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Dynamics of large-scale network processes underlies crucial phenomena ranging across all 
sciences. Forward simulation of large network models is often computationally prohibitive. 
Yet, most networks have intrinsic community structure. We exploit these communities 
and propose a fast simulation algorithm for network dynamics. In particular, aggregating 
the inputs a node receives constitutes the limiting factor in numerically simulating large-
scale network dynamics. We develop community integration algorithms (CIAs) significantly 
reducing function-evaluations. We obtain a substantial reduction from polynomial to linear 
computational complexity. We illustrate our results in multiple applications including 
classical and higher-order Kuramoto-type systems for synchronisation and Cucker–Smale 
systems exhibiting flocking behaviour on synthetic as well as real-world networks. 
Numerical comparison and theoretical analysis confirm the robustness and efficiency of 
CIAs.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

The importance of, as well as the level of research activity in, network dynamics has seen a dramatic increase within 
the 21st century [1,2]. Previously, network models had mostly focused on either (a) all-to-all coupling, or (b) on highly 
structured sparse cases such as classical lattices or trees. Simulating dynamics, e.g., synchronization [3], collective motion [4], 
or contact processes [5], on networks of the type (a)-(b) is already non-trivial. Indeed, usually each node receives/collects 
inputs from its neighbours at each time step, processes this information, usually by some form of averaging, and then 
adjusts its own behaviour. From a computational viewpoint these steps are straightforward for very sparse interactions 
because there are just a few function evaluations and the complexity scales linearly with the number of nodes. Already 
for all-to-all coupled networks, the processing step of averaging incoming information from neighbours is very costly. A 
direct computational approach yields that the number of function evaluations within the averaging step of processing the 
information at each node grows at least quadratically. This situation gets much worse for temporal networks [6], adaptive/co-
evolutionary networks [7], multiplex/multilayer [8] networks, and higher-order/polyadic interactions beyond graphs [9]. Yet, 
one might hope that there is a low-dimensional number of averaged order parameters (or observables), which are similar 
or even identical inputs for each node at each time step.
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Most real-world networks are neither extremely sparse nor extremely dense but rather contain many heterogeneous 
structures [10]. Therefore, using brute-force network simulations quickly encounters computational barriers. In this work, 
we are going to combine several mathematical ideas to simulate many large-scale network dynamics models efficiently. In 
this introduction, we start with a non-technical presentation of our approach involving two pre-simulation (“off-line”) steps 
(P1)-(P2) and two evaluation (“on-line”) steps (E1)-(E2). The more detailed technical development of the computational 
methodology starts in Section 2. The first step (P1) in our approach employs community detection algorithms to identify 
densely connected sub-networks. The second step (P2) is to approximate, if necessary, the coupling function between nodes 
via a common basis, e.g., using Fourier methods. This step helps us to identify possible observables. The order of (P1)-(P2) 
can be reversed or parallelized. Basically, (P1) tackles heterogeneity, while (P2) identifies the best observable to exploit local 
density within a community. For each community, we utilize the similarity of nodes to significantly reduce the information 
processing in step (E1) at each node, i.e., the local observable plays the role of a common input reducing quadratic or worse 
polynomial scaling function evaluations to just linear cost within the number of nodes. Since our networks are assumed 
to be heterogeneous we also must account in step (E2) for the very sparsely connected nodes, which is possible by direct 
computation. Our approach yields significant reductions of the required memory capacities and the overall costs measured 
by the total numbers of function evaluations.

For a very specialized and particular case, we have demonstrated recently that employing simple variants of the steps 
(E1)-(E2) and (P1)-(P2) can potentially work [11]. In this work, we develop the general CIA framework and show that it 
works in an extremely broad class of network dynamics applications, that it is robust with regard to real data sets, that 
the general method does yield linear computational complexity with respect to the dimensions of the systems in each time 
step, and that the steps naturally extend to higher-order/polyadic dynamics.

The remaining parts are organised as follows. In Section 2, we introduce the considered classes of network dynamical 
systems. In Section 3, we detail and exemplify the key steps of Community Integration Algorithms (CIAs). In Section 4, 
we present the advantages of our approach and confirm the substantial gain in efficiency by a series of numerical ex-
periments for widely-used models and real-world networks. This includes Kuramoto systems arising in the description of 
synchronisation, extended Kuramoto-type models involving higher-order/polyadic interactions, Cucker–Smale systems mod-
elling collective motion, and collective motion on real-world animal networks. Generalisations to more complex frameworks 
and open questions are mentioned in Section 5. Supplementary calculations and illustrations are collected in an appendix, 
which contains a detailed mathematical setup for all the examples as well as theoretical justification for the efficiency of 
CIAs.

The concept of computing global observables that can be used as a common input for all - or at least many - nodes 
has already appeared in the context of Fast Multipole Methods (FMMs), see [12,13]. These FMMs can be used to accelerate 
simulations of particles coupled by a Coulomb (or gravitational) force. Given some charged (or weighted) particles contained 
in a specified region, one first computes global observables and then uses them to derive an approximation of the joint 
Coulomb (or gravitational) potential. This approximation can then efficiently be evaluated at many test positions at the 
same time. Similarly to our methods, this procedure is faster then computing the individual contributions of each particle to 
every test position. However, due to the singularity of the Coulomb (and gravitational) force at the origin, the approximation 
only converges for points that have some minimum distance to the specified region. This is in contrast to our method for 
which the approximation converges inside the specified region.

Moreover, the concept of Random Batch Methods (RBM) [14] accelerates the time integration of dynamical systems on 
networks by choosing communities. In contrast to our CIAs, the network structure in RBM is assumed to be all-to-all. 
Furthermore, the time efficiency benefits from choosing communities as small as possible, whereas CIAs deal with large 
communities.

The code that we use for our numerical simulations is available under the following link: https://github .com /
tobiasboehle /Community-Integration -Algorithms -CIAs.

2. Dynamical systems on networks

Dynamical systems on networks are of importance in many sciences ranging from physics, chemistry, biology and 
medicine to social sciences [15,16]. Illustrative examples for time-continuous dynamical systems on networks include Desai-
Zwanzig systems [17] describing the motion of interactive particles under the influence of external confining potentials, 
Kuramoto models [18], tracking the evolution of phase oscillators, Cucker-Smale systems [19] describing the movements 
and flocking behaviour of birds, coupled van-der-Pol/FitzHugh-Nagumo models frequently used in neuroscience [20], and 
Hegselmann-Krause models for opinion formation [21]. Instead of studying classical versions of these models using all-to-all 
coupling, we study several of these models on general networks that possess community structure. Even though the net-
work models originate from different disciplines, they can all be described by one single general network model, which we 
focus on here. The model class is given by

x′
m(t) = fm(xm(t)) + 1

N

N∑
am� g(x�(t), xm(t)), ′ = d

dt
, xm(0) given, (2.1)
�=1
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where m ∈ {1, . . . , N} and t ∈ [0, T ]. This system is based on an underlying network that has N nodes and is represented by 
an N × N-dimensional adjacency matrix A with entries am� . For the sake of simplicity, we restrict ourselves to an undirected 
and unweighted graph such that A is additionally symmetric and am� ∈ {0, 1}. Further, xm(t) denotes the state of node m at 
time t , the functions fm describe the intrinsic dynamics of the m-th node and g(x�(t), xm(t)) is a general coupling function 
that describes the strength of the interaction that node � has on node m, if they are coupled. Finally, T > 0 denotes a final 
time until which we want to integrate the system (2.1). While the range of xm(t) and thus also the domain of fm and g is 
generally part of an abstract space X , we typically have X ∈ {R, Rn, R/(2πZ), . . . }. By grouping the states of the nodes 
into one common vector x = (x1, . . . , xN ) and introducing an N-dimensional function H with components

Hm(x) = fm(xm) + 1

N

N∑
�=1

am� g(x�, xm), m ∈ {1, . . . , N}, (2.2a)

the initial value problem from (2.1) can also be written as

x′(t) = H(x(t)). (2.2b)

Even though this is a very general formulation, many typical network models have special structure. For example, in many 
models, the coupling function g is of the form g(x̃, ̂x) = h(x̃ − x̂). Table 1, that can be found in the appendix, shows that 
all examples mentioned at the beginning of this section fit into this framework. We remark that the classical version of 
an all-to-all coupling is retained as the special case of a complete network. This special case will be an automatically 
included sub-problem in our implementation of CIAs since the coupling within each community closely resembles an all-
to-all coupling. Although the network systems that we have mentioned above are described by time-continuous dynamical 
systems and specifically by nonlinear ordinary differential equations, completely analogous considerations for CIAs hold 
for time-discrete network dynamics; we also cover the Bornholdt-Rohlf discrete-time network model for self-organized 
criticality [22] to illustrate this point. Furthermore, when numerically integrating a continuous-time dynamical system that 
is given by a system of ODEs, one first time-discretizes this ODE system. Our CIAs efficiently evaluate large sums that appear 
in the resulting time-discrete system.

3. Community integration algorithms

To numerically integrate the system (2.2) one first discretizes the time interval [0, T ] into many small steps 0 = t0 <

t1 < · · · < tNT = T and then employs an iterative time stepping scheme [23], e.g., a Runge-Kutta or multistep method. 
Independent of the method, each time iteration step needs at least one evaluation of the right-hand side H . Therefore, 
it is of key importance for a fast numerical integration to implement the evaluation of H efficiently. However, when one 
looks at the specific structure of H , one notices that each of its components consist of a large sum. In total there are 
O(N2) operations (summations and evaluations of the coupling function g) necessary to evaluate H(x) for a given x only 
a single time. This quadratic dependence on N severely restricts the number of nodes that a network can possess such 
that numerical simulations on it are tractable. For higher-order/polyadic systems, see e.g. Appendix A.7, the situation even 
worsens.

Our new Community Integration Algorithms are applicable to a wide range of dynamical systems on networks that 
consist of densely connected subnetworks or communities with sparse connections across the communities. These CIAs 
achieve to evaluate the right-hand side H in (2.2) and require only O(N) operations in each time step. It consists of four 
main steps. Two of them are done before the simulation and only need to be done once, whereas the other two have to be 
processed for each time step, see Fig. 1. These steps are:

(P1) Application of an effective community detection algorithm and transformation of the adjacency matrix by permutation 
to block form.

(P2) Identification of a suitable representation or high-order global approximation, respectively, of the coupling function g
to compute a suitable observable.

(E1) Exploiting community structure by computing a local observable for each community to avoid summations common 
among similar nodes.

(E2) Treatment of the remaining sparse parts of the network as well as small remaining heterogeneity within communities 
based on direct summations.

In the following we illustrate these steps via the example of phase oscillator systems

θ ′
m(t) = fm(θm(t)) + 1

N

N∑
�=1

am� h(θ�(t) − θm(t)). (3.1)

Here θm(t) ∈ S := R/(2πZ) and the network is given by the adjacency matrix A = (am�)m,� that can be seen in Fig. 2. 

To follow the steps below, one can also think of a more concrete example such as the Kuramoto model. In the classical 
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Fig. 1. Flowchart that illustrates the steps of our Community Integration Algorithm. (For interpretation of the colours in the figure(s), the reader is referred 
to the web version of this article.)

Fig. 2. Community detection step (P1). (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

Kuramoto model [18], we have fm(θm) = ωm with ωm ∈ R and h(θ) = sin(θ). We discuss the Kuramoto model in more 
detail in Appendix A.4.

3.1. CIA pre-simulation steps

Community Detection (P1): A key feature of our CIA is that it exploits the community structure of the underlying network. 
A community structure is present if the associated adjacency matrix is in block structure. However, when looking at the 
adjacency matrix that is depicted in Fig. 2, there is at first no block structure evident. The community structure only 
becomes evident after permuting the nodes such that each community consists of nodes whose labels are consecutive 
integers. This permutation results in a matrix B = P A P� , where P is a permutation matrix that is induced by a permutation 
κ : {1, . . . , N} → {1, . . . , N}.

In many real-world scenarios the matrix B does not have exact block structure but there may still be missing links inside 
a community and additional links across two communities. In any case, we assume, that the matrix B has an evident block 
structure and can thus be split into a dense matrix D that has the exact block structure and a sparse matrix S . Here, D
only consists of entries in {0, 1} whereas S is a sparse matrix with entries in {−1, 0, 1}. A +1 entry in S denotes that there 

is an additional edge connecting two communities whereas a −1 entry represents a missing edge in a community.
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The aim of step (P1) is to detect communities such that the permuted adjacency matrix B has approximate block struc-
ture and can be decomposed into a dense matrix D and a sparse matrix S , as seen in Fig. 2. This can be achieved as 
follows: First, one employs an algorithm to detect communities in the underlying network. In general, such an algorithm 
takes the adjacency matrix A as an input and outputs a partition of the node set into communities. There are many effective 
algorithms that can detect communities in the underlying graph, of which we particularly recommend one that is based on 
the optimisation of a Hamiltonian [24,25], see also Appendix A.1. For a general network, the major part of these algorithms 
have the computational complexity O(N2). For a comparison of different algorithms see [11]. Second, one defines a permu-
tation κ that permutes the nodes of the network such that nodes that are in the same community have consecutive labels. 
Then the resulting adjacency matrix B = P A P� , where P is the permutation matrix induced by the permutation κ , has an 
apparent block structure as seen in Fig. 2. Finally, one defines a matrix D that has blocks of ones on the diagonal whose 
sizes correspond to the sizes of the communities. The remaining sparse part can be obtained by calculating S = B − D .

It is not necessary to store the full matrix D but only the sizes of the communities that we denote by λ1, λ2, . . . , λM if 
there are a total of M communities. For numerical reasons it is sometimes better to allow nodes to belong to no community 
instead of letting them be part of a community that consists of very few or even only one node. Further, S can be stored in 
a sparse format, so the total memory requirement is O(N).

By using P A P� = B = D + S , where P is the permutation matrix induced by the permutation κ , and φm(t) := θκ(m)(t), 
we can write (3.1) as

θ ′
κ(m)(t) = fκ(m)(θκ(m)(t)) + 1

N

N∑
�=1

aκ(m)κ(�) h(θκ(�)(t) − θκ(m)(t))

and so

φ′
m(t) = fκ(m)(φm(t)) + 1

N

N∑
�=1

bm� h(φ�(t) − φm(t))

= fκ(m)(φm(t)) + 1

N

N∑
�=1

sm� h(φ�(t) − φm(t))

︸ ︷︷ ︸
=:Hsparse

m (φ(t))

+ 1

N

N∑
�=1

dm� h(φ�(t) − φm(t))

︸ ︷︷ ︸
=:Hdense

m (φ(t))

.

Thus, when evaluating the right-hand side, we only need to compute

φ′
m(t) = Hsparse

m (φ(t)) + Hdense
m (φ(t)). (3.2)

Since dm� = 1 if 1 ≤ m, � ≤ λ1 and dm� = 0 if 1 ≤ m ≤ λ1 and � > λ1 we obtain

Hdense
m (φ) = 1

N

λ1∑
�=1

h(φ� − φm)

for 1 ≤ m ≤ λ1, making it effectively an all-to-all coupling within that community. Similar representations of Hdense
m (φ) apply 

when m > λ1.

High-Order Approximation (P2): This pre-simulation step is all about the expansion of the coupling function h. Since the 
domain is 2π -periodic it makes sense to identify Fourier coefficients ak, bk , for k ∈N with

h(φ) =
∞∑

k=0

(
ak cos(kφ) + bk sin(kφ)

)
.

Equivalently, one can also consider a Fourier expansion based on a complex Fourier series, see Appendix A.4. Alternatively, 
yet not suitable here, an expansion in terms of polynomials is possible. In any case for numerical reasons we terminate the 
series at a finite k and only deal with the approximation

h(φ) ≈
p∑

k=0

(
ak cos(kφ) + bk sin(kφ)

)
, (3.3)

for some p ∈N . The magnitude of accuracy of this approximation is determined by the smoothness of h. If h is ξ ≥ 2 times 
continuously differentiable the decay of the Fourier coefficients is |ak| =O(k−ξ ) and |bk| =O(k−ξ ). Thus the approximation 

satisfies the error bound.
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∣∣∣∣∣h(φ) −
p∑

k=0

(
ak cos(kφ) + bk sin(kφ)

)∣∣∣∣∣ ≤ c
1

pξ−1 .

We will see in Appendix C that this error in the approximation of right hand side also implies an error of the solution to 
the differential equation (3.1). We shall see below that approximating the coupling function makes it easier to identify good 
local observables.

3.2. CIA evaluation steps

Based on the preparation done in the CIA pre-simulation steps, the right-hand side of the initial value problem (3.1) or 
equivalently (3.2) can now be evaluated using just O(N) operations. This evaluation is structured into two main steps:

Community Structure Exploitation (E1): This step aims to compute Hdense(φ), which, as shown previously, can be written 
as

Hdense
m (φ) = 1

N

λ1∑
�=1

h(φ� − φm),

if m is a node belonging to the first community, i.e., 1 ≤ m ≤ λ1 and similar representation are possible when m is not in 
the first community. Combining this with the Fourier expansion that we conducted in (P2) and by using addition theorems 
for sin and cos, we obtain

Hdense
m (φ) ≈ 1

N

λ1∑
�=1

p∑
k=0

(
ak cos(k(φ� − φm)) + bk sin(k(φ� − φm))

)

=
p∑

k=0

1

N

λ1∑
�=1

(
ak sin(kφ�) sin(kφm) + ak cos(kφ�) cos(kφm)

+ bk sin(kφ�) cos(kφm) − bk cos(kφ�) sin(kφm)
)
, (3.4)

for 1 ≤ m ≤ λ1. Even though it first seems a lot more messy, we have separated terms involving φ� and terms with φm . 
Since we sum over � and the terms involving φ� remain the same for each m, we can precompute quantities

qcos
k := 1

N

λ1∑
�=1

cos(kφ�) and qsin
k := 1

N

λ1∑
�=1

sin(kφ�), (3.5)

for k = 0, . . . , p. In particular, (3.5) are precisely the local observables, which are felt by all nodes within one community. 
They allow us to conclude

Hdense
m (φ) ≈

p∑
k=0

(
akqsin

k sin(kφm) + akqcos
k cos(kφm)

+ bkqsin
k cos(kφm) − bkqcos

k sin(kφm)
)

(3.6)

for 1 ≤ m ≤ λ1. It is important to note that the computational complexity in this representation of Hdense
m (φ) in independent 

of the total number of oscillators N . In summary, the procedure in this step is as follows:

1. Precompute the quantities (3.5) for each k = 0, . . . , p and similar quantities for other communities.
2. Use the precomputed quantities to obtain a high-order approximation of Hdense(φ) according to formula (3.6) and 

equivalent formulas for other communities.

The computational complexity of Step 1 is O(λ1 p) for the first community and consequently 
∑M

σ=1 O(λσ p) = O(Np)

for the whole step. The same applies to Step 2. In particular, the computational complexity does not depend on the number 
of communities.

Sparse Summation (E2): In this step first Hsparse(φ) is evaluated and then combined with the results from the previous step 
to obtain the final right-hand side of (3.2). Recall that Hsparse

m (φ) is given by

Hsparse
m (φ) = fκ(m)(φm(t)) + 1

N

N∑
sm� h(φ�(t) − φm(t)). (3.7)
�=1

6
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Since the matrix S with entries sm� is sparse with at most O(N) non-zero entries, it is evident that even a straightforward 
summation of Hsparse(φ) requires only O(N) operations. This is exactly what this step is supposed to do. Finally, in this step 
we compute Hdense(φ) + Hsparse(φ), which gives the right-hand side of (3.2). All of these computations can be done with a 
complexity of O(N).

Finally, we mention that the high-order approximation step (P2) is the only step that introduces small inaccuracies in 
our algorithm. There are no inaccuracies induced by the community detection step (P1). In fact, if one also replaces h by its 
high-order approximation (3.3) to evaluate the sparse part (3.7), the community detection step (P1) does not introduce any 
inaccuracies. Instead, results of the community detection step (P1) only affect the computation time of the CIA evaluation 
steps. The sparser the matrix S , the faster these steps will be.

3.3. Extendibility to other network models

While the previous subsection only illustrates the CIA steps for one particular model (3.1), it is straightforward to see 
that it is applicable to many more network models. Our main argument to support this claim is that by using a Fourier 
or polynomial expansion of the coupling function g or h, the parts containing φ� and those comprising φm or x� and xm , 
when dealing with a model that does not have a circular domain, respectively, can always be separated, as done in (3.4). 
This allows the precomputation of quantities that do not depend on m but appear in each component of the right-hand 
side. These quantities consist of large sums whose single precomputation prevents unnecessary sums in the evaluation 
of each component of the right-hand side. Even when the coupling function g is not of the form g(x̃, ̂x) = h(x̃ − x̂), a two 
dimensional Fourier or polynomial expansion of g in terms of x̃ and x̂ is possible, see Appendix A.2 and A.3. While a Fourier 
expansion is suitable for any kind of periodic domain, the choice between a Fourier and a polynomial expansion relies on 
the structure of the coupling function. If the coupling function is already an ordinary or trigonometric polynomial the choice 
is simple, see for example Appendix A.5. If that is not the case both methods generally make sense. An approximation of 
the coupling function g then has to be chosen in a way that the approximation accurately resembles g at the points where 
it is evaluated. If, for example, all the particles xm(t) stay in a subset of the domain, it is only necessary to approximate 
the coupling function there. Furthermore, the coupling function does not always need to be approximated by either a 
Fourier series or a polynomial. Rather, parts or components of g that resemble a polynomial structure can be treated with a 
polynomial expansion while other parts and components might be better approximated by a Fourier series, see for example 
Appendix A.6. This further enlarges the class of network systems that can be integrated using out CIA method. Moreover, we 
want to highlight that our method is also applicable to higher-order/polyadic interactions in which the coupling function g
depends on more than two arguments, see Appendix A.7.

Finally, we remark another extension of our algorithm that further enlarges the class of networks to which our methods 
are applicable. In particular, the dense matrix D in Fig. 2 does not necessarily need to consist of blocks of ones on the 
diagonal. Instead, the blocks can also be located off the diagonal. Moreover, these blocks need not be filled entirely with 
ones. Another possibility is that each block represents a rank-one adjacency matrix or nearest-neighbour coupling, see 
Appendix B.

4. Numerical results

Based on numerical simulations for a wide variety of widely-used large-scale network models we demonstrate below 
the advantages of using a CIA in comparison to a naive approach. Including synthetic and real-world networks and for 
pairwise and higher-order coupling we provide numerical evidence for robustness and efficiency of our approach. The 
network models that we consider in this section are

• a Cucker-Smale model describing animal movement,
• a Kuramoto model for phases of oscillators on the unit circle,
• a Desai-Zwanzig model for interacting particles,
• and a Bornhold-Rholf model for self-organized criticality.

We compare the models on a fixed computational architecture using a sequence of synthetically generated networks that 
consist of four known communities as seen in Fig. 2. On the one hand, as seen in Fig. 3, the computation time for the 
naive approach depends quadratically on N for all network models. Importantly, on the other hand, when using a CIA, the 
computation time depends only linearly on N . Furthermore, the memory requirements of a CIA are much lower as we can 
take advantage of sparsity outside of communities, while just calculating and storing a few observable values within each 
community, so much larger network sizes N are possible; cf. Fig. 3.

Next, we simulate the Cucker-Smale model on a real-world network that contains data from real bird interactions [26,27], 
see Fig. 4. Based on this network, we construct a sequence of networks with growing sizes such that each network in 
the sequence still reflects the community structure of the original network and the amount of edges deviating from this 
community structure grows at most linearly in N . This helps us to study the effect of the network size on the computation 

time. Again, as seen in Fig. 5, the computation time of a naive approach of evaluating the right-hand side scales with 
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Fig. 3. Integration times for Cucker-Smale, Kuramoto, Desai-Zwanzig and Bornholdt-Rholf systems on a sequence of synthetically generated graphs of the 
form as shown in Fig. 2. To integrate these systems, we used an explicit Euler scheme on an equidistant discretization of [0, T ] with T = 20 and �t = 0.1. 
The computation of the Cucker-Smale model takes the longest, since it has a two-dimensional phase space for each node. For N � 104.5 storing the full 
matrix A ∈RN×N exceeds memory capacities on current standard desktops. In this case, naive algorithms are not applicable. Caused by their lower memory 
requirement, CIAs can still cope with much larger graphs on standard desktop architectures. (For interpretation of the colours in the figure(s), the reader is 
referred to the web version of this article.)

Fig. 4. A real-world network from bird interactions [26,27]. (a) The adjacency matrix A in its original form. (b) The adjacency after permuting the nodes 
such that a block structure is apparent. (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

N2. The computational complexity of a CIA approach is only O(N). This clearly shows that a CIA can be used to simulate 
dynamics on real-world networks.

Finally, we want to demonstrate that the idea of a CIA can also be applied to models that are beyond the general formu-
lation (2.1). When considering higher-order models, such as a higher-order Kuramoto model, the computational complexity 
of a naive approach can be much worse than just O(N2). However, even then a CIA approach is possible. One can still 
pre-compute suitable observables within communities and then evaluate the right-hand side based on these. This reduces 
the computational complexity to just O(N), see Fig. 6. For the details, see Appendix A.7.

5. Conclusion and outlook

In summary, we have developed a new method to integrate large-scale network models with community structure. 
Unlike a naive approach, the computational complexity of CIAs is always linear in the number of involved nodes N . This 
can be achieved by first detecting a community structure in the underlying network and expanding the coupling function 
to identify local observables. Then, in each time step, based on precomputations of these observables and a reformulation 
of the right-hand side, it can be evaluated in just linear complexity O(N). As we have shown this approach is applicable to 
a wide variety of networks. Further, the approach works independent of whether the coupling is pairwise or higher-order, 
and whether the underlying network is synthetic or a real-world network, leading to myriad application across all areas of 

science.
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Fig. 5. A simulation of the Cucker-Smale model on a real-world network depicted in Fig. 4. To integrate these systems, we used an explicit Euler scheme on 
an equidistant discretization of [0, T ] with T = 20 and �t = 0.1. (For interpretation of the colours in the figure(s), the reader is referred to the web version 
of this article.)

Fig. 6. Numerical integration of a higher-order Kuramoto system. A naive formulation and implementation leads to quartic complexity O(N4) (blue), 
whereas the application of a community integration algorithm based on a suitable reformulation and precomputations permits the reduction to linear 
complexity O(N) (red). (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

Lastly, we mention a few possible extensions: In the community detection step, we have so far focused of finding one 
community structure based on which we then perform the CIA evaluation steps (E1) and (E2). However, if the adjacency 
matrix has either additional and/or further hidden structure, additional computational savings are conceivable, see for ex-
ample Appendix B. One can also generalize CIAs to networks whose adjacency matrices have large blocks away from the 
diagonal. For synthetically generated adjacency matrices in which this structure is already evident, our CIA steps work as 
well, but in real-world networks this structure first needs to be detected. One can also adopt our algorithms to weighted 
networks. On the one hand, all entries of the sparse matrix S , see Fig. 2, need not be constrained to {−1, 1}, but can take 
arbitrary values. Moreover, even though the values in the matrix D have to be the same within each community, they can 
take different values for each community. On the other hand, there are only very few algorithms that can detect commu-
nities in weighted networks and produce results that are suitable for such applications. Extensions are also possible for the 
high-order approximation step (P2). We considered approximations that are based on Fourier expansions, polynomials or a 
combination thereof. There might be even more functional approximation systems such that a separation of terms involving 
xm and x� in (E1) and thus a fast evaluation is possible.
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Appendix A. Network models

In this section we describe the pre-simulation steps (P1)-(P2) and the CIA Evaluation steps (E1)-(E2) in technical detail 
for several different network models. In a general network model of the form

x′
m(t) = fm(xm) + 1

N

N∑
�=1

am� g(x�, xm), m = 1, . . . , N (A.1)

the steps (P2) and (E1) are quite abstract and general. When considering a specific network model, the function g is often 
not just an abstract function but one that exhibits more structure that can be exploited in those two steps. The steps (P1) 
and (E2), however, do not depend on the specific network model. Even though we have only described (E2) in Section 3 for 
a specific example this step is exactly the same for all other network models. Therefore, we shortly describe the community 
detection process (P1) in Subsection A.1 such that we have covered the steps (P1) and (E2), which are mostly independent 
of the particular network model. In the following subsections we then do not further touch upon these steps but only 
describe (P2) and (E1) for specific network models. In particular, our fast CIAs work on block matrices with dense or fully 
occupied blocks. We shall explain below, why for illustration purposes, we may assume to illustrate the computation in the 
easiest case of just one full block. Hence, we assume for the subsections following Subsection A.1 that A is a full matrix with 
A = (am�)m,�=1,...,N and am� = 1 for all m, �. Table 1 lists several examples of coupling functions of a wide variety of network 
models from different applications that are of the form (A.1); in fact, there are many more application examples having a 
form identical or very similar to (A.1) such as continuous Hopfield-type neural network models or the Hegselmann-Krause 
model for opinion formation.

Table 1
Desai–Zwanzig (DZ), Kuramoto (K), Cucker–Smale (CS), Van–der–Pol (V) as well 
as FitzHugh–Nagumo (FN) systems are relevant examples for time-continuous dy-
namical systems that can be cast into the form (2.1) with coupling functions 
g(x, y) = h(x − y).

Network
Model

State
Space (X )

Coupling Functions

(DZ) R fm(x) = f (x) = − V ′(x)
h(ξ) = ξ

(K) S =R/(2πZ) fm(x) = ωm

h(ξ) = sin(ξ)

(CS) R2n fm(x) = (v,0)� , x = (s, v)

h(ξ) = K (α2 + ‖ŝ‖2
2)−β (0, v̂)� , ξ = (ŝ, v̂)

(V)/(FN) R2 fm(x) = f (x1, x2) = (x2 − 1
3 x3

1 + x1,−ε x1)�
h(ξ) = ξ

A.1. Community detection (P1)

In general, our CIAs can quickly evaluate the right-hand side of (A.1), when the interaction matrix A = (am�)m,�=1,...,N ∈
{0, 1}N×N is fully occupied by ones and so all nodes of the underlying graph form one large community. But CIAs can also 
quickly evaluate the right-hand side if the adjacency matrix has block structure such that the underlying graph is partitioned 

into smaller communities, within which each node is connected to every other node. Obviously, the adjacency matrices of 
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most networks consist not only of blocks fully occupied by ones, but there may be a zero-entry of A at a position (m, �) that 
is in a larger block of ones. In other words, there is not always an all-to-all coupling inside communities but two nodes m, �
belonging to the same community might be uncoupled (missing intra-population links). Similarly, there may be a one-entry 
of A at (m, �) while nodes m and � do not belong to the same block in adjacency matrix A, meaning that two nodes m
and � can be coupled even though they do not belong to the same community (additional inter-population links). Our CIA 
nevertheless assumes that A has block structure, calculates the right-hand side of (A.1) using this assumption in step (E1), 
and corrects this calculation by individually adding or subtracting g(x�, xm) depending on whether (m, �) is an additional 
inter-population link or a missing intra-population link of the graph in step (E2).

In synthetically created benchmark graphs, the communities of the graph, or the block structure of the associated ad-
jacency matrix, respectively, is already known from the construction. However, when dealing with real-world networks, 
communities first have to be found.

CIAs can quickly evaluate the right-hand side for blocks in A but the evaluation of many summands g(x�, xm) is very 
costly. The aim of a community detection algorithm is partition the graph into communities such that there are as few 
missing intra-population links and additional inter-population links as possible. In other words, the matrix S defined in 
Section 3 (see also Fig. 2) has to be as sparse as possible. It can be seen as a feature of a community detection algorithm 
to achieve exactly that. However, not all community detection algorithms pursue to optimize on that feature. Therefore, 
we have analyzed and compared different community detection algorithms with respect to that feature [11]. Moreover, 
comparisons of community detection algorithms for numerical simulations can be found in [28–30].

Among the tested algorithms in [11] were greedy_modularity [31] from the Python package networkx [32] and the al-
gorithms louvain [33], rber_pots [24,25], rb_pots [34,25], significance_communities [35], walktrap [36] from the Python

package cdlib [37].
While all of these algorithms perform reasonably well, our tests showed that rber_pots detects communities in a way 

such that the matrix S has the fewest non-zero entries. Consequently this algorithm is best suitable for our applications. 
Knowing the theory behind this algorithm, it is no surprise that it performs well, since it is specifically optimized to reward 
existing intra-population links, punish missing intra-population links, reward missing inter-population links and punish 
existing inter-population links [25]. This results in a Hamiltonian

H({σ }) = −
∑
m �=�

(am� − γ pm�)δ(σm,σ�),

that the algorithm tries to minimize [25]. Here, am� are the entries of the adjacency matrix of the graph and pm� is 
the probability that a link between node m and � exists. This probability is normalized such that 

∑
m �=� pm� = 2N . It 

can be chosen as pm� = kmk�/(2N), where k denotes the degree distribution of the network, or one can just take pm� =
|E|/((N − 1)N), where |E| is the total amount of edges in the network. Further, σm is an index of the community to which 
node m belongs such that δ(σm, σ�) = 1 if nodes m and � belong to the same community and δ(σm, σ�) = 0 otherwise. 
Finally, there is a parameter γ that determines the ratio of how much a missing intra-population link should be punished in 
comparison with the reward of a non-existing inter-population link. In the standard case γ = 1, a missing intra-population 
link or an additional inter-population link negatively effects the Hamiltonian by the same amount as an existing intra-
population link or a missing inter-population link positively effects it. Since we need to evaluate the coupling function 
g(x�, xm) for each missing intra-population link and each existing inter-population link exactly once, γ = 1 is reasonable for 
our application.

Having praised rber_pots, we also want to remark that all tested community detection algorithms do not take into 
account that the numerical evaluation of the right-hand side of (3.6) takes some time, too. Since this evaluation time scales 
with the number of communities it is sometimes better to have fewer but larger communities, especially if the order 
p of the expansion is high. The optimal community structure thus depends on the specific network model including its 
parameters such as the order p of the expansion and the dimension of the model.

A.2. General network model - Fourier expansion

Having established a community structure, here, we focus on just one community. For the sake of a clear notation, we 
take (am�)m,�=1,...,N = (1)m,�=1,...,N , i.e., we consider the network model

x′
m(t) = 1

N

N∑
�=1

g(x�, xm), m = 1, . . . , N. (A.2)

A naive computation of the right-hand side of (A.2) for all m = 1, . . . , N requires N2 evaluations of g and thus the required 
time scales quadratically with N . Our aim is to reduce that to linear complexity. For simplicity we first assume that the 
coupling function g takes two inputs x� and xm from a one-dimensional space, e.g. the real line R or the circle S and maps 

into R.

11



T. Böhle, M. Thalhammer and C. Kuehn Journal of Computational Physics 469 (2022) 111524
Complex Fourier series A general Fourier expansion of g is then of the form

g(x, y) =
∑
α∈Z

∑
β∈Z

cα,βe
π i
L αxe

π i
L β y (A.3)

≈
p∑

α=−p

p∑
β=−p

cα,βe
π i
L αxe

π i
L β y, (A.4)

where cα,β are the Fourier coefficients of g , L > 0 sets the size of the area [−L, L] ×[−L, L] on which the Fourier expansion 
is valid and p ∈N is an indicator for the approximation order. Inserting this representation into (A.2), we get

x′
m(t) = 1

N

N∑
�=1

g(x�, xm)

≈ 1

N

N∑
�=1

p∑
α=−p

p∑
β=−p

cα,βe
π i
L αx�e

π i
L βxm

=
p∑

α=−p

p∑
β=−p

cα,βe
π i
L βxm

(
1

N

N∑
�=1

e
π i
L αx�

)
︸ ︷︷ ︸

=:rα

.

Therefore, if one precomputes certain well-chosen observables, namely the so-called generalized order parameters

rα = 1

N

N∑
�=1

e
π i
L αx� , (A.5)

for all α = −p, . . . , p, the computation of the right-hand side reduces to

x′
m(t) ≈

p∑
α=−p

p∑
β=−p

cα,β rα e
π i
L βxm . (A.6)

Now, note that the precomputation complexity of the generalized order parameters (A.5) scales linearly in N and so does 
the computation of (A.6), since it has to be computed for all m = 1, . . . , N . The total complexity thus has come down to 
O(N). The constant in front of the N can be further improved by noting that cα,β = c−α,−β in (A.4), where c̄ denotes the 
complex conjugate of c. This has to hold to guarantee that g is a real function. Similarly, rα = r−α in (A.5). Using these 
relations, the computation time can be further reduced by a constant factor, even if it still scales linearly with N . However, 
since these improvements would make the notation more elaborate and thus worsen the readability, we do not mention 
them further below.

There still remains the question about how to choose L and p in the Fourier approximation. Unfortunately, there is no 
general answer to this question, but in specific cases the range of x is restricted to a region [−L, L] anyway, so then L
can be chosen such that the Fourier approximation is valid on the whole domain, see for example Section A.4 and A.7. 
Furthermore, in some cases, the coupling function is already a finite Fourier series, so (A.4) is exact for small p ∈ N from 
which a choice of p can be made. In general, L should be chosen large enough such that xm(t) ∈ [−L, L] for all k and all 
t in the simulation time range. This can either numerically be tested or ensured by theoretical results that guarantee the 
boundedness of xm(t).

To summarize, the important steps are as follows:

(P1) Before starting the simulation, determine Fourier-coefficients cα,β , such that the coupling function g can be represented 
as or well approximated by a finite series

g(x, y) ≈
p∑

α=−p

p∑
β=−p

cα,βe
π i
L αxe

π i
L β y .

(E1) In each time step, precompute generalized order parameters

rα = 1

N

N∑
�=1

e
π i
L αx� ,
for α = −p, . . . , p and calculate the right-hand side of (A.2) based on the formula
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x′
m(t) ≈

p∑
α=−p

p∑
β=−p

cα,β rα e
π i
L βxm .

Real Fourier series Alternatively from the approach using complex approximations, we can also start with an approximation 
involving sin and cos. Then, we first have to determine Fourier coefficients c11

α,β , c12
α,β, c21

α,β, c22
α,β such that

g(x, y) ≈
p∑

α=0

p∑
β=0

(
c11
α,β cos

(π

L
αx

)
cos

(π

L
β y

)
+ c12

α,β cos
(π

L
αx

)
sin

(π

L
β y

)
(A.7a)

+ c21
α,β sin

(π

L
αx

)
cos

(π

L
β y

)
+ c22

α,β sin
(π

L
αx

)
sin

(π

L
β y

))
. (A.7b)

Using this representation, the right-hand side of (A.2) reads as

x′
m(t) = 1

N

N∑
�=1

g(x�, xm)

≈ 1

N

N∑
�=1

p∑
α=0

p∑
β=0

(
c11
α,β cos

(π

L
αx�

)
cos

(π

L
βxm

)
+ c12

α,β cos
(π

L
αx�

)
sin

(π

L
βxm

)

+ c21
α,β sin

(π

L
αx�

)
cos

(π

L
βxm

)
+ c22

α,β sin
(π

L
αx�

)
sin

(π

L
βxm

))

=
p∑

α=0

p∑
β=0

[
c11
α,β

(
1

N

N∑
�=1

cos
(π

L
αx�

))
cos

(π

L
βxm

)
+ c12

α,β

(
1

N

N∑
�=1

cos
(π

L
αx�

))
sin

(π

L
βxm

)

+ c21
α,β

(
1

N

N∑
�=1

sin
(π

L
αx�

))
cos

(π

L
βxm

)
+ c22

α,β

(
1

N

N∑
�=1

sin
(π

L
αx�

))
sin

(π

L
βxm

)]
.

Therefore, in each time step, we need to precompute

rcos
α := 1

N

N∑
�=1

cos
(π

L
αx�

)
and rsin

α := 1

N

N∑
�=1

sin
(π

L
αx�

)
(A.8)

for all α = 0, . . . , p. Having done that, the right-hand side of (A.2) can be rewritten as

x′
m(t) ≈

p∑
α=0

p∑
β=0

[
c11
α,βrcos

α cos
(π

L
βxm

)
+ c12

α,βrcos
α sin

(π

L
βxm

)

+ c21
α,βrsin

α cos
(π

L
βxm

)
+ c22

α,βrsin
α sin

(π

L
βxm

)]
.

To summarize, the important steps when using a real expansion are

(P1) Before starting the simulation, determine Fourier-coefficients c11
α,β , c12

α,β, c21
α,β, c22

α,β , such that the coupling function g
can be represented as or well approximated by a finite series

g(x, y) ≈
p∑

α=0

p∑
β=0

(
c11
α,β cos

(π

L
αx

)
cos

(π

L
β y

)
+ c12

α,β cos
(π

L
αx

)
sin

(π

L
β y

)
(A.9)

+ c21
α,β sin

(π

L
αx

)
cos

(π

L
β y

)
+ c22

α,β sin
(π

L
αx

)
sin

(π

L
β y

))
. (A.10)

(E1) In each time step, precompute

rcos
α := 1

N

N∑
cos

(π

L
αx�

)
and rsin

α := 1

N

N∑
sin

(π

L
αx�

)

�=1 �=1
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for α, β = 0, . . . , p and calculate the right-hand side of (A.2) based on the formula

x′
m(t) ≈

p∑
α=0

p∑
β=0

[
c11
α,βrcos

α cos
(π

L
βxm

)
+ c12

α,βrcos
α sin

(π

L
βxm

)

+ c21
α,βrsin

α cos
(π

L
βxm

)
+ c22

α,βrsin
α sin

(π

L
βxm

)]
.

Difference based coupling function - complex Fourier series Even though we have already reduced the complexity from being 
quadratic in N to being only linear in N , the constant scales with p2. In many network models the coupling function g is 
of the special form g(x, y) = h(x − y), such that we are facing the system

x′
m(t) = 1

N

N∑
�=1

h(x� − xm), k = 1, . . . , N. (A.11)

This helps to reduce the dependence on p2 to just p. Again, we assume that the coupling function h has an Fourier 
approximation

h(x) =
∑
α∈Z

dαe
π
L αx ≈

p∑
α=−p

dαe
π
L αx, (A.12)

where dα are the Fourier coefficients, L > 0 indicates the size of the domain [−L, L] in which the approximation is valid 
and p gives the approximation order. Then, the right-hand side of (A.2) can be written as

x′
m(t) = 1

N

N∑
�=1

h(x� − xm)

≈ 1

N

N∑
�=1

p∑
α=−p

dαe
π
L α(x�−xm)

=
p∑

α=−p

dα

(
1

N

N∑
�=1

e
π
L αx�

)
e− π

L αxm (A.13)

=
p∑

α=−p

dαrαe− π
L αxm , (A.14)

where rα are the generalized order parameters (A.5). While the general formula (A.6) involves two sums with indices 
running from −p to p, the formula (A.14), which relies on the assumption of a difference based coupling, involves only one 
such sum.

Difference based coupling function - real Fourier series Again, instead of expanding h in a complex Fourier series, one can also 
use a real Fourier series

h(x) = dcos
0 +

∞∑
α=1

(
dsin
α sin

(π

L
αx

)
+ dcos

α cos
(π

L
αx

))

≈ dcos
0 +

p∑
α=1

(
dsin
α sin

(π

L
αx

)
+ dcos

α cos
(π

L
αx

))
(A.15)

Having precomputed the quantities rsin
α and rcos

α from (A.8), the right-hand side of (A.11) is given by

x′
m(t) = 1

N

N∑
�=1

h(x� − xm)

≈ 1
N∑[

dcos +
p∑ (

dsin sin
(π

α(x� − xm)
)

+ dcos cos
(π

α(x� − xm)
))]
N
�=1

0
α=1

α L α L
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= dcos
0 + 1

N

N∑
�=1

p∑
α=1

[
dsin
α sin

(π

L
αx�

)
cos

(π

L
αxm

)
− dsin

α cos
(π

L
αx�

)
sin(

(π

L
αxm

)

+ dcos
α sin

(π

L
αx�

)
sin

(π

L
αxm

)
+ dcos

α cos
(π

L
αx�

)
cos

(π

L
αxm

)]

= dcos
0 +

p∑
α=1

[
dsin
α rsin

α cos
(π

L
αxm

)
− dsin

α rcos
α sin

(π

L
αxm

)

+ dcos
α rsin

α sin
(π

L
αxm

)
+ dcos

α rcos
α cos

(π

L
αxm

)]
.

This last equation represents the formula that one should use to compute the right-hand side of (A.11) when preferring real 
Fourier approximations.

Extensions In the above calculations we assumed that g or h take inputs form a one-dimensional space and map into a 
one-dimensional space. However, we want to remark that this approach also works if the inputs x� and xm are higher-
dimensional objects, for example, when g : Rn ×Rn →Rn . In this case, α and β have to be thought of being multi-indices 
rather than integers. Quantities of the form e

π i
L αx have to be replaced with e

π i
L 〈α,x〉 , where 〈·, ·〉 is a scalar product. Further, 

sums over α, β = −p, . . . , p are then sums over α, β ∈ Z(p)n := {−p, . . . , p}n . Moreover, the order parameter (A.5) or its 
real equivalents need to be precomputed for all α ∈Z(p)n .

A.3. General network model - polynomial expansion

Again, we consider the general network model

x′
m(t) = 1

N

N∑
�=1

g(x�, xm), m = 1, . . . , N. (A.16)

Again, our goal is to reduce the computational complexity from N2 to just N . We assume for simplicity that g takes two 
inputs from a one-dimensional space such as R or S and maps to R. However, it should be said that our approach works 
as well when the inputs of g are from a higher-dimensional space.

Polynomial approximation However, instead of approximating the coupling function by a Fourier series, this time we ap-
proximate it by polynomials

g(x, y) =
∞∑

α=0

∞∑
β=0

cα,β xα yβ ≈
p∑

α=0

p∑
β=0

cα,β xα yβ. (A.17)

Here cα,β are the coefficients of the approximation and p ∈ N indicates the approximation order. This approximation does 
not necessarily need to be a Taylor approximation. Rather, it is often more useful to consider a polynomial approximation of 
g with respect to a L2 or a supremum norm on a domain [−L, L] ×[−L, L]. For numerical reasons it sometimes make sense 
to replace x and y in (A.17) by (x − x0) and (y − y0), respectively. Combining this approximation with (A.16), we obtain

x′
m(t) = 1

N

N∑
�=1

g(x�, xm)

≈ 1

N

N∑
�=1

p∑
α=0

p∑
β=0

cα,β xα
� xβ

m

=
p∑

α=0

p∑
β=0

cα,β

(
1

N

N∑
�=1

xα
�

)
︸ ︷︷ ︸

=:wα

xβ
m.

Therefore, if one precomputes the α-th moments

wα := 1

N

N∑
xα
� (A.18)
�=1
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for α = 0, . . . , p, the computation of the right-hand side reduces to

x′
m(t) ≈

p∑
α=0

p∑
β=0

cα,β wαxβ
m. (A.19)

To summarize, the important steps are as follows:

(P1) Before starting the simulation, determine coefficients cα,β , such that the coupling function g can be represented as or 
well approximated by a finite series

g(x, y) ≈
p∑

α=0

p∑
β=0

cα,β xα yβ .

(E1) In each time step, precompute the moments

wα := 1

N

N∑
�=1

xα
�

for α = 0, . . . , p and calculate the right-hand side of (A.16) based on the formula

x′
m(t) ≈

p∑
α=0

p∑
β=0

cα,β wαxβ
m.

As one can see, the complexity of an evaluation of the right-hand side (A.19) is only linear in N , since it has to be evaluated 
for each k = 1, . . . , N . The dependence of this complexity on p2 can be reduced in special cases, for example if the coupling 
function g depends only on differences.

Difference based coupling function - polynomial approximation Even though we have already reduces the complexity from 
being quadratic in N to being only linear in N , the constant scales with p2. In many network models the coupling function 
g is of the special form g(x, y) = h(x − y), such that we are facing the system

x′
m(t) = 1

N

N∑
�=1

h(x� − xm), k = 1, . . . , N. (A.20)

Such a representation is helpful when one wants to further reduce the computational complexity. Now, we assume that the 
coupling function h can be well approximated by a polynomial

h(x) =
∞∑

α=0

cαxα ≈
p∑

α=0

cαxα.

Again, for numerical reasons it is sometimes better to replace x in the above formula with (x − x0). However, for the sake of 
simplicity we do not incorporate this technical detail. Given this polynomial approximation and the α-th moments (A.18), 
we can rewrite the right-hand side of (A.20) to

x′
m(t) = 1

N

N∑
�=1

h(x� − xm)

≈ 1

N

N∑
�=1

p∑
α=0

cα(x� − xm)α

=
p∑

α=0

cα
1

N

N∑
�=1

α∑
k=0

(
α
k

)
xk
� (−xm)α−k

=
p∑

α=0

cα

α∑
k=0

(
α
k

)(
1

N

N∑
�=1

xk
�

)
(−xm)α−k

=
p∑

α=0

cα

α∑
k=0

(
α
k

)
wk (−xm)α−k. (A.21)
This representation further reduces the computational complexity.
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A.4. Kuramoto model

The classical Kuramoto model [18] is given by

d

dt
θm(t) = ωm + 1

N

N∑
�=1

sin(θ�(t) − θm(t)), m = 1, . . . , N,

where θm : [0, T ] → S = R/(2πZ) is the phase and ωm the intrinsic frequency of oscillator m. The coupling function g is 
hence given by g(x, y) = h(x − y) = sin(x − y).

Classical Kuramoto model Following the difference based approach from Section A.2, we choose L = π , p = 1 and write h as

h(x) = sin(x) = −1

2i
e−ix + 1

2i
eix,

so d−1 = −1/(2i), d0 = 0 and d1 = 1/(2i) in (A.12) and this approximation is exact. After calculating the order parameters

r−1 = 1

N

N∑
�=1

e−iθ� ,

r0 = 1,

r1 = 1

N

N∑
�=1

eiθ� , (A.22)

the equation to evaluate the right-hand side (A.14) turns into

θ ′
m(t) = ωm + −1

2i
r−1eiθm + 1

2i
r1e−iθm . (A.23)

However, since d−1 = d1 and r−1 = r1 we can further simplify:

θ ′
m(t) = ωm − Re

(
ir1e−iθm

)
(A.24)

= ωm + Im(r1e−iθm ). (A.25)

One can also write r1 = |r1|eiψ for some ψ ∈ S. Then,

θ ′
m(t) = ωm + Im(r1e−iθm )

= ωm + |r1| Im(ei(ψ−θm)) (A.26)

= ωm + |r1| sin(ψ − θm). (A.27)

Alternatively, one can also prefer to work with real numbers only. Then, one has to precompute

rcos
1 = 1

N

N∑
�=1

cos(θ�), and rsin
1 = 1

N

N∑
�=1

sin(θ�). (A.28)

According to the derivation in Section A.2, for the right-hand side we obtain

θ ′
m(t) = ωm + rsin

1 cos(xm) − rcos
1 sin(xm). (A.29)

To summarize, the important steps are given by

(P1) In this step nothing has to be done, since the coupling function is already a finite Fourier series.
(E1) In each simulation step, first calculate the complex order parameter (A.22) and then evaluate the right-hand side by 

using either of the formulas (A.23), (A.24), (A.25), (A.26), (A.27). Alternatively, calculate the real order-parameters (A.28)

and then evaluate the right-hand side using the formula (A.29).
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Higher-harmonics Kuramoto model An easy generalization of the classical Kuramoto model additionally includes higher har-
monics in the coupling function. The network model is then given by

θ ′
m(t) = ωm + 1

N

N∑
�=1

h(θ�(t) − θm(t)),

with a coupling function h : S →R defined by

h(x) =
p∑

α=1

(dsin
α sin(αx) + dcos

α cos(αx)).

Obviously, this is already of the form (A.15) for L = π , so we can directly follow this section. Having precomputed the 
quantities rcos

α and rsin
α from (A.8) for all α = 0, . . . , p, the right-hand side for the Higher-Harmonics Kuramoto Model can 

be written as

θ ′
m(t) = ωk + dcos

0 +
p∑

α=1

[
dsin
α rsin

α cos (αxm) − dsin
α rcos

α sin (αxm)

+ dcos
α rsin

α sin (αxm) + dcos
α rcos

α cos (αxm)
]
.

A.5. Desai-Zwanzig model

The Desai-Zwanzig model [17] is given by the following set of equations:

x′
m(t) = −V ′(xm) + 1

N

N∑
�=1

(x� − xm), (A.30)

where V : R →R is a potential. Following the difference based procedures in Section A.3, the coupling function h is given 
by just h(x) = x. Therefore, to match the notation in this section, p = 1, c0 = 0 and c1 = 1. After having computed the first 
moment w1 from (A.18) and by using (A.21), we can write the right-hand side as

x′
m(t) = −V ′(xm) + (−xm + w1).

Even though this is an easy application of the theory from Section A.3 and could have easily derived from (A.30) without the 
general theory from this section, it helps to reduce the computational cost significantly and thereby lowers the complexity 
from O(N2) to just O(N).

A.6. Cucker-Smale model

The continuous Cucker-Smale model [19] is given by the dynamical system

s′
m(t) = vm(t) (A.31a)

v ′
m(t) = 1

N

N∑
�=1

K

(σ 2 + ‖s�(t) − sm(t)‖2)β
(v�(t) − vm(t)), (A.31b)

for m = 1, . . . , N , where sm(t) represents the current position of the m-th bird, vm(t) is its velocity and K , σ and 
β are coupling constants. Here sm(t), vm(t) ∈ Rn , where typically n = 1, 2, 3. Putting this into the form (A.1) with 
x = (s, v)� , fm(x) := (v, 0)� would be functions mapping from R2n to R2n and similarly, g : R2n × R2n → R2n , with 
g(x̂, ̃x) = (gs(x̂, ̃x), gv(x̂, ̃x))� . Here, the first n components of g are given by gs(x̂, ̃x) = 0 and the last n components of g are 
given by

gv
(
x̂, x̃

) = η(‖ŝ − s̃‖2) (v̂ − ṽ), with η(y) = K

(σ 2 + y)β
.

If we directly applied the algorithm described in previous section A.2 or A.3, the high dimension of the Cucker-Smale 
model would impact the performance of these algorithms, since they do not account for the special structure of the model. 
However, by exploiting this special structure, a more efficient algorithm can be constructed. In particular, a more efficient 
algorithm has to take into account that gs = 0, so there is no need to expand this part either in a Fourier or a polynomial 
series. Furthermore, g(x̂, ̃x) only depends on the difference x̂ − x̃, which should be exploited. Moreover, gv (x̂, ̃x) depends on 

v̂ − ṽ only linearly, so a polynomial expansion up to a degree higher than 1 is unnecessary. Last but not least, the fraction 
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in the sum of (A.31b) is independent of the coordinate direction, which makes it superfluous to expand this fraction for 
each coordinate direction.

Let us start developing a fast algorithm by denoting η̃(y) : Rn → R, with η̃(y) := η(‖y‖2) and expanding this in a 
Fourier series

η̃(y) =
∑
α∈Zn

c̃αe
iπ
L 〈α,y〉 ≈

∑
α∈Z(p)n

c̃αe
iπ
L 〈α,y〉, (A.32)

where α ∈Z(p)n ⊂Zn is a multi-index, Z(p) = {−p, . . . , p}, c̃α are the Fourier coefficients of η̃, L > 0 is a parameter that 
denotes the region [−L, L]n on which the expansion is valid and 〈α, x〉 = ∑n

�=1 α�x� denotes the standard scalar product. In 
this new notation the second component of the right-hand side of (A.31b) reads as

v ′
m(t) = 1

N

N∑
�=1

η̃(s�(t) − sm(t)) (v�(t) − vm(t)).

Inserting the approximation (A.32) into this formula yields

v ′
m(t) ≈ 1

N

N∑
�=1

∑
α∈Z(p)n

c̃αe
iπ
L 〈α,s�(t)−sm(t)〉(v�(t) − vm(t))

=
∑

α∈Z(p)n

c̃αe
iπ
L 〈α,−sm(t)〉

(
1

N

N∑
�=1

e
iπ
L 〈α,s�(t)〉v�(t) − 1

N

N∑
�=1

e
iπ
L 〈α,s�(t)〉vm(t)

)
.

Therefore, if one precomputes

uα = 1

N

N∑
�=1

e
iπ
L 〈α,s�〉 ∈R, (A.33a)

hα = 1

N

N∑
�=1

e
iπ
L 〈α,s�〉v� ∈Rn (A.33b)

for each α ∈Z(p)n , the right-hand side is finally given by

v ′
m(t) ≈

∑
α∈Z(p)n

c̃α e
iπ
L 〈α,−sm(t)〉 (hα − uα vm(t)) . (A.34)

To summarize, the important steps are given by

(P1) Before starting the simulation, determine Fourier-coefficients c̃α , such that the function η̃ is well approximated by a 
finite series of the form (A.32).

(E1) In each time step, precompute the quantities (A.33) for all α ∈ Z(p)n and calculate the right-hand side of (A.31b) by 
using the formula (A.34).

A.7. Higher-order Kuramoto models

Higher-order Kuramoto models are generalizations from the classical Kuramoto model. While in the classical Kuramoto 
model the particle interactions are pairwise, in higher-order Kuramoto models, interactions of triplets, quadruplets, etc. 
determine the dynamics. We are going to show below that the CIA approach naturally generalizes to higher-order coupling, 
and is even more powerful in this case. The higher-order Kuramoto network model we use as an illustration for this 
generalization is given by

θ ′
m(t) = 1

Nn

∑
�∈[N]n

sin

(
n∑

k=1

λkθ�k (t) + λn+1θm(t)

)
.

Here, N is the number of oscillators, [N] = {1, . . . , N}, n + 1 is amount of oscillators that interact with each other, θm(t)
are the phases of oscillators m = 1, . . . , N and λ1, . . . , λn+1 ∈ Z are integer valued coefficients that typically sum up to 0. 
In the classical Kuramoto model n = 1, λ1 = 1, λ2 = −1. To make the presentation simple, we restrict ourself to the model 

higher-order model
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θ ′
m(t) = 1

N3

N∑
�1,�2,�3=1

sin
(
λ1θ�1(t) + λ2θ�2(t) + λ3θ�3(t) + λ4θm(t)

)
. (A.35)

The computational complexity to naively evaluate the right-hand side of (A.35) is O(N4) since there are 3 sums and they 
have to be evaluated for each m = 1, . . . , N . The following calculation shows how to reduce this complexity:

θ ′
m(t) = 1

N3

N∑
�1,�2,�3=1

sin
(
λ1θ�1(t) + λ2θ�2(t) + λ3θ�3(t) + λ4θm(t)

)

= Im

⎛
⎝ 1

N3

N∑
�1,�2,�3=1

ei(λ1θ�1 (t)+λ2θ�2 (t)+λ3θ�3 (t)+λ4θm(t))

⎞
⎠

= Im

⎛
⎝ 1

N3

N∑
�1,�2,�3=1

eiλ1θ�1 (t) eiλ2θ�2 (t) eiλ3θ�3 (t) eiλ4θm(t)

⎞
⎠

= Im

⎛
⎝

⎛
⎝ 1

N

N∑
j1=1

eiλ1θ�1 (t)

⎞
⎠

⎛
⎝ 1

N

N∑
j2=1

eiλ2θ�2 (t)

⎞
⎠

⎛
⎝ 1

N

N∑
j3=1

eiλ3θ�3 (t)

⎞
⎠ eiλ4θm(t)

⎞
⎠

= Im
(

rλ1 rλ2 rλ3 eiλ4θm(t)
)

. (A.36)

As in (A.5) with L = π , rα is the α-th order parameter

rα = 1

N

N∑
�=1

eiαθ� .

As can easily be seen precomputing the order parameters rα for α = λ1, λ2, λ3 requires a O(N) function evaluations. Sub-
sequently evaluating the right-hand side according to the formula (A.36) takes another O(N) operations. Thus, in summary 
the complexity of this algorithm is linear in N , which is a significant reduction from the naive algorithm that scales with N4 . 
This shows the power of our approach: as long as one can exploit dense coupling structure, even higher-order (or polyadic, 
or hypergraph) interactions can be reduced from a high polynomial computational complexity in N to linear complexity.

Even though there exist formulas that give a fast evaluation of the right-hand side only by using real numbers, deriving 
these formulas requires addition theorems on sin(α1 +α2 +α3 +α4) and consequently these formulas tend to be very long, 
which is why we recommend the complex formula (A.36).

A.8. Bornholdt-Rohlf model

The Bornholdt-Rohlf model [22] on a static all-to-all network is a discrete dynamical system with the iteration rule

fm(t) =
N∑

�=1

v�(t) + μvm(t) + σ rm, rm ∼ N (0,1),

vm(t + 1) = sgn[ fm(t)],
where σ ≥ 0 is a parameter for the noise and N (0, 1) denotes the standard normal distribution. Here, one needs to observe 
that the decisive sum in the definition of fm is independent of m. Therefore, this sum can be precomputed and then 
reused for each calculation of fm(t). In this way one can construct an algorithm whose complexity is linear in N . This 
example aims to illustrate in a simple setting that the neither the continuous-time assumption, nor the assumption about a 
particular ordinary differential equation structure matter. What does matter for being able to the CIA approach is that the 
computational bottleneck in a naive approach arises due to summing at each node over all its inputs.

Appendix B. Extensions of the community structure exploitation step (E1)

The Community Structure Exploitation step (E1) as we have described it in Section 3 assumes that the nodes in each 
community are all-to-all coupled. However, there are cases for which the right-hand side of

x′
m(t) = 1

N

N∑
am� g(x�(t), xm(t))
�=1
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can be efficiently evaluated in step (E1) even though the graph represented by the adjacency matrix A = (am�)m,� does 
not represent an all-to-all coupling or a very dense coupling. Examples include rank one matrices and nearest-neighbour
networks. In the following two subsections we briefly explain how an efficient evaluation on these networks is possible. For 
the sake of simplicity we assume that g is of the form g(x, y) = h(x − y) and h consists of only one complex harmonic, 
i.e., h(x) = eix . The general case can then be obtained by approximating h with more Fourier modes treating each harmonic 
individually.

B.1. Rank one coupling

Here, we consider the case that the adjacency matrix is given by an outer product am� = αm β� for two vectors α, β ∈RN , 
i.e., we focus on the system

x′
m(t) = 1

N

N∑
�=1

αmβ� ei(x�−xm). (B.1)

This is the only case in which we do not require am� ∈ {0, 1}. Since the CIA evaluation step (E1) as described in Section 3
is a special case of a rank one coupling, i.e., when αm = β� = 1 for all m, �, this presents a generalization of (E1). Based on 
(B.1), we immediately see that it makes sense to precompute

r = 1

N

N∑
�=1

β� eix� . (B.2)

Then, (B.1) simplifies to

x′
m(t) = αm r e−ixm . (B.3)

Note that both (B.2) and (B.3) can be evaluated with a complexity of O(N).

B.2. Nearest-neighbour coupling

For a given N ∈N and k ∈N one can define a k-nearest-neighbour graph on N nodes in terms of the adjacency matrix 
A = (am�) by setting

am� =
{

1 if cN(m, �) ≤ k

0 else
,

where cN is a circular distance given by

cN(m, �) = min(|m − �|, N − |m − �|).
In other words, one can imagine all N nodes uniformly distributed on a unit circle and then couple each node to its k
nearest neighbours in both directions. That means, we consider the system

x′
m(t) = 1

N

N∑
�=1

am�ei(x�−xm)

= 1

N

m+k∑
�=m−k

ei(x�−xm), (B.4)

where the particle index in (B.4) has to be understood modulo N . Since for k ≥ N/2 this is an all-to-all coupling, the 
nearest-neighbour coupling is again a generalization of (E1) as described in Section 3. However, the procedure to efficiently 
evaluate (B.4) will be different and especially not based on precomputations but on an iterative method. In particular, given 
the representation (B.4) one obtains

x′
m(t)eixm = 1

N

m+k∑
�=m−k

eix� =: Fm(x).

With this notation

Fm+1(x) = Fm(x) − 1

N
(eixm−k − eixm+k+1), (B.5)
which gives an iterative procedure to compute F . The steps to compute x′
m(t) efficiently are therefore given by
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1. Compute F1(x) by the definition

F1(x) = 1

N

1+k∑
�=1−k

eix� .

2. Use formula (B.5) to iteratively compute F2(x), F3(x), . . . , F N(x).
3. Finally compute x′

m(t) = Fm(x)e−ixm .

Note that the first step has a complexity of O(N). Each iteration in step 2 consists of only a finite number of operations 
O(1). Since N − 1 iterations are necessary, the second step is of total complexity O(N). Finally the third step is obviously 
of complexity O(N) as well. Therefore, (B.4) can be computed for all m = 1, . . . , N requiring a complexity of only O(N). 
Importantly, this is independent of k and still holds when for example k = rN , where r ∈ (0, 1/2) is a factor that describes 
the coupling range. In this case the adjacency matrix A has approximately 2rN2 non-zero entries, yet a efficient computation 
in O(N) is possible.

Appendix C. Accuracy of CIAs

In this section we numerically analyze the accuracy of CIAs, i.e., we study the error that occurs in the time integra-
tion due to the high-order approximation (P2) of the coupling function. In the first part of this section, we consider the 
phase oscillator model (3.1), and in the second part, we consider an n = 2 dimensional Cucker-Smale model, that we have 
introduced Appendix A.6.

C.1. Accuracy in phase oscillator models

In our test scenario, we consider the model (3.1) on a synthetically created network of N = 1000 nodes. This network 
consists of four communities as seen in Fig. 2. Moreover, we omit intrinsic dynamics, i.e., fm ≡ 0. As we have explained 
in Section 3.1, the rate of convergence when approximating the coupling function h by a Fourier series, depends on the 
smoothness of h. Since the smoothness of h is related to the rate of decay of its Fourier coefficients, we choose a coupling 
function h as

h(φ) =
∞∑

k=1

bk sin(kφ), bk = k−ξ

and let ξ ∈N be a variable. Next, we randomly choose the initial conditions for all oscillators and simulate the system (3.1)
using an explicit Euler scheme until T = 20 with a time step size of �t = 0.1. We use a naive approach to create a reference 
solution that we denote by φref

m,t with m = 1, . . . , N and t = 0, �t, 2�t, . . . , T .
Then, we use our CIA, that relies on an approximation of the coupling function in step (P2) and simulate the same 

system. Again, we use an explicit Euler scheme and the same time discretization until T = 20. This produces a second 
solution that we denote by φCIA

m,t . Finally, we determine the error z by computing

z = max
m=1,...,N

max
t=0,�t,2�t,...,T

|φref
m,t − φCIA

m,t |.

The dependence of this error z on the approximation order p and the rate of decay ξ of the coupling function can be 
seen in Fig. 7.

C.2. Accuracy in the Cucker-Smale model

In this section we simulate the Cucker-Smale model, introduced in Appendix A.6, both directly with a naive approach 
and with our CIA. We use the same network consisting of four communities with N = 1000 nodes. As in the last subsection, 
we use an explicit Euler scheme on an equidistant time grid 0, �t, 2�t, . . . , T with �t = 0.1 and T = 20.

Again, we denote the exact reference solution by sref
m,t and the solution obtained by the CIA described in Appendix A.6 by 

sCIA
m,t . Note that this time sm,t ∈ R2, which is why we need to take the norm instead of the absolute value in the definition 

of the error:

z = max
m=1,...,N

max
t=0,�t,2�t,...,T

‖sref
m,t − sCIA

m,t‖.

We consider two cases. First, the function η is given by the algebraic function

η(y) = K
(C.1)
(σ 2 + y)β
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Fig. 7. Integration error z independence of the approximation order p and the smoothness of h. (For interpretation of the colours in the figure(s), the reader 
is referred to the web version of this article.)

Fig. 8. Integration error z independence of the approximation order p and the coupling function η. The blue curve shows the integration error when 
choosing the exponential coupling function (C.2). The red curve depicts the same error when η is given by the standard algebraic function (C.1). The 
parameters are given by K = 1, σ = 1, β = 0.2. (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

as in Appendix A.6 and second, the coupling function η is given by an exponential

η(y) = e−y/4. (C.2)

Recall from Appendix A.6 that pre-simulation step (P2) approximates the function η̃(y) := η(‖y‖2) on the domain y ∈
[−L, L]2, where we chose L = 10. Moreover, the initial conditions for s are randomly chosen in the unit square [0, 1]2, while 
each component of the initial velocity is normally distributed with mean 0 and standard deviation 0.05. Fig. 8 shows the 
integration error z for the coupling functions (C.1) and (C.2) for different orders of approximation p. As one can see the 
rate with which the accuracy increases upon varying p is much better for the exponential coupling function. This is because 

Fourier coefficients of a Gaussian are decaying much faster than the ones of an algebraic function.
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Lastly, we point out that the rate of convergence in the Cucker-Smale model seems to be faster than the one for phase 
oscillator models. We believe that this is because we simulate the phase oscillator system near an unstable set whereas the 
Cucker-Smale model exhibits flocking.
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