t, x))u3
m
(s, x) dx ds + p�u

Z
t

0

Z

I

u
4
m
(s, x)dW1(s, x)

+

Z
t

0
Tr

⇣
D
2�(um(s))[M(um(s))Q

1
2 ][M(um(s))Q

1
2 ]

⇤

⌘
ds.

Taking expectation and using integration by parts give

E|um(t)|4L4 + ru12
Z

t

0
E
Z

I

u
2
m
(s, x)(rum(s, x))2 dx ds

+ 4E
Z

t

0

Z

I

Fm(um, vm)u3
m
(s, x) dx ds  E|u0|

4
L4

+ C1E
Z

t

0

Z

I

u
3
m
(s, x) dx ds + C3E

Z
t

0
|um(s)|4

L4
ds.
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We get by some rearrangements and Gronwall’s Lemma

E|um(t)|4L4 + ru12
Z

t

0
E
Z

I

u
2
m
(s, x)(rum(s, x))2 dx ds  E|u0|

4
L4

+ C(T ). (2.15)

To estimate the supremum, we apply again (A.21) and get

E sup
0tT

����

Z
t

0

Z

I

u
4
m
(s, x)dW1(s, x)

����  S(�1)E
✓Z

T

0
|u

4
m
(s)|2

L2 ds

◆ 1
2

.

Applying the Hölder inequality, Sobolev embedding, and then the Young inequality gives for ", "̃ > 0

E sup
0tT

����

Z
t

0

Z

I

u
4
m
(s, x)dW1(s, x)

����  S(�1)E
✓Z

T

0
|u

2
m
(s)|2

L1
|u

2
m
(s)|2

L2ds

◆ 1
2

 S(�1)E
✓Z

T

0
|u

2
m
(s)|2

H
1
2
|um(s)|2

L4
ds

◆ 1
2

 S(�1)E
✓Z

T

0

✓Z

I

u
2
m
(s, x)(rum(s, x))2 dx

◆
ds sup

0sT

|um(s)|2
L4

◆ 1
2

 "S(�1)E
Z

T

0

✓Z

I

u
2
m
(s, x)(rum(s, x))2 dx

◆
ds + C(")E sup

0sT

|um(s)|2
L4

 "S(�1)E
Z

T

0

Z

I

u
2
m
(s, x)(rum(s, x))2 dx ds + "̃E sup

0sT

|um(s)|4
L4

+ C(", "̃).

Again, the trace is given by
1
2
Tr

⇣
D
2�(um(s))[M(um(s))Q

1
2 ][M(u(s))Q

1
2 ]

⇤

⌘
= S(� ) |um(s)|4

L4
.

Therefore, taking " and "̃ sufficiently small

1
2
E sup

0tT

|um(t)|4L4 + ruE
Z

T

0

Z

I

u
2
m
(s, x)[rum(s, x)]2 dx ds

+ 4E
Z

T

0

Z

I

Fm(um, vm)(s)u3
m
(s, x) dx ds  E|u0|

4
L4

+ 4E
Z

T

0

Z

I

(⇢ + ↵uum(s, x))u3
m
(s, x) dx ds + C E

Z
T

0

Z

I

u
4
m
(s, x) dx ds + C(", "̃).

Due to (2.15) the terms in the RHS are bounded and there exists a constant C = C(T ) > 0 such that

E sup
0tT

|um(t)|4L4  C(T )E|u0|
4
L4

. ⇤

Step (iv) Let us define wm = um + vm and w0 = u0 + v0. Here, we will prove the following claim:

Claim 2.2. Under Hypothesis 2.2-(ii), the following estimates are valid:

1. There exists a constant C = C(T ) > 0 such that

E sup
0tT

|wm(t)|2
L2

,

Z
T

0
E|rum(s)|2

L2
ds, E

Z
T

0
|rvm(s)|2

L2
ds  C, m 2 N.

2. for any even integer p � 2, there exists a constant C = C(T , p) > 0 such that

E sup
0tT

|wm(t)|
p

Lp
 C, m 2 N,

and

E
Z

t

0

Z

I

|u
k�1
m

(s, x)vp�1�k

m
(s, x)(rum(s, x))2| dx ds  C, k = 1 . . . , p � 1, m 2 N,

E
Z

t

0

Z

I

|u
k

m
(s, x)vp�2�k

m
(s, x)(rvm(s, x))2| dx ds  C, k = 0, . . . , p � 2, m 2 N.
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3. In addition, there exists a constant C = C(T ) > 0 such that

E
Z

t

0

Z

I

��uk�1
m

(s, x)vp�1�k

m
(s, x)rum(s, x)rvm(s, x)

�� dx ds  C, k = 0, . . . , p � 2, m 2 N.

Proof of Claim 2.2. To show (1) and (2) first note that wm solves
(

dwm(t, x) = (ru�um(t, x) + rv�vm(t, x) + ↵uwm(t, x) � (↵u � ↵v)vm(t, x) + ⇢) dt

+ �uum(t, x) dW1(t, x) + �vvm(t, x) dW2(t, x),
wm(0, x) = u0(x) + v0(x),

(2.16)

We denote the inner product in L
2(I) by h·, ·i. Now, an application of the Itô formula with k = �(↵u � ↵v) gives

|wm(t)|2
L2

+

Z
t

0

�
ru|rum(s)|2

L2
+ rv|rvm(s)|2

L2

�
ds

+

Z
t

0
↵uhwm(s), wm(s)i ds

 |w0|
2
L2

+

Z
t

0
(ru + rv)hrum(s), rvm(s)i ds +

Z
t

0
hwm(s),↵ui ds

+ k

Z
t

0
hwm(s), vm(s)i ds +

Z
t

0
hwm(s), �uum(s)dW1(s)i +

Z
t

0
hwm(s), �uvm(s)dW2(s)i

+ 2�u
X

k2Z

�k
�1hwm(t),M(um(t))hkid�

1
k
(t) + 2�v

X

k2Z

�k
�2hwm(t),M(vm(t))hkid�

2
k
(t)

+ �u

Z
t

0
Tr

✓
D
2�(wm(s))[M(um(s))Q

1
2
2 ][M(um(s))Q

1
2
2 ]

⇤

◆
ds

+ �v

Z
t

0
Tr

�
D
2�(wm(s))[M(vm(s))][M(vm(s))]

�
ds.

Since vm(s) � 0 and um(s) � 0 P ⇥ Leb-a.e., it follows that P-a.e. hwm(s), vm(s)i � 0. The Young inequality and taking
expectation give

E |wm(t)|2
L2

+ E
Z

t

0

⇣
ru|rum(s)|2

L2
+

rv

4
|rvm(s)|2

L2

⌘
ds

+
r

2

Z
t

0
E|wm(s)|2

L2
ds 

rv

2(ru + rv)
E
Z

t

0
|rum(s)|2

L2
ds + k

Z
t

0
Ehwm(s), vm(s)i ds

+ C

Z
t

0
E|wm(s)|2

L2
ds + C ↵u t + E|w0|

2
L2

.

In addition,
����

Z
t

0
Ehwm(s), vm(s)i ds

���� 

Z
t

0
E|wm(s)|2

L2
ds +

Z
t

0
E|vm(s)|2

L2
ds.

Applying Claim 2.1 and Grownwall’s Lemma give

E |wm(t)|2
L2

+ E
Z

t

0

⇣
ru|rum(s)|2

L2
+

rv

4
|rvm(s)|2

L2

⌘
ds  C1(T )E|w0|

2
L2

+ C2(T ).

Note, that we took into account that |um|
L2 , |vm|

L2  |wm|
L2 .

Again, to estimate the supremum, we have to apply the Burkholder–Davis–Gundy inequality (A.21) and get

E sup
0tT

����

Z
t

0

Z

I

wm(s, x)um(s, x)dW1(s, x)
����  C1E

✓Z
T

0
|wm(s)um(s)|2

L2
ds

◆ 1
2

 C1E
✓Z

T

0
|wm(s)|2

L2
|um(s)|2L1 ds

◆ 1
2

 C1E
Z

T

0
|wm(s)|2

L2
ds + E sup

0sT

|um(s)|2
H
1
2
.

To estimate the supremum in the second stochastic integral, we apply the Burkholder–Davis–Gundy and the Young
inequality, but taking into account that the term containing vm has to be cancelled with the LHS, we obtain

E sup
0tT

����

Z
t

0

Z

I

wm(s, x)�vvm(s, x)dW1(s, x)
����
L2


rv

4
E sup

0sT

|vm(s)|2
H
1
2

+ C(T )C2E
Z

T

0
|wm(s)|2

L2
ds.
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The Young inequality and taking expectation give

E sup
0tT

|wm(t)|2
L2

+ E
Z

T

0

⇣
ru|rum(s)|2

L2
+

rv

4
|rvm(s)|2

L2

⌘
ds + k

Z
T

0
Ehwm(s), vm(s)i ds

+
r

2

Z
T

0
E|wm(s)|2

L2
ds 

rv

2(ru + rv)
E
Z

T

0
|rum(s)|2

L2
ds

+ C1

Z
T

0
E|wm(s)|2

L2
ds + C2 T + E|w0|

2
L2

.

Applying Claim 2.1 and the Grownwall Lemma give

E sup
0tT

|wm(t)|2
L2

+ E
Z

T

0

⇣
ru|rum(s)|2

L2
+

rv

4
|rvm(s)|2

L2

⌘
ds  C1(T )E|w0|

2
L2

+ C2(T ).

It remains to show Claim 2.2-(2) and (3). For simplicity, we omit in the following the dependence on x and t . To show
(ii) observe first, that we have for any u, v 2 H

2
2 (I) by integration by parts

Z

I

(u + v)p�1 (ru�u + rv�v) dx

=

p�1X

k=0

✓
p � 1
k

◆Z

I

u
kvp�1�k (ru�u + rv�v) dx

= �

p�1X

k=0

✓
p � 1
k

◆Z

I

r(ukvp�1�k) (ruru + rvrv) dx.

We rewrite the inner part of the sum as follows
Z

I

r(ukvp�1�k) (ruru + rvrv) dx

=

Z

I

�
ku

k�1vp�1�k
ru + (p � 1 � k)ukvp�2�k

rv
�
(ruru + rvrv) dx

=

Z

I

�
ruku

k�1vp�1�k(ru)2 + rv(p � 1 � k)ukvp�2�k(rv)2
�
dx

+

Z

I

�
rvku

k�1vp�1�k
rurv + ru(p � 1 � k)ukvp�2�k

rvru

�
dx.

Hence,
Z

I

(u + v)p�1 (ru�u + rv�v) dx

+

p�1X

k=0

✓
p � 1
k

◆Z

I

�
ruku

k�1vp�1�k(ru)2 + rv(p � 1 � k)ukvp�2�k(rv)2
�
dx

= �

p�1X

k=0

✓
p � 1
k

◆Z

I

�
rvku

k�1vp�1�k
rurv + ru(p � 1 � k)ukvp�2�k

rvru

�
dx.

Renumbering gives
Z

I

(u + v)p�1 (ru�u + rv�v) dx

+

p�1X

k=0

✓
p � 1
k

◆Z

I

�
ruku

k�1vp�1�k(ru)2 + rv(p � 1 � k)ukvp�2�k(rv)2
�
dx

= �

p�1X

k=0

✓
p � 1
k

◆Z

I

ru(p � 1 � k)ukvp�2�k
rvru dx

�

p�2X

k=0

✓
p � 1
k + 1

◆Z

I

�
rv(k + 1)ukvp�2�k

rurv
�
dx.
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We now estimate the RHS. We get for any " > 0

Z

I

��ruukvp�2�k
rvru

�� dx  ru

✓Z

I

��ukvp�2�k(ru)2
�� dx

◆ 1
2
✓Z

I

��ukvp�2�k(rv)2
�� dx

◆ 1
2

 ruC"

Z

I

��ukvp�2�k(ru)2
�� dx + "ru

Z

I

��ukvp�2�k(rv)2
�� dx.

Taking into account that
✓
p � 1
k + 1

◆
=

p � 1 � k

k + 1

✓
p � 1
k

◆
,

and choosing " =
rv
4ru

we get
Z

I

(u + v)p�1 (ru�u + rv�v) dx

+

p�1X

k=0

✓
p � 1
k

◆Z

I

�
ruku

k�1vp�1�k(ru)2 + rv(p � 1 � k)ukvp�2�k(rv)2
�
dx



p�1X

k=0

✓
p � 1
k

◆n
rvC� k

Z

I

��uk�1vp�1�k(ru)2
�� dx + ruC"(p � 1 � k)

Z

I

��ukvp�2�k(ru)2
�� dx

o

+

p�1X

k=1

✓
p � 1
k

◆
rv

4
(p � 1 � k)

Z

I

��uk�1vp�1�k(rv)2
�� dx

+

p�1X

k=0

✓
p � 1
k

◆
rv

4
(p � 1 � k)

Z

I

��ukvp�2�k(rv)2
�� dx.

Subtracting the last two terms in the inequality, the terms containing ru are remaining on the RHS. In particular, we
have

Z

I

(u + v)p�1 (ru�u + rv�v) dx

+

p�1X

k=0

✓
p � 1
k

◆Z

I

⇣
ruku

k�1vp�1�k(ru)2 +
rv

2
(p � 1 � k)ukvp�2�k(rv)2

⌘
dx



p�1X

k=0

✓
p � 1
k

◆n
rvC� k

Z

I

��uk�1vp�1�k(ru)2
�� dx + ruC"(p � 1 � k)

Z

I

��ukvp�2�k(ru)2
�� dx

o
.

Here, applying the Hölder inequality and Young inequality with q =
p�2

p�1�k
and q

0 =
p�2
k�1 , we get for � =

1
q

Z

I

��uk�1vp�1�k(ru)2
�� dx 

Z

I

��vp�1�k(ru)2� uk�1(ru)2(1�� )
�� dx

 "

Z

I

��vp�2(ru)2
�� dx + C(")

Z

I

���u(p�2) k�1
k (ru)2

��� dx.

Again, the first term can be cancelled (by taking " > 0 sufficiently small) with the term

rvv
p�2(rv)2

appearing in the sum (for k = 0)

p�1X

k=0

�
ruku

k�1vp�1�k(ru)2 + rv(p � 1 � k)ukvp�2�k(rv)2
�
.

To handle the second term on the RHS we observe
Z

I

���u(p�2) k�1
k (ru)2

��� dx 

Z

I

��up�2(ru)2
�� dx +

Z

I

��(ru)2
�� dx.
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The term on the right hand side can be estimated by Claim 2.1. Going back to problem the original problem and applying
the Itô formula to �(u) =

R
I
u
p(x) dx, we obtain

|wm(t)|
p

Lp
+

p�1X

k=0

✓
p + 1
k

◆Z
t

0

Z

I

⇣
ruk u

k�1
m

(s, x) vp�1�k

m
(s, x) (rum(s, x))2

+ rv(p � 1 � k) uk

m
(s, x) vp�2�k

m
(s, x) (rvm(s, x))2

⌘
dx ds

 |w0|
p

Lp
+

p�1X

k=0

✓
p � 1
k

◆n
rvC� k

Z
t

0

Z

I

��uk�1
m

(s)vp�1�k

m
(s)(rum(s))2

�� dx

+ ruC"(p � 1 � k)
Z

t

0

Z

I

��uk

m
(s)vp�2�k

m
(s)(rum(s))2

�� dx
o

+

Z

I

��up�2
m

(s)(rum(s))2
�� dx +

Z

I

��(rum(s))2
�� dx

+ kp

Z
t

0

Z

I

wp�1
m

(s, x)vm(s, x)dx ds + ↵up

Z
t

0
|wp

m
(s)|

Lp
ds

+ p�u

Z
t

0

Z

I

wp�1
m

(s, x)um(s, x) dW1(s, x) +

Z
t

0
Tr

⇣
D
2�(wm(t))M(um(s))Q

1
2 [M(um(s))Q

1
2 ]

⇤

⌘
ds

+ p�v

Z
t

0

Z

I

wp�1
m

(s, x)um(s, x) dW2(s, x) +

Z
t

0
Tr

⇣
D
2�(wm(t))M(vm(s))Q

1
2 [M(vm(s))Q

1
2 ]

⇤

⌘
ds.

Estimating the trace (A.19) we obtain

Tr
⇣
D
2�(wm(t))[M(um(s))Q

1
2 ][M(um(s))Q

1
2 ]

⇤

⌘
 S(� )|wm(s)|

p

Lp
,

and Tr
⇣
D
2�(wm(t))M(vm(s))Q

1
2 [M(vm(s))Q

1
2 ]

⇤

⌘
 S(� )|wm(s)|

p

Lp

Taking expectation, Gronwall’s Lemma, and Claim 2.2, we verify that there exists a C > 0 such that

sup
0tT

E|wm(t)|
p

Lp
 C . ⇤

Step (v) In the next step, in order to control the L
1-norm, we will give an estimate of the H

�
p (I) norm for � > d

p
. In

particular, we will prove the following Claim.

Claim 2.3. There exists a constant C > 0 such that

1. for u0 2 H
1
4 (I) there exists a constant C > 0 such that

E sup
0tT

Z

I

|rum(t, x)|4 dx  C(T )
�
1 + E|ru0|

4
L4

�
, m 2 N.

2. for v0 2 H
1
4 (I) there exists a constant C = C(T ) > 0 such that

E sup
0tT

Z

I

|rvm(t, x)|4 dx  C(T )
�
1 + E|rv0|

4
L4

�
, m 2 N.

Proof. Since to show the uniform bounds for um and vm are quite similar, we will only tackle the proof of the uniform
bound for vm. Before showing the assertion, we have to show that there exists a constant C > 0 such that

E
Z

I

|rvm(t, x)|2 dx  C

�
1 + E|rv0|

2
L2

�
, m 2 N. (2.17)

Here, first, note that by the Itô formula we have p = 2

|rvm(t)|2
L2

+ 2
Z

t

0

Z

I

(�vm(s, x))2 dx ds  |rv0|
2
L2

+

Z
t

0

Z

I

rvm(s, x)r
�
um(s, x) v2

m
(s, x)

�
dx ds � 2(f + k)

Z
t

0

Z

I

(rvm(s, x))2 dx ds
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+

Z
t

0

Z

I

�v(rvm(s, x))rvm(s, x)dW2(s, x)

+ �u

Z
t

0
Tr

⇣
D�(rvm(s))[M(vm(s))Q

1
2 ][M(vm(s))Q

1
2 ]

⇤

⌘
ds.

The Cauchy–Schwarz and Young inequality give
Z

I

�vm(s, x)um(s, x)v2
m
(s, x) dx  "

Z

I

(�vm(s, x))2dx + C(")
Z

I

u
2
m
(s, x)v4

m
(s, x) dx

 "

Z

I

(�vm(s, x))2dx + C(")
Z

I

w6
m
(s, x) dx.

Due to Claim 2.2-(ii), the second term is bounded uniformly in m 2 N, the first term can be cancelled. Next, we have by
the Burkholder–Davis–Gundy inequality

E sup
0tT

����

Z
t

0

Z

I

�v(rvm(s, x))rvm(s, x)dW2(s, x)
���� 

Z
t

0
|(rvm(s))2|

2
L2 ds.

The Hölder inequality, Sobolev embedding, and the Young inequality for convolution give

· · ·  "E sup
0st

|rvm(s)|2
L2

+ C(")E
✓Z

t

0
|�vm(s)|2

L2
ds

◆
.

If " > 0 is chosen sufficiently small, the first term can be cancelled with the left hand side. Finally, we use Hypothesis 2.1
and inequality (A.19) to get

E
Z

t

0
Tr

⇣
D�(rvm(s))[M(vm(s))Q

1
2 ][M(vm(s))Q

1
2 ]

⇤

⌘
ds  E

Z
t

0
|rvm(s)|2

L2
ds

In this way we have shown (2.17).
Let p = 4 and �(x) = |x|

p

Lp
. Note, that by the Itô formula we have

|rvm(t)|
p

Lp
+ p(p � 1)

Z
t

0

Z

I

(rvm)p�2(s, x)(�vm(s, x))2 dx ds (2.18)

 |rv(0)|p
Lp

+

Z
t

0

Z

I

(rv(s, x))p�2�vm(s, x) um(s, x) v2
m
(s, x) dx ds

� p(f + k)
Z

t

0

Z

I

(rvm(s, x))p�1
rvm(s, x) dx ds

+ p

Z
t

0

Z

I

�v(rvm(s, x))p�1
rvm(s, x)dW2(s, x)

+ �v

Z
t

0
Tr[�(vm)[M(vm(s))Q

1
2 ][M(vm(s))Q

1
2 ]

⇤
] ds.

The Cauchy–Schwarz inequality gives
Z

I

(rv(s, x))p�2�vm(s, x)um(s, x)vm(s, x)2 dx



✓Z

I

((rv(s, x))p�2�vm(s, x))2dx
◆ 1

2
✓Z

I

((rv(s, x))p�2
u
2
m
(s, x)v4

m
(s, x)) dx

◆ 1
2
.

The Young inequality gives
Z

I

(rv(s, x))p�2�vm(s, x)um(s, x)vm(s, x)2 dx

 "

Z

I

([rv(s, x)]p�2�vm(s, x))2dx + C(")
Z

I

((rv(s, x))p�2
u
2
m
(s, x)v4

m
(s, x)) dx.

In addition, the Burkholder–Davis–Gundy inequality and Hypothesis 2.1 give

E sup
0tT

����

Z
t

0

Z

I

�v(rvm(s, x))p�1
rvm(s, x)dW2(s, x)

����
2

 �vS(�2)E
✓Z

t

0

��(rvm(s))p�1
rvm(s)

��2
L2
ds

◆ 1
2

.

The Hölder inequality, Sobolev embedding, and the Young inequality give

· · ·  C(")� 2
v S

2(�2)E
✓Z

t

0
|rvm(s)|

p

Lp
ds

◆
+ "� 2

v S
2(�2)E

✓
sup
0st

|rvm(s)|
p

Lp

◆
.
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Taking " small enough, the second term can be cancelled with the left hand side of Eq. (2.18). Finally, estimate (A.19)
gives

E
Z

t

0
Tr[�(vm)[M(vm(s))Q

1
2 ][M(vm(s))Q

1
2 ]

⇤
] ds  S(� ) CE

Z
t

0
|rvm(s)|

p

Lp
ds.

Going back to Eq. (2.18), we obtain

C1E sup
0st

|rvm(s)|
p

Lp
+ C2p(p � 1)E

Z
t

0

Z

I

��(rvm)p�2(s)(�vm(s, x))2
�� dx ds

 E |rv0|
p

Lp
+ C(")E

Z
t

0

Z

I

(rvm(s, x))p�2
u
2
m
(s, x)v4

m
(s, x) dx ds

� p(f + k)E
Z

t

0

Z

I

(rvm(s, x))p�1
rvm(s, x) dx ds

+ �vC(")E
Z

t

0

Z

I

��(rvm(s, x))p�2
u
2
m
(s, x)v4

m
(s, x)

��2 dxds

+ (C(") + S(� ))E
Z

t

0

Z

I

|rvm(s, x)|p dx ds.

Observe that the termsZ
t

0

Z

I

((rv(s, x))p�2
u
2
m
(s, x)v4

m
(s, x)) dx ds

and

E
Z

t

0

Z

I

��(rvm(s, x))p�2v2
m
(s, x)

��2 dx ds

can be estimated by Claim 2.2-(iii). Gronwall’s Lemma gives the assertion. ⇤
Step (vi) In the next step we will define the stopping time depending on the Cb(I)-norm of the solutions process.

However, in order that these stopping times are well defined we have to verify that the solutions processes (um, vm) are
P-a.s. continuous in Cb(I). This is done by showing that (um, vm) are P-a.s. continuous in H

�
4(I), where � < 1. Since d < 3,

the continuity in Cb(I) follows by embedding Theorems.

Claim 2.4. For any � < 1, there exists a function C : R+

0 ! R+

0 such that C(h) ! 0 as h ! 0 and

E sup
ts(t+h)^T

|um(s) � um(t)|4
L4

 C(h)
�
1 + E|rum(t)|4

L4

�
, m 2 N, t 2 [0, T ].

For any � < 1, there exists a function C : R+

0 ! R+

0 such that C(h) ! 0 as h ! 0 and

E sup
ts(t+h)^T

|vm(s) � vm(t)|4
L4

 C(h)
�
1 + E|vm(t)|4

L4

�
, m 2 N, t 2 [0, T ].

Let us assume by the time being that Claim 2.4 is true. First, we have by interpolation of H�4(I) for every s 2 [t, (t + h)^ T

|um(s) � um(t)|H�4  |um(s) � um(t)|1��
L4

|rum(s) � rum(t)|�
L4

 |um(s) � um(t)|1��
L4

�
|rum(s)|L4 + |rum(t)|�

L4

�
.

In addition, let q and q
0 be integers such that 2  q, q0 < 1 and 1

q
+

1
q0 = 1. We take the supremum for every

s 2 [t, (t + h) ^ T , the expectation, and we use the Hölder inequality on the RHS to get

E sup
ts(t+h)^T

|um(s) � um(t)|
�

H
�
4



✓
E sup

ts(t+h)^T

|um(s) � um(t)|
� (1��)q
L4

◆ 1
q

⇥

✓
E sup

ts(t+h)^T

�
|rum(s)|�

L4
+ |rum(t)|�

L4

�� q0

◆ 1
q0

.

In the last line we used the identity (a+ b)n  C(n)(an + b
n), n 2 N. Now we fix � , q, and q

0, such that q(1� �)�  4 and
� q0�  4. Under these conditions the RHS can be estimated by Claims 2.4 and 2.3. In particular, if � = q = q

0 = 2 we
have

E sup
ts(t+h)^T

|um(s) � um(t)|2
H
�
4

 C(h)
⇣
1 + E|rum(t)|4

H
1
4

⌘
, m 2 N, t 2 [0, T ],

and

E sup
ts(t+h)^T

|vm(s) � vm(t)|2
H
�
4

 C(h)
⇣
1 + E|rvm(t)|4

H
1
4

⌘
, m 2 N, t 2 [0, T ]
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Proof. The proof is similar to the proof of Claim 2.4. Without restriction to the general case we consider the time interval
[0, h ^ T ].

Again an application of the Itô formula to �(x) = |x|
4
L4

gives

|vm(t) � v0|
p

Lp
+ p(p � 2)

Z
t

0

Z

I

(vm(s) � v0)p�2(s, x)(�vm(s, x) ��v(0, x))2 dx ds

 p(p � 2)
Z

t

0

Z

I

(vm(s) � v0)p�2(s, x)[�v(0, x)]2 dx ds

+ p

Z
t

0

Z

I

(vm(s, x) � v0(0, x))p�1
[um(s, x) v2

m
(s, x)] dx ds

� p(f + k)
Z

t

0

Z

I

(vm(s, x) � v0(0, x))p�1vm(s, x) dx ds

+ p

Z
t

0

Z

I

�v(vm(s, x) � v0(0, x))p�1vm(s, x)dW2(s, x)

+ �v

Z
t

0
Tr

⇣
D
2�(vm(s) � v0(s))[M(vm(s))Q

1
2 ][M(vm(s))Q

1
2 ]

⇤

⌘
ds.

The Young inequality gives for p = 4
����

Z
t

0

Z

I

(vm(t) � v0)p�2(s, x)[�v0(0, x)]2 dx ds
���� 

Z
t

0
|vm(s) � v0|

4
L4

ds + t |�v0|
4
L4

Next,
Z

I

(vm(s, x) � v0(0, x))p�1
[um(s, x) v2

m
(s, x)] dx

 C1|[vm(s) � v0]|
p

Lp
+ C2

�
1 + |rum(s)|2

L2

�
+ C3

�
1 + |vm(s)|4

L4

�
,

and
����

Z

I

(vm(s, x) � v(0, x))p�1vm(s, x) dx
����  |vm(s) � v0|

p

Lp
+ |vm(s)|

p

Lp
.

By Claim 2.3 it follows that there exists a t > 0 such that E
R

t

0 |rum(s)|
p

Lp
ds  CE|ru0|

2
L2
t . Besides, by Claim 2.2

E
R

t

0 |vm(s)|4
L4
ds  C |v0 + u0|

4
L4
t . In addition, the Burkholder–Davis–Gundy inequality and Hypothesis 2.1 give

E sup
0tT

����

Z
t

0

Z

I

�v(vm(s, x) � v0(0, x))p�1vm(s, x)dW2(s, x)
����
2

 �vS(� )E
✓Z

t

0

��(vm(s) � v0)p�1vm(s)
��2
L2
ds

◆ 1
2

.

By similar calculation as in the step before we get

· · ·  �vS(� )E
✓Z

t

0

��vm(s) � v0|
2
L4

|vm � v0|
2
L4

|rvm(s)
��2
L2
ds

◆ 1
2

The Young inequality gives

· · · 

p
t

4
E sup

0st

|vm(s) � v0|
2
L4

+ C

p
t

✓
E
Z

t

0
|rvm(s)|2

L2
ds

◆ 1
2



p
t

4
E
✓

sup
0sT

|vm(s) � v0|
4
L4

◆
+ C t (1 + sup

0st

E |rvm(s)|2
L2
).

Observe, the first term can be cancelled with the left hand side of Eq. (2.18). Due to Claim 2.3, the second term is controlled
by C t . Finally, we obtain by estimate (A.19)

Z
t

0
ETr

⇣
D
2�(vm(s) � v0(s))[M(vm(s))Q

1
2 ][M(vm(s))Q

1
2 ]

⇤

⌘
ds

 C

Z
t

0
E|vm(s, x) � v0(x)|p�2v2

m
(s, x) dx ds.
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Applying the Hölder inequality gives
Z

t

0
ETr

⇣
D
2�(vm(s) � v0(s))[M(vm(s))Q

1
2 ][M(vm(s))Q

1
2 ]

⇤

⌘
ds

 C

Z
t

0
E|vm(s) � v0|

4
L4
ds +

Z
t

0
E|vm(s)|4

L4
ds.

Collecting all together and analysing term by term, the assertion is shown. ⇤

Step (vii) Let ⌧ u
m

:= {t 2 (0, T ] : |u(t)m|Cb
� m}, ⌧ v

m
:= {t 2 (0, T ] : |v(t)m|Cb

� m} and ⌧m := min(⌧ u
m
, ⌧ v

m
).

In this step we will show that for m ! 1 we have P (⌧m < T ) ! 0. Observe, that for � < 1 the trajectories
[0, T ] 3 t 7! (u(t), v(t)) 2 H

�
4(I) ⇥ H

�
4(I) are continuous. Besides, due to the fact that H

�
4(I) ,! Cb(I) for 1

2 < � < 1,
the trajectories [0, T ] 3 t 7! (u(t), v(t)) 2 Cb(I) ⇥ Cb(I) are continuous and the stopping times are well defined. In
addition, the estimate on um and vm in Claim 2.3 were independent of m. Hence, for all � 2 R with 1

2 < � < 1 there exists
a constant C > 0 such that

E sup
0tT

|um(t)|4
H
�
4
,E sup

0tT

|vm(t)|
p

H
�
4

 C, m 2 N.

Due to the embedding H
�
p
(I) ,! Cb(I), there exists a constant C > 0 such that

E sup
0tT

|um(t)|
p

Cb
,E sup

0tT

|vm(t)|
p

Cb
 C, m 2 N.

Let us define the stopping time

⌧ u
m

:= inf
t�0

{|um|
H
�
4

� m} and ⌧ v
m

:= inf
t�0

{|vm|
H
�
4

� m}.

By the definition of gm it follows that for s  ⌧m := min(⌧ u
m
, ⌧ v

m
) we get

Fm(u(s), v(s)) = Fm+1(u(s), v(s)) = F (u(s), v(s))

where F : L2(I) ⇥ L
1(I) ! L

2(I) is the Nemityski operator defined by

F (u, v)(x) := f (u(x), v(x)) = u(x)v2(x).

Hence, on [0, ⌧m) the processes (um, vm) and (um+1, vm+1) are identical and ⌧m  ⌧m+1, for all m 2 N. Fix m 2 N and put

Am :=
�
! 2 ⌦ : |u(s)|Cb  m and |v(s)|Cb  m

 
.

It is straightforward that there exists a progressively measurable process (um, vm) over A = (⌦,F, (Ft )t2[0,T ],P) such
that (um, vm) solves P-a.s. the integral equation given by (2.8) up to time ⌧m. In particular, we have for the conditioned
probability

P ({a solution u to (2.8) exists} | Am) = 1.

Hence, for any m 2 N we can glue together the solution to one process (u, v) with

u(t) = um(t) and v(t) = vm(t) when t 2 [⌧m�1 ^ T , ⌧m ^ T ).

Then, it is straightforward to verify, that

P ({there exists solution to (2.8)})
= lim

m!1
P ({a solution u to (2.8) exists} | Am)P (Am) .

Since P ({a solution u to (2.8) exists} | Am) = 1, it remains to show that limm!1 P(Am) = 1. Then, as Am � Am+1, it
follows automatically that

P ({there exists solution to (2.8)}) = 1.

However, since there exists a constant C(T ) > 0 such that

E sup
0tT

|um(t)|4Cb ,E sup
0tT

|um(t)|4Cb  C(T ), m 2 N,

and, hence,

P (⌦ \ Am) 
C(T )
m4 ! 0.

The solution process is well defined on A = limm!1 Am, where P(A) = 1. In addition, by Claim 2.2 and the non-negativity
of the solution item (i), (ii), and (iii) follow. ⇤
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3. Numerical simulations

The approach of operator splitting may lead to favourable discretisations for various classes of deterministic evolution
equations, see Hairer, Wanner [25] and references given therein. We mention the works [26,27], which illustrate the
use of operator splitting methods in the context of nonlinear Schrödinger equations and confirm that time-adaptivity
enhances reliability and efficiency of the numerical simulations; in [27], it is also demonstrated that Fourier spectral
space approximations, although constrained to uniform meshes, are superior to locally adaptive finite element space
discretisations, due to the retained spectral convergence rate and the applicability of fast Fourier transform techniques.
We expect similar conclusions to hold for reaction–diffusion equations with pattern formation, requiring, as well, high
resolution in space and time, and hence favour the Fourier spectral method over the finite difference and finite element
methods; we point out once again that the simple structure of the space domain and the imposed periodic boundary
conditions permit solution representations by Fourier series expansion. Schemes similar to this were considered for the
deterministic case in Hochbruck, Ostermann [28]. In the context of stochastic evolution equations, operator splitting
methods have been studied in Barbu, Röckner [29], Bauzet et al., [30], Bauzet [31], Bessaih et al., [32], Bréhier,
Goudenége [33], Carelli et al., [34], Sango [35], and Karlsen, Storrøsten [36].

For our purposes, it is convenient to cast the stochastic Gray–Scott equations in Itô or Stratonovich formulation,
respectively, into the form of an evolutionary system

Au = ru��e↵u , Av = rv ��e↵v , g(u, v) = u v2 ,
8
>><

>>:

du(t) =

⇣
Au u(t) + ↵u � g

�
u(t), v(t)

�⌘
dt + �u u(t) dWu(t) ,

dv(t) =

⇣
Av v(t) + g

�
u(t), v(t)

�⌘
dt + �v v(t) dWv(t) ,

u(0) = u0 , v(0) = v0 , t 2 (0, T ) ;

(3.1a)

the choicee↵u = ↵u,e↵v = ↵v corresponds to (2.1), and the modification

e↵u = ↵u � �uS(� ), e↵v = ↵v � �vS(� ), S(� ) =

X

k2Zd

(↵ � D�k)�2� , (3.1b)

to (2.6). Moreover, we set

U(t) =

✓
u(t)
v(t)

◆
, U0 =

✓
u0
v0

◆
,

AU =

✓
Au 0
0 Av

◆
, G

�
U(t)

�
=

✓
↵u � g

�
u(t), v(t)

�

g

�
u(t), v(t)

�
◆

,

⌃
�
U(t)

�
=

✓
�u u(t) 0

0 �v v(t)

◆
, WU (t) =

✓
Wu(t)
Wv(t)

◆
, t 2 [0, T ] ,

(
dU(t) =

⇣
AU U(t) + G

�
U(t)

�⌘
dt +⌃

�
U(t)

�
dWU (t) , t 2 (0, T ) ,

U(0) = U0 .

(3.2)

Deterministic Gray–Scott equations. Let us first discuss the deterministic formulation. A natural approach for the
numerical solution of the deterministic Gray–Scott equations or, more generally, of a deterministic evolution equation of
the form

⇢
U

0(t) = F

�
U(t)

�
= F1

�
U(t)

�
+ F2

�
U(t)

�
, t 2 (0, T ) ,

U(0) = U0 ,

is based on operator splitting, i.e. the defining operator is decomposed into two parts; for each subinterval, defined by a
suitably chosen time stepsize hn > 0, the associated subproblems are solved separately, potentially with specific numerical
solvers. More specifically, for the Lie–Trotter splitting method of classical order one, the linear subproblem

⇢
V

0

1(t) = F1
�
V1(t)

�
, t 2 (tn, tn + hn) ,

V1(tn) = Un ⇡ U(tn) ,

is resolved; starting from the resulting approximation V1(tn + hn), the resolution of the nonlinear subproblem
⇢
V

0

2(t) = F2
�
V2(t)

�
, t 2 (tn, tn + hn) ,

V2(tn) = V1(tn + hn) ,

then yields an approximation to the exact solution value

Un+1 = V2(tn + hn) ⇡ U(tn + hn).
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The compact formulation of the deterministic Gray–Scott equations makes the natural decomposition of the right-hand
side into two parts evident, see (3.2). Let hn be the time-step size. The solution of the linear subproblem

V
0

1(t) = AU V1(t) , t 2 (tn, tn + hn),

comprising two decoupled diffusion equations, is formally given by

V1(tn + hn) = ehAU V1(tn) ;

for each component, an explicit solution representation based on a Fourier series expansion is available. Our numerical
approximation relies on a truncation of the infinite series and an application of the trapezoidal rule on an equidistant
space grid; we use the fast Fourier transform and its inverse for an efficient implementation. Similar techniques in the
stochastic setting have been used e.g. by Lord and Rougemont [37].

For the numerical solution of the second subproblem

V
0

2(t) = G

�
V2(t)

�
, t 2 (tn, tn + hn),

comprising the nonlinear reaction terms, we employ a standard explicit solver. More precisely, we retain the equidistant
space grid used for the discretisation of the linear subproblem; pointwise evaluation at each grid point yields a system
of ordinary differential equations, which we resolve by an explicit Runge–Kutta method.

Stochastic Gray–Scott equations. For the stochastic Gray–Scott equations, we propose to employ the following natural
modification of the Lie–Trotter splitting method. We consider instead the linear subproblem

dV1(t) = AU V1(t) dt +⌃
�
V1(t)

�
dWU (t) , t 2 (tn, tn + hn) ;

in view of the formal representation for the mild solution

V1(tn + hn) = ehnAU V1(tn) +

Z
hn

0
e(hn�s)AU ⌃

�
V1(tn + s)

�
dWU (tn + s),

we employ the approximation

V1(tn + hn) ⇡ ehnAU
⇣
V1(tn) +⌃

�
V1(tn)

� �
WU (tn + hn) � WU (tn)

�⌘
.

For the realisation of the increment WU (tn+hn)�WU (tn), we generate normally distributed numbers and apply the inverse
Laplacian (1��)�� ; this, as well as the action of the evolution operator ehnAU , is implemented by fast Fourier transforms.
The modification of the nonlinear subproblem is straightforward

dV2(t) = G

�
V2(t)

�
dt , t 2 (tn, tn + hn) ;

for its approximate solution, we again apply an explicit solver.
Due to the fact that the solution is a stochastic process, avoidance of blow-up by a suitable reduction of the time

stepsizes is slightly more delicate compared to the deterministic Gray–Scott equations.
Even though the probability for such cases is low, large realisations of WU may lead to large values. To prevent failure

of the code, we follow the simple strategy which we point out shortly in the following paragraph. Fix tn. Since we are
evaluating pointwise at each grid point xm, m = (m1,m2), the nonlinearity given by g(u, v) = uv2, we can associate to
each grid point a couple process (ûm, v̂m) following the two coupled differential equations:

⇢
˙̂um(t) = �ûm(t) v̂2

m
(t) + ↵U ,

˙̂vm(t) = ûm(t) v̂2
m
(t),

with initial condition ûm(0) := ûm and v̂m(0) := v̂m, where Ûm = (û, v̂) is the approximation of U(tn) gained in the step
before. To prevent these ODEs from blowing up in a finite time, we fix our step size by

hn  h0 max
m=(m1,m2)

is a grid point

ûm(0)v̂m(0), (3.3)

where, again, Ûn = (û, v̂) and Ûn is the approximation of U . To motivate this choice, let us focus on the second component
solving the nonlinear ODE and fix a constant ⌘0 > 0. The first component will not be a problem since the nonlinear term
has a negative sign and the positive term is a constant. Therefore there will be no blow up in finite time for the first
component. Let us consider the solution ⇠ = {⇠ (t) : t � 0} where ⇠ solves, for a given initial condition ⇠0 > 0, the
following nonlinear ODE

⇠̇ (t) = ⌘0 ⇠
2(t), t � 0, ⇠ (0) = ⇠0.

The solution ⇠ solving this ODE is given by

⇠ (t) =
⇠0

1 � ⇠0⌘0t
, 0  t <

1
⇠0⌘0

.
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Fig. 1. Deterministic and stochastic Gray–Scott equations. Prescribed initial states.

In particular, if t "
1

⇠0⌘0
then ⇠ (t) ! 1. By the choice of (3.3), we know that

1 + h0 =
1

1 � ⌘0⇠0hn

and we get a time-step hn, such that the solution ⇠ at time t = hn with constant ⌘0 will not exceed (1 + h0)⇠0. In this
way, we get our condition for the choice of the adapted time step and we prevent the failure of the time integration due
to large realisations of the Wiener processes.

Numerical results. In Fig. 1, we display the initial states prescribed for the two-dimensional deterministic and
stochastic Gray–Scott equations (3.1)–(3.2). For two exponents � > 0, the effect of the inverse Laplacian (1��)�� on a set
of normally distributed numbers is illustrated in Fig. 2. Realisations of the numerical solution processes are shown in Fig. 3
for a certain choice of the parameters ru, rv,e↵u,e↵v, �u, �v, � . The first row corresponds to the first solution component
and the deterministic case, the second row to the Stratonovich formulation

e↵u = ↵u � �uS(� ) , e↵v = ↵v � �vS(� ) , S(� ) =

X

k2Zd

(↵ � D�k)�2� , ↵ = 5 , D = 1 , (3.4)

and the third row to the Itô formulation. In the captions of the figures, we provide links to movies that visualise the
creation of patterns and their variation under the influence of stochastic noise.

Appendix A. The stochastic integral, the multiplication operator and some inequalities

Provided that a stochastic process (Y (t))t2[0,T ] with values in the space of Hilbert–Schmidt operators from H to another
Hilbert space eK is progressively measurable on the underlying probability space and fulfils a certain integrability condition

Y : ⌦ ⇥ [0, T ] �! LHS(H,eK) , E
��Y

��2
L2([0,T ],LHS(H,eK)) < 1 , (A.1a)

the stochastic integral, denoted by

J : ⌦ ⇥ [0, T ] �! eK : (!, t) 7�!

Z
t

0
Y (!, s) dW (!, s) , (A.1b)

is given as the limit of the infinite series
X

m2Nd

Z
t

0
Y (!, s) hm d

�
W (!, s)

��hm

�
H

in L
2(⌦,eK) and leads to a well-defined continuous square-integrable martingale in eK. In addition, fundamental results

such as the Itô isometry

E
��J(T )

��2
eK = E

��Y
��2
L2([0,T ],LHS(H,eK)) , (A.1c)
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Fig. 2. Two realisations of stochastic noise and regularisations by powers of inverse Laplacian (1 ��)�� , � 2 {0.5, 2}.

and the Burkholder–Davis–Gundy inequality for any p � 1

E sup
t2[0,T ]

��J(t)
��p

eK  Cp E
��Y

��p

L2([0,T ],LHS(H,eK)) , p 2 [1, 1) , (A.1d)

are valid; in the context of bounded space domains, further auxiliary calculations concerning the Hilbert–Schmidt norm
are given below.

In our application we are working on a bounded interval given by [0, 1]d, we consider our equation on the d

dimensional torus. In the case of a single dimension, a complete orthonormal system of the underlying Lebesgue
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Fig. 3. Stochastic Gray–Scott equations with parameters (ru, rv,e↵u,e↵v, �u, �v, � ). First component of numerical solution at two times. Movies
available at http://techmath.uibk.ac.at/mecht/MyHomepage/Research/MovieMyCase3.mov http://techmath.uibk.ac.at/mecht/MyHomepage/Research/
MovieMyCase31.mov http://techmath.uibk.ac.at/mecht/MyHomepage/Research/MovieMyCase32.mov.

space L
2(I) := L

2(I,R) is given by sine and cosine functions

 m(x) =

8
<

:

p
2 sin

�
2⇡mx

�
if m � 1 ,

p
2 if m = 0 ,

p
2 cos

�
⇡ 2mx

�
if m  �1 ,

(A.2)
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The extension to higher space dimensions relies on tensor products, i.e., for a multiindex m = (m1, . . . ,md) 2 Zd we have

�m(x) =

dY

j=1

�mj
(xj) , x 2 I. (A.3)

The corresponding eigenvalues are given by

�m = � 4⇡2
dX

j=1

m
2
j
, m = (m1, . . . ,md) 2 Zd . (A.4)

The Wiener process W has the following representation

W (t, x) =

X

k2Zd

(↵ � D�k)��  k(x)�k(t), j = 1, 2,

with � > d

2 and where {�k : k 2 Zd} is a family of one-dimensional Brownian motions. Let H := L
2(I) and let Q be defined

by

Q ( k, l) = �k,l (↵ � D�k)�� , k, l 2 Z.

The covariance operator Q can be expressed by the norm in Sobolev spaces. To do this, we relate the inner product
and the associated norm to fractional Laplace operators

�
�1

���2
�
W

2 (I) =

�
(↵ � D�) �1

���2
�
L2

,
���

��
W

2

=
��(↵ � D�)


2 �

��
L2

,

�,�1,�2 2 W

2 (I) , ↵ > 0 , D > 0 ,  2 R .

(A.5)

Due to the fact that different choices of ↵ > 0 and D > 0 lead to equivalent norms, we only indicate the dependence on
the decisive exponent  2 R. For scaled Fourier functions, we henceforth employ the abbreviation

 ()
m

= (↵ � D�m)�

2  m , m 2 Zd , (A.6)

which permits to significantly reduce the length of formulas; here, we again suppress the dependence on ↵ > 0 and
D > 0. The eigenvalue relation

(↵ � D�)

2  m = (↵ � D�m)


2  m , m 2 Zd , (A.7)

implies that ( ()
m )

m2Zd forms a complete orthonormal system of the fractional Sobolev space H

2 (I), that is

�
 

()
`

�� ()
m

�
W

2 (I) = �`m , `,m 2 Zd . (A.8)

The operator Q is given as

Q m( k) = �k,m(↵ � D�m)�� .

A.1. The multiplication operator

In our equation, the diffusion coefficient in front of the stochastic perturbation is given by the multiplication operator
defined by a function �, which is interpreted as a mapping from the Hilbert space H to the other Hilbert space L

2(I). To
be more precise,

M(�) : H �! K : � 7�! � � , (A.9)

which complies with [38, Eq. (1.4)]; within the article, however, we often write

� = M(�)

for short. Let � > d

2 and H = H
�
2 (I). Besides, let us denote the orthonormal basis in H by { 

(� )
m : m 2 Z}, which is given

by

 (� )
m

= (↵ � D�m)�
�
2  m , m 2 Zd , (A.10)

Then arguments detailed below show that for the particular case

M(�) : H �! L
2(I) : � 7�! � � , � 2 L

2(I) , � >
d

2
, (A.11)
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the associated Hilbert–Schmidt norm is finite, since the estimate

��M(�)
��
LHS(H,L2) =

✓X

m2Zd

���  (� )
m

��2
L2

◆ 1
2

 C

p
S(� )

���
��
L2

, � >
d

2
, (A.12)

holds. Indeed, the stated bound is obtained from a representation of the defining real-valued function with respect to the
complex-valued Fourier functions

� =

X

`2Zd

�
�
�� `

�
L2
 `.

Let � > d

2 and H = H
�
2 (I). Besides, let us denote the orthonormal basis in H by { 

(� )
m : m 2 Z}, which is given by

 (� )
m

= (↵ � D�m)�
�
2  m , m 2 Zd , (A.13)

The associated Hilbert–Schmidt norm is finite. To be more precise, since the estimate

��M(�)
��
LHS(H,L2) =

✓X

m2Zd

��� Q
1
2 m

��2

L2

◆ 1
2

 C

p
S(� )

���
��
L2

, � >
d

2
, (A.14)

holds. What happens if the underlying Hilbert space is H
⇢
2 (I) instead of L2(I).

We can write � in terms of the orthonormal basis, i.e.

� =

X

`2Zd

�
�
�� `

�
L2
 `.

In case, the underlying space is H
�
2(I), we get

��M(�)
��
LHS(H,L2) =

✓X

m2Zd

��� Q
1
2 m

��2

L2

◆ 1
2

 C

p
S(� )

���
��
L2

, � >
d

2
, (A.15)

By simple calculations, the following identity can be shown as:

 m k =
1
2

8
>><

>>:

= ( �|k�m| �  �(k+m)) = ( �|k�m| �  �|k+m|) for m, k � 1,
( |m|+|k| �  ||k|�|m||) for k � 1,m  �1, or, m � 1, k  �1,
( �|k�m| �  �|k+m|) = ( �|k�m| �  �(k+m)) for m, k  �1,
2 m for m 2 Z, k = 0,

(A.16)

Using this identity, we obtain for m � 1 and d = 1

�  m (A.17)
=

�
�
�� 0

�
L2

+

X

k2N

( �|k�m| �  �|k+m|)
�
�
�� k

�
L2

+

X

k2N

( |k|+|m| �  ||m|�|k||)
�
�
�� �k

�
L2

.

Similarly, we get for m  �1 and d = 1

�  �|m| (A.18)

=
�
�
�� 0

�
L2

+

X

k2N

( �|k�m| �  �|k+m|)
�
�
�� �k

�
L2

+

X

k2N

( |k|+|m| �  ||m|�|k||)
�
�
�� k

�
L2

=
�
�
�� 0

�
L2

+

X

k2N

( �|k+|m|| �  �|k�|m||)
�
�
�� �k

�
L2

+

X

k2N

( |k|+|m| �  ||m|�|k||)
�
�
�� k

�
L2

.

Evaluating carefully the L
2(I)-norm, we get for any m 2 Zd

|�  m|
2
L2

 4
X

k2Zd

�
�
�� k

�
L2

.

Hence, we get for the trace

��M(�)
��
LHS(H,L2) =

✓X

m2Zd

���  (� )
m

��2
L2

◆ 1
2

 C

p
S(� )

���
��
L2

, � >
d

2
, (A.19)
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 `  m = (2 a)�
d

2  `+m, we have

�  (� )
m

=

X

`2Zd

�
�
�� `

�
L2
 `  

(� )
m

= (2 a)�
d

2
X

`2Zd

(↵ � D�m)�
�
2
�
�
�� `

�
L2
 `+m , m 2 Zd .

Parseval’s identity, summation, and an integrability criterion for infinite series confirm the given result
��M(�)

��2
LHS(H,L2) =

X

m2Zd

���  (� )
m

��2
L2

= (2 a)�d

✓X

`2Zd

����
�� `

�
L2

��2
◆✓X

m2Zd

(↵ � D�m)��
◆

 C S(� )
���

��2
L2

.

By the very same calculation, one can show that we have
��M(�)

��
LHS(H,H1

2 (I))
 C

p
S(� )

���
��
H
1
2 (I)

, � >
d

2
, (A.20)

Let us denote for a Hilbert space H the space of progressively measurable processes

Y : ⌦ ⇥ [0, T ] ! LHS(H,H)

such that

E|Y |
L2([0,T ];LHS (H,H))< 1,

by M
2
H
(0, T ;H). Having a process Y 2 M

2
H
(0, T ; L2(R)) we get

E sup
t2[0,T ]

����

Z
t

0
M(Y (s)) dW (s)

����
p

L2
 Cp S(� )E

✓Z
T

0

��Y (t)
��2
L2
dt

◆ p

2

, p 2 [1, 1) , (A.21)

Similarly, we have

E sup
t2[0,T ]

����

Z
t

0
M(Y (s)) dW (s)

����
p

H
1
2

 Cp S(� )E
✓Z

T

0

��Y (t)
��2
H
1
2
dt

◆ p

2

, p 2 [1, 1) , (A.22)

The Itô formula. Within the proof we apply the Itô formula for the function �(x) = |x|
p

Lp
, p � 2 to a given process driven

by a Wiener process. The diffusion operator will be the multiplication operator defined in (A.9). To be precise, let us
put �(u) =

R
I
u
p(x) dx. Then D�(u)[h] = p

R
I
u
p�1(x) h(x) dx and D

2�(u)[h1, h2] = p(p � 1)
R
I
u
p�2(x) h1(x)h2(x) dx. The

correction term in the Itô formula is now defined by

Tr
h
D
2�(⇠ (s))[M(u(s))Q

1
2 ][M(u(s))Q

1
2 ]

⇤

i
=

p(p � 1)
2

X

k2Z

Z

I

⇠ (s, x)p�2(x) [M(u)hk](x)[M(u)hk](x) dx.

The definition of the multiplication operator gives

Tr
h
D
2�(⇠ (s))[M(u(s))Q

1
2 ][M(u(s))Q

1
2 ]

⇤

i


p(p � 1)
2

X

k2Z

Z

I

|⇠ (s, x)|p�2(x)u2(x)h2
k
(x) dx

The Hölder inequality gives

Tr
h
D
2�(⇠ (s))[M(u(s))Q

1
2 ][M(u(s))Q

1
2 ]

⇤

i


p(p � 1)
2

S(� )
Z

I

|⇠ (s, x)|p�2(x)u2(x) dx.

In the case ⇠ = u we get

Tr
h
D
2�(⇠ (s))[M(u(s))Q

1
2 ][M(u(s))Q

1
2 ]

⇤

i


p(p � 1)
2

S(� )|u|p
Lp

.

In the case, �(u) =
R
I
(ru)p(x) dx. Then

D�(u)[h] = p

Z

I

(ru)p�1(x)rh(x) dx and

D
2�(u)[h1, h2

] = p(p � 1)
Z

I

(ru)p�2(x) (rh
1)(x)(rh

2)(x) dx,
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we obtain

Tr
h
D
2�(⇠ )[M(u(s))Q

1
2 ][M(u(s))Q

1
2 ]

⇤

i


p(p � 1)
2

X

k2Z

Z

I

|r⇠ (s)|p�2(x)[r(uhk)]2(x) dx

Again, the Hölder inequality gives

Tr
h
D
2�(⇠ )[M(u(s))Q

1
2 ][M(u(s))Q

1
2 ]

⇤

i


p(p � 1)

2

✓
S(� )

Z

I

|r⇠ (s)|p�2(x)[ru]
2(x) + S(� + 1)�k, dx

◆
(A.23)


p(p � 1)

2

X

k2Z

(↵ � D�k)�2�
Z

I

|u
p(x)| dx 

p(p � 1)
2

S(� )|u|p
Lp

. (A.24)

The Itô-correction term. Let us assume that the process X solves an infinite dimensional differential equation driven given
as follows:

dX(t) = �X(t) dt +⌃(X(t)) � dW (t), X(0) = X0, (A.25)

where � denotes the Laplacian operator with periodic boundary conditions. As before, { m : m 2 Zd} denotes the
eigenfunctions of � and {�m : m 2 Zd} denotes the corresponding eigenvalues. In this way, the solution process ⇠
of Eq. (A.25) can be described by the SPDE given in terms of the Itô-integral by adding a correction term. The correction
term can be calculated explicitly (see [22, p. 65, Section 4.5.1]), i.e., the equivalent Itô equation of (A.25) is given by

d⇠ (t) = A⇠ (t) dt +
1
2
D⇠ � (⇠ (t)) � (⇠ (t)) dt + � (⇠ (t))dW(t), ⇠ (0) = ⇠0. (A.26)

Here, D⇠ (� (⇠ )) denotes the Frechet derivative of � with respect to ⇠ . In our case, the Wiener process is infinite dimensional,
but can be written as a sum of infinitely many scalar Wiener processes with

P
k2Z �kd�k(t), where {�k : k 2 Z} is a family

of independent scalar valued Wiener processes, and �k is the multiplication operator given by ⇠ k�k. Straightforward
calculations reveal

X

k2Z

D⇠ �k(⇠ ) �k(⇠ ) =

X

k2Z

⇠ 2
k
�k

2.

Taking into account that �k = ��k and  2
k

+  2
�k

= 2, we have
X

k2Z

D⇠ (�k(⇠ )) �k(⇠ ) = � ⇠ , (A.27)

where � =
P

k2Z �k
2.
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