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Abstract. For the first time, a class of implicit Runge–Kutta time discretisation methods is studied
for nonlinear damped wave equations arising in nonlinear acoustics. The analysis in particular applies
to the Westervelt, Jordan–Moore–Gibson–Thompson, and Blackstock–Crighton–Brunnhuber–Jordan–
Kuznetsov equations. Under appropriate regularity, consistency, and smallness requirements on the
time-continuous solutions, global error bounds are obtained from energy estimates for the time-discrete
solutions. Existence and uniqueness of time-discrete solutions as well as their convergence are proven
under weaker conditions on the initial data, based on energy estimates that are established in a continuous
setting and then transferred to the time discretisations.
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1. INTRODUCTION

In this contribution, we introduce stiffly accurate Runge–Kutta methods for the time integration
of nonlinear damped wave equations representing classical and advanced models of nonlinear
acoustics. This class of implicit one-step methods includes as simplest instance the backward
Euler method, and it is seen to be particularly suited for a study based on variational formula-
tions and energy estimates.

Proceeding former work on stiffly accurate Runge–Kutta methods for nonlinear evolutionary
problems, see [EMMRICH, THALHAMMER (2010)] and [GWINNER, THALHAMMER (2014)],
we establish existence, boundedness, and convergence of the time-discrete solutions as well as
global error bounds under regularity assumptions on the solutions, that identify the stage order
as decisive quantity.

The present manuscript is organised as follows. In Section 2, we specify the considered
fundamental models, the Westervelt equation, the Jordan–Moore–Gibson–Thompson equation,
and the Blackstock–Crighton–Brunnhuber–Jordan–Kuznetsov equation. In Section 3, we state
the general format of stiffly accurate Runge–Kutta methods and a basic condition on the coeffi-
cients that is essential in view of our variational approach. Section 4 is devoted to the derivation
of global error bounds by means of suitable Taylor series expansions and higher-order energy
estimates. Sections 5 and 6 provide energy estimates for the time-continuous and time-discrete
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systems in a more general framework. The latter also enables to establish existence and unique-
ness of time-discrete solutions as well as their convergence as the time stepsize tends to zero.

We note that our study includes variable time stepsizes under appropriate smallness require-
ments, which are employed in the derivation of energy estimates, see Section 4. Merely to
reduce the amount of technicalities, we assume the time grid to be uniform in Section 6.

2. FUNDAMENTAL MODELS

The field of nonlinear acoustics is concerned with the propagation of sound waves in ther-
moviscous fluids. This includes a wide range of applications, in particular in high-intensity
ultrasonics [ABRAMOV (1999), DREYER ET AL. (2000), KALTENBACHER ET AL. (2002)]. In
this context, the underlying mathematical models are generally based on nonlinear partial dif-
ferential equations, and reliable as well as efficient numerical solvers are essential tools in view
of arising design and monitoring tasks. As relevant application, we mention the shape design of
an acoustic lens for focusing high-intensity ultrasound in medical treatment such as lithotripsy.

In the following, we state the fundamental models investigated in this work and in-
troduce compact reformulations as first-order evolutionary systems. We begin with the
Westervelt (W) equation, a well-known and oftentimes examined strongly damped wave
equation that takes into account nonlinear effects but neglects thermal losses. A general-
isation that additionally comprises a quadratic velocity term to reflect a local nonlinearity
is the Kuznetsov equation. There exist numerous extensions of these two classical models
avoiding the infinite signal speed paradox or incorporating thermal effects, respectively.
We focus on the Jordan–Moore–Gibson–Thompson (JMGT) equation and the Blackstock–
Crighton–Brunnhuber–Jordan–Kuznetsov (BCBJK) equation. Detailed information on
the underlying physics is found in the by now classical references [CRIGHTON (1979),
ENFLO, HEDBERG (2006), HAMILTON, BLACKSTOCK (1998), KUZNETSOV (1971),
LESSER, SEEBASS (1968), MAKAROV, OCHMANN (1996), MAKAROV, OCHMANN (1997a),
MAKAROV, OCHMANN (1997b), PIERCE (1989), WESTERVELT (1963)]. For a review of
recent results on the analyis of nonlinear damped wave equations and further references to
significant contributions, we refer to [KALTENBACHER (2015)].

In essence, the employed setting and notation accord to our former work
[KALTENBACHER, THALHAMMER (2018)]. Throughout, we consider a bounded spatial
domain Ω ⊂ R3 with sufficiently regular boundary and a finite time interval [0,T ]. Regarding
convenient reformulations as evolution equations, we set

A =−∆ ,

where ∆ denotes the Laplacian with respect to the spatial variables. For simplicity, we re-
strict ourselves to homogeneous Dirichlet boundary conditions. We use standard notation for
Lebesgue and Sobolev spaces.

Westervelt equation. The Westervelt equation [WESTERVELT (1963)] can be cast into the
form {

∂tt p(x, t)−b∆∂t p(x, t)− c2∆ p(x, t)

= βa
ρc2 ∂tt

(
p(x, t)

)2
, (x, t) ∈Ω× (0,T ) ,

(2.1a)

with p : Ω× [0,T ]→ R the acoustic pressure, b > 0 the diffusivity of sound, c > 0 the speed
of sound, βa > 0 the parameter of nonlinearity, and ρ > 0 the mean mass density. Performing
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differentiation on the right hand side, it is seen that degeneracy is exhibited when the multiplier
of the second time derivative vanishes or becomes negative(

1− 2βa
ρc2 p(x, t)

)
∂tt p(x, t)−b∆∂t p(x, t)− c2

∆ p(x, t) = 2βa
ρc2

(
∂t p(x, t)

)2
.

Under certain regularity, consistency, and smallness requirements on the initial data, using a
suitable linearisation of the equation that defines an analytic semigroup and maximal parabolic
regularity in appropriate function spaces, results on well-posedness and asymptotic behavior are
deduced in [KALTENBACHER, LASIECKA (2009), MEYER, WILKE (2011)]. In this situation,
it is justified to investigate the following reformulation as abstract evolution equation{

u′′(t)+b
(
u(t),u′(t)

)
A u′(t)+ c1

(
u(t),u′(t)

)
A u(t)

= B
(
u(t),u′(t)

)[
u(t),u′(t)

]
, t ∈ (0,T ) ,

α(v) = 1− 2βa
ρc2 v , α̃(v) =

(
α(v)

)−1
,

b(v0,v1) = b α̃(v0) , c1(v0,v1) = c2
α̃(v0) , B(v0,v1)[u0,u1] =

2βa
ρc2 α̃(v0)v1u1 .

(2.1b)

With regard to the introduction and global error analysis of the implicit Euler method and, more
generally, stiffly accurate Runge–Kutta methods, it is helpful to rewrite the Westervelt equation
as first-order evolutionary system

u′(t)+A
(
u(t)

)
u(t) = B

(
u(t)

)[
u(t)

]
, t ∈ (0,T ) ,

A
(
u(t)

)
=

(
0 − I

c1
(
u(t)

)
A b

(
u(t)

)
A

)
, B

(
u(t)

)[
u(t)

]
=

(
0

B
(
u(t)

)[
u(t)

]) ,
(2.1c)

where u = (u0,u1)
T represents the solution u and its time derivative u′.

Jordan–Moore–Gibson–Thompson equation. Replacing in the derivation of the West-
ervelt equation the Fourier law for the heat flux by a Maxwell–Cattaneo law avoids the infi-
nite signal speed paradox [JORDAN (2014)] and leads to the Jordan–Moore–Gibson–Thompson
equation {

Trel ∂ttt p(x, t)+∂tt p(x, t)−b∆∂t p(x, t)− c2∆ p(x, t)

= βa
ρc2 ∂tt

(
p(x, t)

)2
, (x, t) ∈Ω× (0,T ) ,

(2.2a)

with Trel > 0 denoting the relaxation time. Compared to (2.1), the appearance of the third-order
time derivative considerably changes the character of the equation. It prevents analyticity of the
semigroup defined by the linearised equation. For parameter ranges b < Trel c2 even continuity
of the semigroup is lost, and the problem is ill-posed. As significant contributions in this
context, we mention [KALTENBACHER, NIKOLIĆ (2019), KALTENBACHER ET AL. (2011),
KALTENBACHER ET AL. (2012), LASIECKA, WANG (2015), LASIECKA, WANG (2016),
LIU, TRIGGIANI (2013), MARCHAND ET AL. (2012)]. We study the reformulation{

u′′′(t)+b
(
u(t),u′(t),u′′(t)

)
u′′(t)+ c1

(
u(t),u′(t),u′′(t)

)
A u′(t)

= B
(
u(t),u′(t),u′′(t)

)[
u(t),u′(t),u′′(t)

]
, t ∈ (0,T ) ,

α(v) = 1− 2βa
ρc2 v , b(v0,v1,v2) =

1
Trel

α(v0) , c1(v0,v1,v2) =
b

Trel
,

B(v0,v1,v2)[u0,u1,u2] =− c2

Trel
A u0 +

2βa
ρc2Trel

v1u1 .

(2.2b)
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The associated first-order evolutionary system is given by

u′(t)+A
(
u(t)

)
u(t) = B

(
u(t)

)[
u(t)

]
, t ∈ (0,T ) ,

A
(
u(t)

)
=

0 − I 0
0 0 − I
0 c1

(
u(t)

)
A b

(
u(t)

)
 , B

(
u(t)

)[
u(t)

]
=

 0
0

B
(
u(t)

)[
u(t)

]
 ,

(2.2c)

with u = (u0,u1,u2) comprising the solution as well as the first and second time derivatives.
Blackstock–Crighton–Brunnhuber–Jordan–Kuznetsov equation. The

Blackstock–Crighton–Brunnhuber–Jordan–Kuznetsov equation [BLACKSTOCK (1963),
BRUNNHUBER, JORDAN (2016), CRIGHTON (1979)] is an extension of the Wester-
velt and Kuznetsov equations that takes into account thermal effects. Accordingly to
[KALTENBACHER, THALHAMMER (2018)], we consider the formulation{

∂tttψ(x, t)−β1 ∆∂ttψ(x, t)+β2 ∆2∂tψ(x, t)−β3 ∆∂tψ(x, t)+β4 ∆2ψ(x, t)

=−∂tt

(
1
2 β5

(
∂tψ(x, t)

)2
+β6

∣∣∇ψ(x, t)
∣∣2) , (x, t) ∈Ω× (0,T ) ,

(2.3a)

with acoustic velocity potential ψ : Ω× [0,T ]→R and certain constants βi > 0 for i∈{1, . . . ,6}.
In [KALTENBACHER (2017), KALTENBACHER, THALHAMMER (2018)], well-posedness is
studied and a rigorous justification of the Westervelt and Kuznetsov equations as limiting mod-
els is given. We employ the reformulation

u′′′(t)+b
(
u(t),u′(t),u′′(t)

)
A u′′(t)

+c1
(
u(t),u′(t),u′′(t)

)
A u′(t)+ c2

(
u(t),u′(t),u′′(t)

)
A 2u′(t)

= B
(
u(t),u′(t),u′′(t)

)[
u(t),u′(t),u′′(t)

]
, t ∈ (0,T ) ,

α(v) = 1+β5 v , α̃(v) =
(
α(v)

)−1
,

b(v0,v1,v2) = β1 α̃(v1) , c1(v0,v1,v2) = β3 α̃(v1) , c2(v0,v1,v2) = β2 α̃(v1) ,

B(v0,v1,v2)[u0,u1,u2] =− α̃(v1)
(

β4 A 2u0 +β5 v2 u2 + 2β6 ∇v1 ·∇u1

+2β6 ∇v0 ·∇u2

)
.

(2.3b)

The corresponding first-order evolutionary system reads as

u′(t)+A
(
u(t)

)
u(t) = B

(
u(t)

)[
u(t)

]
, t ∈ (0,T ) ,

A
(
u(t)

)
=

0 − I 0
0 0 − I
0 c1

(
u(t)

)
A + c2

(
u(t)

)
A 2 b

(
u(t)

)
A

 ,

B
(
u(t)

)[
u(t)

]
=

 0
0

B
(
u(t)

)[
u(t)

]
 ,

(2.3c)

where u = (u0,u1,u2) again represents the solution as well as the first and second time deriva-
tives.
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Compact formulation. Setting
(W) m = 1 : k1 = 1 , r = 1 : `1 = 1 ,

(JMGT) m = 2 : k2 = 0 , r = 1 : `1 = 1 ,

(BCBJK) m = 2 : k2 = 1 , r = 2 : `1 = 1 , `2 = 2 ,

we can cast the Westervelt equation (2.1), the Jordan–Moore–Gibson–Thompson equation (2.2),
and the Blackstock–Crighton–Brunnhuber–Jordan–Kuznetsov equation (2.3) into the form of a
higher-order evolution equation

u(m+1)(t)+b
(
u(t),u′(t), . . . ,u(m)(t)

)
A km u(m)(t)

+
r

∑
i=1

ci
(
u(t),u′(t), . . . ,u(m)(t)

)
A `i u(m−1)(t)

= B
(
u(t),u′(t), . . . ,u(m)(t)

)[
u(t),u′(t), . . . ,u(m)(t)

]
, t ∈ (0,T ) ,

(2.4a)

with non-negative integers km ≥ 0 and 0 ≤ `1 < `2 < · · · < `r. Accordingly, the associated
first-order evolutionary system is given by

u′(t) = F
(
u(t)

)
=−A

(
u(t)

)
u(t)+B

(
u(t)

)[
u(t)

]
, t ∈ (0,T ) ,

u(t) =


u0(t)
u1(t)

...
um(t)

 , B
(
u(t)

)[
u(t)

]
=


0
...
0

B
(
u(t)

)[
u(t)

]
 ,

A
(
u(t)

)
=



0 − I 0 · · · · · · 0
... 0 − I 0 · · · ...
... . . . . . . 0

...
... . . . − I 0

0 · · · · · · · · ·
r

∑
i=1

ci
(
u(t)

)
A `i b

(
u(t)

)
A km


,

(2.4b)

where the components of u represent the solution u and its time derivatives up to order m.
Hilbert space setting. In view of the subsequent sections, it is convenient to denote by

(H ,(·|·), | · |) the underlying Lebesgue space L2(Ω). As common, the inner product of elements
in H m+1 is defined componentwise(

h
∣∣k) = m

∑
i=0

(
hi
∣∣ki
)
, h = (h0,h1, . . . ,hm) , k = (k0,k1, . . . ,km) ∈H m+1 .

We make use of the fact that the negative Laplacian subject to homogeneous Dirichlet boundary
conditions is selfadjoint and satisfies a Poincaré–Friedrichs type inequality

A =−∆ : D(A ) = H2(Ω)∩H1
0 (Ω)⊂H −→H ,

|v| ≤CPF

(∣∣A 1/2 v
∣∣+ |A v|

)
, v ∈D(A ) .

(2.5)

The unbounded operator

B : D1(B)⊂H m+1 −→ L
(
D2(B),H

)
, D2(B)⊂H m+1 ,

in particular comprises the arising nonlinear terms.
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3. STIFFLY ACCURATE RUNGE–KUTTA METHODS

For the time discretisation of the evolution equation (2.4), we study stiffly accurate Runge–Kutta
methods, see [EMMRICH, THALHAMMER (2010), GWINNER, THALHAMMER (2014)] and ref-
erences given therein. We choose time grid points

0 = t0 < t1 < · · ·< tN = T , τn = tn+1− tn , n ∈ {0,1, . . . ,N−1} ,

where the integer number N > 0 is fixed. Approximations to the values of the exact solution are
henceforth denoted by

u(n) =


u(n)0

u(n)1
...

u(n)m

 ≈ u(tn) =


u0(tn)
u1(tn)

...
um(tn)

=


u0(tn)
u′0(tn)

...

u(m)
0 (tn)

 , n ∈ {0,1, . . . ,N} . (3.1)

Implicit Euler method. A well-known instance of a stiffly accurate Runge–Kutta method is
the implicit Euler method. For a prescribed initial approximation u(0), the time-discrete solution
to (2.4) is defined by the recurrence

1
τn

(
u(n+1)−u(n))= F

(
u(n+1)) , n ∈ {0,1, . . . ,N−1} . (3.2a)

In the derivation of energy estimates and global error bounds, we make use of the elementary
relation

(x1− x0)x1 =
1
2

(
x2

1− x2
0
)
+ 1

2 (x1− x0)
2 , x0 ,x1 ∈ R , (3.2b)

which carries over to elements of the underlying Hilbert space. In particular, it implies(
u(n+1)−u(n)∣∣u(n+1)) = 1

2

(∣∣u(n+1)∣∣2− ∣∣u(n)∣∣2)+ 1
2

∣∣u(n+1)−u(n)∣∣2 ,
n ∈ {0,1, . . . ,N−1} .

(3.2c)

General format. More generally, we consider a consistent stiffly accurate Runge–Kutta
method of nonstiff order p with associated Butcher tableau

c A

b

A= (ai j)
s
i, j=1 ∈ Rs×s , b= eTA ∈ Rs , e= (0, . . . ,0,1)T ∈ Rs , c ∈ [0,1]s .

(3.3a)

The stages are determined by a nonlinear system and yield approximations to the exact solution
values at the nodes

1
τn

(
U(n)

i −u(n))= s

∑
j=1

ai j F
(
U(n)

j
)
,

U(n)
i ≈ u(tn + ci τn) , i ∈ {1,2, . . . ,s} , n ∈ {0,1, . . . ,N−1} .

(3.3b)

We recall that the stage order q is characterised as the largest integer number such that
s

∑
j=1

ai j c
k
j =

1
k+1 c

k+1
i , i ∈ {1, . . . ,s} , k ∈ {0,1, . . . ,q−1} . (3.3c)
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Compared to general implicit Runge–Kutta methods, a pecularity of stiffly accurate Runge–
Kutta methods is that the weights coincide with the last row of the coefficient matrix and hence
the time-discrete solution values are given by the last stages

u(n+1) = U(n)
s ≈ u(tn+1) , n ∈ {0,1, . . . ,N−1} . (3.3d)

Under the assumption that the matrix

BA+ATB−bbT −ATC11TCTA ,

B= diag(b) , C=BA−1 , 1 = (1, . . . ,1)T ∈ Rs ,
(3.4a)

is well-defined and positive semidefinite, the inequality

(x1, . . . ,xs)C

x1− x0
...

xs− x0

≥ 1
2

(
x2

s − x2
0
)
, x0 ,x1 , . . . ,xs ∈ R , (3.4b)

is valid, see [EMMRICH, THALHAMMER (2010), Lemma 3.4]. This in particular ensures
s

∑
i, j=1

Ci j

(
U(n)

j −u(n)
∣∣∣U(n)

i

)
≥ 1

2

(∣∣u(n+1)∣∣2− ∣∣u(n)∣∣2) , n ∈ {0,1, . . . ,N−1} . (3.4c)

Third-order two-stage scheme. As an instance of a higher-order stiffly accurate Runge–
Kutta method fulfilling (3.4), we refer to the Radau IIA method

a11 =
5

12 , a12 =− 1
12 , a21 =

3
4 , a22 =

1
4 ,

b1 = a21 =
3
4 , b2 = a22 =

1
4 , c1 =

1
3 , c2 = 1 ,

which has nonstiff order p = 2s−1 = 3 and stage order q = s = 2. Indeed, the conditions
2

∑
i=1

bi = 1 ,
2

∑
i=1

bi ci =
1
2 ,

2

∑
i=1

bi c
2
i =

1
3 ,

2

∑
i=1

2

∑
j=1

bi ai j c j =
1
6 ,

2

∑
j=1

ai j = ci ,
2

∑
j=1

ai j c j =
1
2 c

2
i , i ∈ {1,2} ,

hold true.
Implicit versus explicit methods. It is remarkable that the special structure of stiffly ac-

curate Runge–Kutta methods permits to prove the inequality (3.4b), which is fundamental for
our approach based on the derivation of a priori energy estimates. In view of the introductory
remarks and references given in [EMMRICH, THALHAMMER (2010)], it seems to be possible
to extend our analysis to other schemes such as the two-step backward differentiation formula
(BDF). However, to our knowledge, the concurrent treatment of a class of methods as presented
in this work remains an open question.

We point out that the application of explicit time integration methods to evolution equations
involving unbounded operators is not well-defined. For instance, in the context of the the ex-
plicit Euler method

1
τn

(
u(n+1)−u(n))= F

(
u(n)) , n ∈ {0,1, . . . ,N−1} ,

the analogue of the elementary relation (3.2) reads as

(x1− x0)x1 =
1
2

(
x2

1− x2
0
)
− 1

2 (x1− x0)
2 , x0 ,x1 ∈ R .
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Due to the inverse sign, the attempt to deduce suitable energy estimates fails. This problem
is present in the linear as well as in the nonlinear case. Similar conclusions hold for explicit
schemes of Runge–Kutta or linear multistep type.

Even though a theoretical study of explicit time integration methods within a fully discrete
setting is possible, the usefulness of explicit schemes for nonlinear damped wave equations is
limited due to stability conditions, which imply severe restrictions on the time stepsizes in de-
pendence of the spatial mesh widths. In particular in the case of three space dimensions, where
these limitations significantly confine the practicability of explicit time integration methods, it
is expected that stiffly accurate Runge–Kutta methods are beneficial.

Preliminary numerical experiments for explicit schemes applied to linear as well as nonlinear
damped wave equations are reported in a talk available at

http://techmath.uibk.ac.at/mecht/MyHomepage/Research/InnsbruckSeptember2020Thalhammer.pdf

(see page 29). For a Gaussian-like initial condition, the classical order of convergence is ob-
served, provided that the chosen time stepsizes are sufficiently small such that stability is en-
sured. Detailed investigations of full discretisations and numerical comparisons of implicit
versus explicit time integration methods will be part of future work.

When the damping parameter tends to zero, the characteristics of the models change consid-
erably. As shown in [Dörfler et al.], blow-up in finite time may arise. In this case, a different
approach is needed, see [KALTENBACHER, NIKOLIĆ (2019)], and its adaptation to explicit or
implicit time discretisation methods, respectively, remains open.

4. GLOBAL ERROR BOUNDS

In this section, we deduce global error bounds for stiffly accurate Runge–Kutta methods applied
to nonlinear damped wave equations. For this purpose, we presume that the time-continuous
and time-discrete solutions fulfill suitable regularity, consistency, and smallness requirements.
These assumptions may be restrictive in view of practical applications. However, in situations,
where the initial condition is localised and smooth (e.g., given by a Gaussian-like profile), one
may expect high-order convergence in time. Indeed, spatial regularity of higher-order time
derivatives of solutions to nonlinear damped wave equations can be established similarly to
the standard procedure in [EVANS (2006), Section 7.1.3] under sufficient spatial regularity and
compatibility conditions on the initial data.

Time-discrete and time-continuous solutions. Throughout, we assume that the considered
stiffly accurate Runge–Kutta method (3.3) satisfies (3.4a) such that in particular the fundamental
inequality (3.4b) holds. For a nonlinear damped wave equation cast into the form (2.4), the
stages and hence the values of time-discrete solution are determined by the nonlinear system

1
τn

(
U(n)

i −u(n))= s

∑
j=1

ai j F
(
U(n)

j
)
, i ∈ {1,2, . . . ,s} , n ∈ {0,1, . . . ,N−1} . (4.1)

The corresponding relations for the time-continuous solution read as

t = tn + ci τn , u′(t) = F
(
u(t)

)
, i ∈ {1,2, . . . ,s} , n ∈ {0,1, . . . ,N−1} .
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Errors and defects. The differences between the values of the time-discrete and time-
continuous solutions are denoted by

E(n)
i = U(n)

i −u(tn + ci τn) , i ∈ {1,2, . . . ,s} , n ∈ {0,1, . . . ,N−1} ,

e(n) = u(n)−u(tn) , n ∈ {0,1, . . . ,N} .
(4.2)

Inserting the exact solution values into the numerical scheme defines the defects

1
τn

(
u(tn + ci τn)−u(tn)

)
=

s

∑
j=1

ai j F
(
u(tn + c j τn)

)
− r(n)i ,

i ∈ {1,2, . . . ,s} , n ∈ {0,1, . . . ,N−1} .
(4.3)

In accordance with (3.1) and (4.4), we set

Ui =


U (n)

i0

U (n)
i1
...

U (n)
im

 , E(n)
i =


E(n)

i0

E(n)
i1
...

E(n)
im

 , e(n) =


e(n)0

e(n)1
...

e(n)m

 , r(n)i =


r(n)i0

r(n)i1
...

r(n)im

 ,

i ∈ {1,2, . . . ,s} , n ∈ {0,1, . . . ,N−1} .
Taylor series expansions. Under appropriate regularity assumptions, Taylor series expan-

sions with remainders in integral form yield the representation

u(L)(tn + ci τn) =
K

∑
k=0

1
k! c

k
i τ

k
n u(k+L)(tn)+ cK+1

i τ
K+1
n RK+1

(
u(K+L+1), tn,ci τn

)
,

RK+1
(
u(K+L+1), tn,ci τn

)
= 1

K!

∫ 1

0
(1−σ)K u(K+L+1)(tn +σ ci τn) dσ ,

i ∈ {1,2, . . . ,s} , n ∈ {0,1, . . . ,N−1} , K,L ∈ N0 .

Replacing in (4.3) the defining operator by the time-derivative of the solution and recalling the
stage order conditions (3.3c), this implies

r(n)i =
s

∑
j=1

ai j F
(
u(tn + c j τn)

)
− 1

τn

(
u(tn + ci τn)−u(tn)

)
=

s

∑
j=1

ai j u′(tn + c j τn)− 1
τn

(
u(tn + ciτn)−u(tn)

)
=

q−1

∑
k=0

1
k! τ

k
n

( s

∑
j=1

ai j c
k
j− 1

k+1 c
k+1
i

)
u(k+1)(tn)

+ τ
q
n

( s

∑
j=1

ai j c
q
j Rq
(
u(q+1), tn,c j τn

)
− c

q+1
i Rq+1

(
u(q+1), tn,ci τn

))
= τ

q
n

( s

∑
j=1

ai j c
q
j Rq
(
u(q+1), tn,c j τn

)
− c

q+1
i Rq+1

(
u(q+1), tn,ci τn

))
, i ∈ {1,2, . . . ,s} , n ∈ {0,1, . . . ,N−1} .
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Hence, boundedness of the defects is linked to boundedness of certain time derivatives of the
solution in the underlying Hilbert space∣∣r(n)i

∣∣ ≤C τ
q
n |u|W q+1

∞ (0,T ;H m+1)
,
∣∣r(n)i j

∣∣ ≤C τ
q
n |u0|W q+ j+1

∞ (0,T ;H )
, j ∈ {0,1, . . . ,m} ,

i ∈ {1,2, . . . ,s} , n ∈ {0,1, . . . ,N−1} .
(4.4)

The generic constant C > 0 depends on the coefficients of the considered stiffly accurate Runge–
Kutta method.

Error relation. Our starting point for the derivation of a global error bound is the relation

1
τn

(
E(n)

i − e(n)
)
=

s

∑
j=1

ai j

(
F
(
U(n)

j
)
−F
(
u(tn + c j τn)

))
+ r(n)i ,

i ∈ {1,2, . . . ,s} , n ∈ {0,1, . . . ,N−1} ,
(4.5)

which results from (4.1) and (4.3). In view of (3.4), it is essential to employ the reformulation
s

∑
j=1

Ci j
(
E(n)

j − e(n)
)
= τnbi

(
F
(
U(n)

i
)
−F
(
u(tn + ci τn)

)
+ τn

s

∑
j=1

Ci j r(n)j ,

i ∈ {1,2, . . . ,s} , n ∈ {0,1, . . . ,N−1} .
In addition, we make use of the integral representation

F
(
U(n)

i
)
−F
(
u(tn + ci τn)

)
=
∫ 1

0
F′
(
σ U(n)

i +(1−σ)u(tn + ci τn)
)

dσ E(n)
i ,

i ∈ {1,2, . . . ,s} , n ∈ {0,1, . . . ,N−1} .
Altogether, this yields the error relation

s

∑
j=1

Ci j
(
E(n)

j − e(n)
)
= τnbi

(∫ 1

0
F′
(
σ U(n)

i +(1−σ)u(tn + ci τn)
)

dσ E(n)
i

)
+ τn

s

∑
j=1

Ci j r(n)j ,

i ∈ {1,2, . . . ,s} , n ∈ {0,1, . . . ,N−1} .

Specifically, for the implicit Euler method with p = q = s = C11 = b1 = c1 = 1, this relation
reduces to(

e(n+1)− e(n)
)
= τn

(∫ 1

0
F′
(
σ u(n+1)+(1−σ)u(tn+1

)
dσ e(n+1)

)
+ τn r(n)1 ,

i ∈ {1,2, . . . ,s} , n ∈ {0,1, . . . ,N−1} .

4.1. Westervelt equation. We first focus on the derivation of a global error bound for stiffly ac-
curate Runge–Kutta methods applied to the simplest model, the Westervelt equation. For (2.1),
the arising nonlinear operator and its Fréchet derivative are given by

v = (v0,v1) , F(v) =
(

v1
F2(v)

)
, F′(v) =

(
0 I

F ′21(v) F ′22(v)

)
,

F2(v) = (1−β3 v0)
−1 (−β1 A v0−β2 A v1 +β3 v2

1
)
,

F ′21(v) = f11(v)− f12(v)A , F ′22(v) = f21(v)− f22(v)A ,

f11(v) = β3 (1−β3 v0)
−2 (−β1 A v0−β2 A v1 +β3 v2

1
)
, f12(v) = β1 (1−β3 v0)

−1 ,

f21(v) = 2β3 (1−β3 v0)
−1 v1 , f22(v) = β2 (1−β3 v0)

−1 ,
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with A representing the negative Laplacian subject to homogeneous boundary conditions and
β1,β2,β3 > 0 denoting certain constants. An essential observation is that regularity and non-
degeneracy ensure bounds of the form

max
`∈{11,12,21,22}

max
i∈{1,2,...,s}

n∈{1,2,...,N}

∣∣∣∫ 1

0
f`
(
σ U(n)

i +(1−σ)u(tn + ci τn)
)

dσ

∣∣∣
L∞(Ω)

+ max
`∈{12,22}

max
i∈{1,2,...,s}

n∈{1,2,...,N}

∣∣∣∫ 1

0
f`
(
σ U(n)

i +(1−σ)u(tn + ci τn)
)

dσ

∣∣∣
W 1

∞(Ω)
≤Cu ,

Cu =Cu

(
max

i∈{1,2,...,s}
n∈{1,2,...,N}

∣∣U(n)
i

∣∣
(W 2

∞(Ω))2, |u|L∞(0,T ;(W 2
∞(Ω))2)

)
,

min
i∈{1,2,...,s}

n∈{1,2,...,N}

ess inf
x∈Ω

∫ 1

0
f22
(
σ U(n)

i +(1−σ)u(tn + ci τn)
)
(x) dσ ≥Cu .

Weak formulation. We test the error relation stated above with

AE(n)
i , i ∈ {1,2, . . . ,s} , n ∈ {0,1, . . . ,N−1} ,

A= diag
(
A k+1,A k) , k ∈ {0,1} ,

perform integration-by-parts, and add all components to obtain

s

∑
i, j=1

Ci j

(
A1/2 (E(n)

j − e(n)
)∣∣∣A1/2 E(n)

i

)
= τn

s

∑
i=1

bi

(∫ 1

0
F′
(
σ U(n)

i +(1−σ)u(tn + ci τn)
)

dσ E(n)
i

∣∣∣∣AE(n)
i

)
+ τn

s

∑
i, j=1

Ci j
(
A1/2 r(n)j

∣∣A1/2 E(n)
i
)
, n ∈ {0,1, . . . ,N−1} .

The elementary estimate given in (3.4), Young’s inequality with additional weight

x1 x2 ≤CY (ε)x2
1 +CY

(1
ε

)
x2

2 , x1,x2 ∈ R , CY (ε) =
1
2 ε , CY

(1
ε

)
= 1

2
1
ε
, ε > 0 ,

and the expansion of the defects (4.4) imply∣∣A1/2 e(n+1)∣∣2− ∣∣A1/2 e(n)
∣∣2

≤ ε0 τn

s

∑
i=1

∣∣A1/2 E(n)
i

∣∣2
+2τn

s

∑
i=1

bi

(∫ 1

0
F′
(
σ U(n)

i +(1−σ)u(tn + ci τn)
)

dσ E(n)
i

∣∣∣∣AE(n)
i

)
+C 1

ε0

∣∣A1/2 u
∣∣2
W q+1

∞ (0,T ;(L2(Ω))2)
τ

2q+1
n , n ∈ {0,1, . . . ,N−1} ,

(4.6)
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with ε0 > 0 and generic constant C > 0 depending on the method coefficients. We note that the
special form of the defining operator implies

A k/2 E(n)
i0 = A k/2 e(n)0 + τn

s

∑
j=1

ai j A
k/2 E(n)

j1 + τn A k/2 r(n)i0 ,

i ∈ {1,2, . . . ,s} , n ∈ {0,1, . . . ,N−1} , k ∈ N0 .

see (4.5). By means of Young’s inequality and the estimate for the defects (4.4), we thus obtain
the bound∣∣A k/2 E(n)

i0

∣∣2
≤ 3

∣∣A k/2 e(n)0

∣∣2 +C τn

s

∑
j=1

∣∣A k/2 E(n)
j 1

∣∣2 +C τ
2q+1
n

∣∣A k/2 u0
∣∣2
W q+1

∞ (0,T ;H )
,

i ∈ {1,2, . . . ,s} , n ∈ {0,1, . . . ,N−1} , k ∈ N0 ,

(4.7)

with a generic constant C > 0 that depends on the coefficients of the considered stiffly accurate
Runge–Kutta method. We next deduce an auxiliary estimate for the term(∫ 1

0
F′
(
σ U(n)

i +(1−σ)u(tn + ci τn)
)

dσ E(n)
i

∣∣∣∣AE(n)
i

)
,

i ∈ {1,2, . . . ,s} , n ∈ {0,1, . . . ,N−1} ,

Auxiliary estimate. Let i ∈ {1,2, . . . ,s} and n ∈ {0,1, . . . ,N−1}. Our starting point is the
equality (∫ 1

0
F′
(
σ U(n)

i +(1−σ)u(tn + ci τn)
)

dσ E(n)
i

)∣∣∣∣AE(n)
i

)
=
(

E(n)
i1

∣∣∣A0 E(n)
i0

)
+
(∫ 1

0
f11
(
σ U(n)

i +(1−σ)u(tn + ci τn)
)

dσ E(n)
i0

∣∣∣A1 E(n)
i1

)
−
(∫ 1

0
f12
(
σ U(n)

i +(1−σ)u(tn + ci τn)
)

dσ A E(n)
i0

∣∣∣A1 E(n)
i1

)
+
(∫ 1

0
f21
(
σ U(n)

i +(1−σ)u(tn + ci τn)
)

dσ E(n)
i1

∣∣∣A1 E(n)
i1

)
−
(∫ 1

0
f22
(
σ U(n)

i +(1−σ)u(tn + ci τn)
)

dσ A E(n)
i1

∣∣∣A1 E(n)
i1

)
and reformulations resulting from integration-by-parts.

(i) We first consider the case

k = 1 , A0 = A 2 , A1 = A ,
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where the above given relation rewrites as

(∫ 1

0
F′
(
σ U(n)

i +(1−σ)u(tn + ci τn)
)

dσ E(n)
i

∣∣∣∣AE(n)
i

)
=
(
A E(n)

i1

∣∣∣A E(n)
i0

)
+
(∫ 1

0
f11
(
σ U(n)

i +(1−σ)u(tn + ci τn)
)

dσ E(n)
i0

∣∣∣A E(n)
i1

)
−
(∫ 1

0
f12
(
σ U(n)

i +(1−σ)u(tn + ci τn)
)

dσ A E(n)
i0

∣∣∣A E(n)
i1

)
+
(∫ 1

0
f21
(
σ U(n)

i +(1−σ)u(tn + ci τn)
)

dσ E(n)
i1

∣∣∣A E(n)
i1

)
−
(∫ 1

0
f22
(
σ U(n)

i +(1−σ)u(tn + ci τn)
)

dσ A E(n)
i1

∣∣∣A E(n)
i1

)
.

By means of Young’s inequality with weight ε1 > 0 and the Poincaré–Friedrichs type inequal-
ity (2.5), we obtain

(∫ 1

0
F′
(
σ U(n)

i +(1−σ)u(tn + ci τn)
)

dσ E(n)
i

∣∣∣∣AE(n)
i

)
≤ (1+CCu)

∣∣A E(n)
i0

∣∣ ∣∣A E(n)
i1

∣∣+Cu
∣∣E(n)

i1

∣∣ ∣∣A E(n)
i1

∣∣−Cu
∣∣A E(n)

i1

∣∣2
≤ 1

ε1
(1+CCu)

∣∣A E(n)
i0

∣∣2 + 1
ε1

Cu
∣∣E(n)

i1

∣∣2 + (ε1 (1+CCu)−Cu
)∣∣A E(n)

i1

∣∣2
with generic constant C > 0 depending on CPF > 0. Provided that the weight ε1 > 0 is chosen
sufficiently small such that

ε1 (1+CCu)−Cu ≤−δ < 0 ,

we arrive at the estimate

k = 1 , A0 = A 2 , A1 = A ,(∫ 1

0
F′
(
σ U(n)

i +(1−σ)u(tn + ci τn)
)

dσ E(n)
i

∣∣∣∣AE(n)
i

)
≤ 1

ε1
(1+CCu)

∣∣A E(n)
i0

∣∣2 + 1
ε1

Cu
∣∣E(n)

i1

∣∣2−δ
∣∣A E(n)

i1

∣∣2 .
(4.8)

(ii) Similar arguments are employed in the case

k = 0 , A0 = A , A1 = I .
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Here, applying integration-by-parts, Young’s inequality with weight ε1 > 0, and the Poincaré–
Friedrichs type inequality (2.5), yields(∫ 1

0
F′
(
σ U(n)

i +(1−σ)u(tn + ci τn)
)

dσ E(n)
i

∣∣∣∣AE(n)
i

)
=
(
A 1/2 E(n)

i1

∣∣∣A 1/2 E(n)
i0

)
+
(∫ 1

0
f11
(
σ U(n)

i +(1−σ)u(tn + ci τn)
)

dσ E(n)
i0

∣∣∣E(n)
i1

)
−
(
A 1/2 E(n)

i0

∣∣∣A 1/2
(∫ 1

0
f12
(
σ U(n)

i +(1−σ)u(tn + ci τn)
)

dσ E(n)
i1

))
+
(∫ 1

0
f21
(
σ U(n)

i +(1−σ)u(tn + ci τn)
)

dσ E(n)
i1

∣∣∣E(n)
i1

)
−
(
A 1/2 E(n)

i1

∣∣∣A 1/2
(∫ 1

0
f22
(
σ U(n)

i +(1−σ)u(tn + ci τn)
)

dσ E(n)
i1

))
≤
∣∣A 1/2 E(n)

i0

∣∣ ∣∣A 1/2 E(n)
i1

∣∣+Cu

(∣∣E(n)
i0

∣∣ ∣∣E(n)
i1

∣∣+ ∣∣A 1/2 E(n)
i0

∣∣ ∣∣A 1/2 E(n)
i1

∣∣
+
∣∣A 1/2 E(n)

i0

∣∣ ∣∣E(n)
i1

∣∣+ ∣∣E(n)
i1

∣∣2 + ∣∣E(n)
i1

∣∣ ∣∣A 1/2 E(n)
i1

∣∣)−Cu
∣∣A 1/2 E(n)

i1

∣∣2
≤ 1

ε1
(1+CCu)

∣∣A 1/2 E(n)
i0

∣∣2 + (1+ 1
ε1

)
Cu
∣∣E(n)

i1

∣∣2
+
(

ε1 (1+CCu)−Cu

)∣∣A 1/2 E(n)
i1

∣∣2
with generic constant C > 0 depending on CPF > 0. Hence, by choosing the weight ε1 > 0
sufficiently small such that

ε1 (1+CCu)−Cu ≤−δ < 0 ,

we get the estimate

k = 0 , A0 = A , A1 = I ,(∫ 1

0
F′
(
σ U(n)

i +(1−σ)u(tn + ci τn)
)

dσ E(n)
i

∣∣∣∣AE(n)
i

)
≤ 1

ε1
(1+CCu)

∣∣A 1/2 E(n)
i0

∣∣2 + (1+ 1
ε1

)
Cu
∣∣E(n)

i1

∣∣2−δ
∣∣A 1/2 E(n)

i1

∣∣2 .
(4.9)

Global error bound (Implicit Euler method). As illustration, we first consider the implicit
Euler method, where it suffices to set ε0 = 1 and the above stated arguments show∣∣A1/2 e(n+1)∣∣2− ∣∣A1/2 e(n)

∣∣2
≤CC1

( 1
ε1
,Cu
)

τn
∣∣A1/2 e(n+1)∣∣2 +C

∣∣A1/2 u
∣∣
W 2

∞(0,T ;(L2(Ω))2)
τ

3
n , n ∈ {0,1, . . . ,N−1}

with generic constants and C1 depending on the indicated quantitites, see also (4.6), (4.8)
and (4.9). Summation and a telescopic identity imply∣∣A1/2 e(N)

∣∣2
≤
∣∣A1/2 e(0)

∣∣2 +CC1
( 1

ε1
,Cu
)N−1

∑
n=0

τn
∣∣A1/2 e(n+1)∣∣2 +C

∣∣A1/2 u
∣∣
W 2

∞(0,T ;(L2(Ω))2)

N−1

∑
n=0

τ
3
n .



TIME DISCRETISATION METHODS FOR FUNDAMENTAL MODELS IN NONLINEAR ACOUSTICS 15

Finally, by a Gronwall inequality, we obtain the global error bound∣∣A1/2 e(N)
∣∣2 ≤CC1

( 1
ε1
,Cu
)(∣∣A1/2 e(0)

∣∣2 + τ
2
max

)
,

τmax = max{τn : n ∈ {0,1, . . . ,N−1}} ,

where the arising constant in addition depends on the final time.
Global error bound (Stiffly accurate Runge–Kutta method). More generally, combin-

ing (4.6), (4.7), (4.8), and (4.9), a bound of the form∣∣A1/2 e(n+1)∣∣2− ∣∣A1/2 e(n)
∣∣2 + τn

s

∑
i=1

∣∣A (k+1)/2 E(n)
i1

∣∣2
≤C τn

s

∑
i=1

∣∣A1/2 e(n)
∣∣2

+C τn (ε0 + τn +Cu)
s

∑
i=1

∣∣A (k+1)/2 E(n)
i1

∣∣2
+C

∣∣A1/2 u
∣∣2
W q+1

∞ (0,T ;(L2(Ω))2 τ
2q+1
n , n ∈ {0,1, . . . ,N−1} ,

holds. Requiring the time stepsizes, the weight ε0 > 0, the initial data and hence the bound Cu
to be sufficiently small, we have∣∣A1/2 e(n+1)∣∣2− ∣∣A1/2 e(n)

∣∣2
≤C τn

s

∑
i=1

∣∣A1/2 e(n)
∣∣2 +C

∣∣A1/2 u
∣∣2
W q+1

∞ (0,T ;(L2(Ω))2 τ
2q+1
n , n ∈ {0,1, . . . ,N−1} .

Thus, summation and a Gronwall inequality lead to the result∣∣A1/2 e(N)
∣∣2
(L2(Ω))2 ≤C

(∣∣A1/2 e(0)
∣∣2
(L2(Ω))2 + τ

2q
max

)
,

τmax = max{τn : n ∈ {0,1, . . . ,N−1}} .

Altogether, we arrive at the following result.

Theorem 4.1 (Westervelt equation). Let u = (u0,u1)
T = (u,u′)T denote the solution to (2.1),

and set A = diag(A k+1,A k) for k ∈ {0,1}. Suppose that the considered stiffly accurate
Runge–Kutta method of nonstiff order p and stage order q fulfills the fundamental condi-
tion (3.4). Provided that the time-continuous and time-discrete solutions satisfy the regularity
requirements

|u0|W 1
∞(0,T ;W 2

∞(Ω))+ |u0|W r+1
∞ (0,T ;W 1

2 (Ω))+ |u0|W r+2
∞ (0,T ;L2(Ω)) ≤C , r = min{p,q} ,

max
{∣∣U(n)

i

∣∣
(W 2

∞(Ω))2 : i ∈ {1,2, . . . ,s},n ∈ {1,2, . . . ,N}
}
≤C ,

(4.10)

and that smallness of the time-continuous solution is ensured on the considered time interval,
the global error bound∣∣A1/2 (u(N)−u(T )

)∣∣2
(L2(Ω))2 ≤C

(∣∣A1/2 (u(0)−u(0)
)∣∣2

(L2(Ω))2 + τ
2r
max
)

holds for τmax = max{τn : n ∈ {0,1, . . . ,N − 1}} sufficiently small. The arising constant in
particular depends on the quantities in (4.10).



16 B. KALTENBACHER, M. THALHAMMER

Remark. For the convenience of the reader, we restate the global error estimate for the
Westervelt equation with k = 0 employing Sobolev-norms∣∣p(N)− p(T )

∣∣2
W 1

2 (Ω)
+
∣∣∂t p(N)−∂t p(T )

∣∣2
L2(Ω)

≤C
(∣∣p(0)− p(0)

∣∣2
W 1

2 (Ω)
+
∣∣∂t p(0)−∂t p(0)

∣∣2
L2(Ω)

+ τ
2r
max

)
.

4.2. Jordan–Moore–Gibson–Thompson equation. We next consider the Jordan–Moore–
Gibson–Thompson equation (2.2), where the defining nonlinear operator and its Fréchet de-
rivative are given by

v = (v0,v1,v2) , F(v) =

 v1
v2

F3(v)

 , F′(v) =

 0 I 0
0 0 I

F ′31(v) F ′32(v) F ′33(v)

 ,

F3(v) = 1
Trel

(
− β1 A v0−β2 A v1− (1−β3 v0)v2 +β3 v2

1
)
,

F ′31(v) = f1(v)− β1
Trel

A , F ′32(v) = f2(v)− β2
Trel

A , F ′33(v) = f3(v) ,

f1(v) = β3
Trel

v2 , f2(v) = 2β3
Trel

v1 , f3(v) =− 1
Trel

(1−β3 v0) ,

β1 = c2 , β2 = b , β3 =
2βa
ρc2 .

Due to the fact that the analysis is significantly more involved, we include detailed arguments
for the implicit Euler method satisfying

e(n+1)− e(n) = τn F′
(
u(tn+1)+

1
2 e(n+1))e(n+1)+ τn r(n)1 , n ∈ {0,1, . . . ,N−1} .

We in particular employ the regularity requirements

max
`∈{1,2,3}

max
n∈{1,2,...,N}

∣∣∣ f`(u(tn+1)+
1
2 e(n+1))∣∣∣

L∞(Ω)
≤Cu ,

Cu =Cu

(
max

n∈{1,2,...,N}

∣∣u(n)∣∣
(L∞(Ω))3, |u0|W 2

∞(0,T ;L∞(Ω))

)
.

(i) On the one hand, we test with  0
β2
Trel

A e(n+1)
1

e(n+1)
2


and perform integration-by-parts. Together with the elementary relation in (3.2), this yields∣∣A 1/2 e(n+1)

1

∣∣2− ∣∣A 1/2 e(n)1

∣∣2 + ∣∣e(n+1)
2

∣∣2− ∣∣e(n)2

∣∣2
≤C

(
Cu
)

τn

(∣∣A e(n+1)
0

∣∣2 + ∣∣A 1/2 e(n+1)
1

∣∣2 + ∣∣e(n+1)
2

∣∣2)
+C

(∣∣u0
∣∣2
W 3

∞(0,T ;W 1
2 (Ω))

+
∣∣u0
∣∣2
W 4

∞(0,T ;L2(Ω))

)
τ

3
n , n ∈ {0,1, . . . ,N−1} ,

with a generic constant C > 0 that in particular depends on Cu.
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(ii) On the other hand, testing with  0
A e(n+1)

1

A e(n+1)
1


and employing smallness of the quantity Cu, we have∣∣A 1/2 e(n+1)

1

∣∣2− ∣∣A 1/2 e(n)1

∣∣2 + τn
∣∣A e(n+1)

1

∣∣2
≤C

(
Cu
)

τn

(∣∣A e(n+1)
0

∣∣2 + ∣∣e(n+1)
2

∣∣2)
+C

(∣∣u0
∣∣2
W 3

∞(0,T ;L2(Ω))
+
∣∣u0
∣∣2
W 4

∞(0,T ;L2(Ω))

)
τ

3
n , n ∈ {0,1, . . . ,N−1} ,

where the generic constant C > 0 again in particular depends on Cu.
(iii) Combining both bounds, summation and a Gronwall inequality show∣∣A 1/2 e(N)

1

∣∣2 + ∣∣e(N)
2

∣∣2 ≤C
(∣∣A 1/2 e(0)1

∣∣2 + ∣∣e(n)2

∣∣2 + τ
2
max

)
,

τmax = max{τn : n ∈ {0,1, . . . ,N−1}} .

More generally, we obtain the following result.

Theorem 4.2 (Jordan–Moore–Gibson–Thompson equation). Let u= (u0,u1,u2)
T = (u,u′,u′′)T

denote the solution to (2.2), and set A = diag(0,A , I). Suppose that the considered stiffly ac-
curate Runge–Kutta method of nonstiff order p and stage order q fulfills the fundamental con-
dition (3.4). Provided that the time-continuous and time-discrete solutions satisfy the regularity
requirements

|u0|W 2
∞(0,T ;W 2

∞(Ω))+ |u0|W r+2
∞ (0,T ;W 1

2 (Ω))+ |u0|W r+3
∞ (0,T ;L2(Ω)) ≤C , r = min{p,q} ,

max
{∣∣U(n)

i

∣∣
(W 2

∞(Ω))3 : i ∈ {1,2, . . . ,s},n ∈ {1,2, . . . ,N}
}
≤C ,

(4.11)

and that non-degeneracy is ensured on the considered time interval, the global error bound∣∣A1/2 (u(N)−u(T )
)∣∣2

(L2(Ω))3 ≤C
(∣∣A1/2 (u(0)−u(0)

)∣∣2
(L2(Ω))3 + τ

2r
max
)

holds for τmax = max{τn : n ∈ {0,1, . . . ,N − 1}} sufficiently small. The arising constant in
particular depends on the quantities in (4.11).

Remark. Employing Sobolev-norms, the stated global error estimate reads as∣∣∂t p(N)−∂t p(T )
∣∣2
W 1

2 (Ω)
+
∣∣∂tt p(N)−∂tt p(T )

∣∣2
L2(Ω)

≤C
(∣∣∂t p(0)−∂t p(0)

∣∣2
W 1

2 (Ω)
+
∣∣∂tt p(0)−∂tt p(0)

∣∣2
L2(Ω)

+ τ
2r
max

)
.
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4.3. Blackstock–Crighton–Brunnhuber–Jordan–Kuznetsov equation. For (2.3), similar
calculations yield

v = (v0,v1,v2) , F(v) =

 v1
v2

F3(v)

 , F′(v) =

 0 I 0
0 0 I

F ′31(v) F ′32(v) F ′33(v)

 ,

F3(v) =−
(
1+β5 v1

)−1

×
(

β3 A v1 +β2 A 2 v1 +β1 A v2 +β4 A 2v0 +β5 v2
2 + 2β6 |∇v1|2 + 2β6 ∇v0 ·∇v2

)
,

F ′31(v) =− f11(v)A 2− f12(v) ·∇ ,

f11(v) = β4
(
1+β5 v1

)−1
, f12(v) = 2β6

(
1+β5 v1

)−1
∇v2 ,

F ′32(v) = f21(v)− f22(v)A 2− f23(v)A − f24(v) ·∇ ,

f21(v) = β5
(
1+β5 v1

)−2

×
(

β3 A v1 +β2 A 2 v1 +β1 A v2 +β4 A 2v0 +β5 v2
2 + 2β6 |∇v1|2 +2β6 ∇v0 ·∇v2

)
,

f22(v) = β2
(
1+β5 v1

)−1
, f23(v) = β3

(
1+β5 v1

)−1
, f24(v) = 4β6

(
1+β5 v1

)−1
∇v1 ,

F ′33(v) =− f31(v)− f32(v)A − f33(v) ·∇ ,

f31(v) = 2β5
(
1+β5 v1

)−1 v2 , f32(v) = β1
(
1+β5 v1

)−1
, f33(v) = 2β6

(
1+β5 v1

)−1
∇v0 ,

with certain constants β1,β2,β3,β4,β5,β6 > 0. Again, we include detailed calculations for the
implicit Euler method

e(n+1)− e(n) = τn

∫ 1

0
F′
(
σ u(n+1)+(1−σ)u(tn+1)

)
dσ e(n+1)+ τn r(n)1 ,

n ∈ {0,1, . . . ,N−1} ,

making use of the regularity requirements

max
`∈{11,12,21,22,23,24,31,32,33}

max
n∈{1,2,...,N}

∣∣∣∫ 1

0
f`
(
σ u(n+1)+(1−σ)u(tn+1)

)
dσ

∣∣∣
L∞(Ω)

≤Cu ,

Cu =Cu

(
max

n∈{1,2,...,N}

∣∣u(n)∣∣
(W 4

∞(Ω))3, |u0|W 2
∞(0,T ;W 4

∞(Ω))

)
,

min
`∈{22,32}

ess inf
x∈Ω

∫ 1

0
f`
(
σ u(n+1)+(1−σ)u(tn+1)

)
(x) dσ ≥Cu .

(i) On the one hand, we test with  0
A 3 e(n+1)

1

A e(n+1)
2
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and perform integration-by-parts, which yields∣∣A 3/2 e(n+1)
1

∣∣2− ∣∣A 3/2 e(n)1

∣∣2 + ∣∣A 1/2 e(n+1)
2

∣∣2− ∣∣A 1/2 e(n)2

∣∣2 + τn
∣∣A e(n+1)

2

∣∣2
≤C τn

(∣∣A 2 e(n+1)
0

∣∣2 + ∣∣A 2 e(n+1)
1

∣∣2)
+C

(
|u0|W 3

∞(0,T ;W 2
2 (Ω))+ |u0|W 4

∞(0,T ;L2(Ω))

)
τ

3
n , n ∈ {0,1, . . . ,N−1} ,

with a generic constant C > 0.
(ii) On the other hand, testing with  0

A 3 e(n+1)
1

A 2 e(n+1)
1

 ,

we arrive at the bound∣∣A 3/2 e(n+1)
1

∣∣2− ∣∣A 3/2 e(n)1

∣∣2 + τn
∣∣A 2 e(n+1)

1

∣∣2
≤C τn

(∣∣A 2 e(n+1)
0

∣∣2 + ∣∣A e(n+1)
2

∣∣2)
+C

(
|u0|W 3

∞(0,T ;W 2
2 (Ω))+ |u0|W 4

∞(0,T ;L2(Ω))

)
τ

3
n , n ∈ {0,1, . . . ,N−1} .

(iii) Combining both bounds, summation and a Gronwall inequality show∣∣A 3/2 e(N)
1

∣∣2 + ∣∣A 1/2 e(N)
2

∣∣2 ≤C
(∣∣A 3/2 e(0)1

∣∣2 + ∣∣A 1/2 e(n)2

∣∣2 + τ
2
max

)
,

τmax = max{τn : n ∈ {0,1, . . . ,N−1}} .

More generally, we obtain the following result.

Theorem 4.3 (Blackstock–Crighton–Brunnhuber–Jordan–Kuznetsov equation). Let u =
(u0,u1,u2)

T = (u,u′,u′′)T denote the solution to (2.3), and set A = diag(0,A 3,A ). Suppose
that the considered stiffly accurate Runge–Kutta method of nonstiff order p and stage order q
fulfills the fundamental condition (3.4). Provided that the time-continuous and time-discrete
solutions satisfy the regularity requirements

|u0|W 2
∞(0,T ;W 4

∞(Ω))+ |u0|W r+2
∞ (0,T ;W 2

2 (Ω))+ |u0|W r+3
∞ (0,T ;L2(Ω)) ≤C , r = min{p,q} ,

max
{∣∣U(n)

i

∣∣
(W 4

∞(Ω))3 : i ∈ {1,2, . . . ,s},n ∈ {1,2, . . . ,N}
}
≤C ,

(4.12)

and that non-degeneracy is ensured on the considered time interval, the global error bound∣∣A1/2 (u(N)−u(T )
)∣∣2

(L2(Ω))3 ≤C
(∣∣A1/2 (u(0)−u(0)

)∣∣2
(L2(Ω))3 + τ

2r
max
)

holds for τmax = max{τn : n ∈ {0,1, . . . ,N − 1}} sufficiently small. The arising constant in
particular depends on the quantities in (4.12).

Remark. Employing Sobolev-norms, the stated global error estimate reads as∣∣∂tψ
(N)−∂tψ(T )

∣∣2
W 3

2 (Ω)
+
∣∣∂ttψ

(N)−∂ttψ(T )
∣∣2
W 1

2 (Ω)

≤C
(∣∣∂tψ

(0)−∂tψ(0)
∣∣2
W 3

2 (Ω)
+
∣∣∂ttψ

(0)−∂ttψ(0)
∣∣2
W 1

2 (Ω)
+ τ

2r
max

)
.
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5. ENERGY ESTIMATES

In this section we deduce uniform energy estimates for the three nonlinear acoustic equations
dicussed in the previous sections on a more abstract level, thus potentially comprising other
nonlinear evolution equations. The purpose of these energy estimates, that in parts also differ
from the energy estimates in the literature on nonlinear acoustics so far, is their transfer to time
discretisation by stiffly accurate Runge Kutta methods.

Abstract higher order PDE model. As already indicated in (2.1b), (2.2b), (2.3b), we can
write the equations under consideration in the framework on the abstract higher order PDE
model

∂
m+1
t u+b(u,∂tu, . . . ,∂ m

t u)A km∂
m
t u+

r

∑
i=1

ci(u,∂tu, . . . ,∂ m
t u)A `i∂

m−1
t u

= B(u,∂tu, . . . ,∂ m
t u)[(u,∂tu, . . . ,∂ m

t u)]
(5.1)

with 0≤ `1 < `2 < · · ·`r, 0≤ km,

B : D1(B)→ L(D2(B),H ) , D1(B) , D2(B) ⊆H m+1

and a selfadjoint densely defined operator A on a Hilbert space H

A : D(A )→H , D ⊆H

satisfying a Poincaré-Friedrichs type inequality

|v| ≤CPF |A v| , v ∈D(A ) (5.2)

(e.g. A =−∆D, D(A ) = H2(Ω)∩H1
0 (Ω), H = L2(Ω));

We will use the notation | · | and (·|·) for norm and inner product on H , respectively.
Recall that this applies to the above models with the following settings:

• Westervelt: m = 1, km = 1, r = 1, `r = 1
• JMGT: m = 2, km = 0, r = 1, `r = 1
• BCBJK: m = 2, km = 1, r = 2, `1 = 1, `r = 2

First order reformulation. We rewrite (5.1) as

u′(t)+ A
(
u(t)

)
u(t) = B

(
u(t)

)[
u(t)

]
, t ∈ (0,T ) ,

u(t) =


u0(t)
u1(t)

...
um(t)

 , B
(
u(t)

)[
u(t)

]
=


0
...
0

B
(
u(t)

)[
u(t)

]
 ,

A
(
u(t)

)
=



0 − I 0 · · · · · · 0
... 0 − I 0 · · · ...
... . . . . . . 0

...
... . . . − I 0

0 · · · · · · · · ·
r

∑
i=1

ci
(
u(t)

)
A `i b

(
u(t)

)
A km


,

(5.3)
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5.1. Energy estimates in the linearised setting. With coefficients b ,ci ∈ L∞(0,T ;L(H ,H ))
(i.e., in case of H = L2(Ω) simply b ,ci ∈ L∞(0,T ;L∞(Ω)))) that may depend on space and time
and a one-homogeneosly bounded operator G

G : (0,T )×X0→H , X0 = X0,0×X0,1×X0,m ⊆H m+1∣∣G (t)[~v]
∣∣= ∣∣G (t;v0, . . . ,vm)

∣∣≤CG‖~v‖X0

(5.4)

with a uniform constant CG (note that G does not necessarily need to be linear to satisfy this,
but it will be in our application of the estimates to the models above) with the right space X0 yet
to be determined, and f ∈ L2(0,T ;H ), we consider

∂
m+1
t u+bA km∂

m
t u+

r

∑
i=1

ciA
`i∂

m−1
t u = G [u,∂tu, . . . ,∂ m

t u]+ f (5.5)

i.e., written as a first order system

u′(t)+A(t)u(t) = (0, · · · ,0,G (t)[u(t)]+ f (t))T

with A =


0 −I 0 · · · 0
0 0 −I 0 · · ·
... . . . . . . . . .
0 ∑

r
i=1ciA `i bA km

 (5.6)

First of all we demonstrate the ideas with constants b> 0, ci ≥ 0.
Testing with

(0, . . . ,0,
r

∑
i=1

A km[ciA
`ium−1(t)],A kmum(t))T (5.7)

yields(
u′m−1(t)−um(t)

∣∣∣ r

∑
i=1

A km[ciA
`ium−1(t)]

)
+
(

u′m(t)+
r

∑
i=1

ciA
`ium−1(t)]+bA kmum(t)

∣∣∣A kmum(t)
)

=
1
2

d
dt

∣∣∣A km/2um

∣∣∣2(t)+ r

∑
i=1

ci

2
d
dt

∣∣∣A (km+`i)/2um−1

∣∣∣2(t)+b
∣∣∣A kmum(t)

∣∣∣2
=
(
G (t)[u(t)]+ f

∣∣∣A kmum(t)
)
≤ 1

b

∣∣∣G (t)[u(t)]
∣∣∣2 + 1

b

∣∣∣ f (t)∣∣∣2 + b

2

∣∣∣A kmum(t)
∣∣∣2 ,

(5.8)

hence after integration and taking the supremum wrt. time, we get, for arbitrary s∈ [0,T ], using
supt∈(0,s)(a(t)+b(t)+ c(t))≥ 1

2 supt∈(0,T ) a(t)+ 1
4 supt∈(0,T ) b(t)+ 1

4 supt∈(0,T ) c(t),

‖A km/2um‖2
L∞(0,s;H )+

r

∑
i=1

ci

2
‖A (km+`i)/2um−1‖2

L∞(0,T ;H )+
b

2
‖A kmum(t)‖2

L2(0,s;H )

≤ 4
b

(
‖G [u]‖2

L2(0,s;H )+‖ f‖2
L2(0,s;H )

)
+
∣∣A km/2um(0)

∣∣2 + r

∑
i=1

ci

2

∣∣A (km+`i)/2um−1(0)
∣∣2 , (5.9)

where due to the fact that um−2(t) = um−2(0)+
∫ t

0 um−1(τ)dτ , with

ū(t) := (u0(t), . . . ,um−3(t),um−2(0)+
∫ t

0
um−1(τ)dτ,um−1(t),um(t))
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we have

‖G [u]‖2
L2(0,s;H ) ≤C2

G

∫ s

0
‖ū(t)‖2

X0
dt

≤C2
G

∫ s

0

(
‖u(t)‖X0 +‖um−2(0)‖X0,m−2 +

∫ t

0
‖um−1(τ)‖X0,m−2 dτ

)
dt .

(5.10)

This extends to the case of space and time dependent multipliers

b ,ci ∈ L∞(0,T ;L(H ,H )) , b≥ b> 0 ci ≥ ci > 0

and either b′ ,c′i ∈ L∞(0,T ;L(H ,H ))

or ‖b′‖L1(0,T ;L(H ,H )) , ‖c′i‖L1(0,T ;L(H ,H )) small enough

(5.11)

via the identity

1
2

d
dt

∣∣∣√cA (p+q)/2v
∣∣∣2(t) = 1

2
d
dt

(
A (p+q)/2v

∣∣∣cA (p+q)/2v)(t)
)

=
(
A (p+q)/2v′(t)

∣∣∣c(t)A (p+q)/2v(t)
)
+

1
2

(
A (p+q)/2v(t)

∣∣∣c′(t)A (p+q)/2v(t)
)

=
(

v′(t)
∣∣∣A p[c(t)A qv(t)]

)
+
(

v′(t)
∣∣∣A (p+q)/2[c(t)A (p+q)/2v(t)]−A p[c(t)A qv(t)]

)
+

1
2

(
c′(t)A (p+q)/2v(t)

∣∣∣A (p+q)/2v(t)
)

(5.12)

which in case of v = um−1 and c= ci, p = km, q = `i, using the fact that u′m−1 = um, reads as

1
2

d
dt

∣∣∣√cA km+`ium−1

∣∣∣2(t) =
(

u′m−1(t)
∣∣∣A km [c(t)A `ium−1(t)]

)
+
(
A kmum(t)

∣∣∣A (`i−km)/2[c(t)A (km+`i)/2um−1(t)]− [c(t)A `ium−1(t)]
)

+
1
2

(
c′(t)A (km+`i)/2um−1(t)

∣∣∣A (km+`i)/2um−1(t)
)

This results in

1
2

d
dt

∣∣∣A km/2um

∣∣∣2(t)+ 1
2

r

∑
i=1

d
dt

∣∣∣√ciA
(km+`i)/2um−1

∣∣∣2(t)+ ∣∣∣√b(t)A kmum(t)
∣∣∣2

=
(
G (t)[u(t)]+ f (t)

∣∣∣A kmum(t)
)

+
1
2

r

∑
i=1

(
c′i(t)A

(km+`i)/2um−1(t)
∣∣∣A (km+`i)/2um−1(t)

)
+

r

∑
i=1

(
u′m−1(t)

∣∣∣A (km+`i)/2[ciA
(km+`i)/2um−1(t)]−A km [ciA

`ium−1(t)]
)

(5.13)
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≤ 1
b

∣∣∣G (t)[u(t)]+ f (t)
∣∣∣2 + 1

4

∣∣∣√b(t)A kmum(t)
∣∣∣2

+
1
2

r

∑
i=1

1
ci

∣∣∣c′i(t)|L(H ,H )|
√
ci(t)A (km+`i)/2um−1(t)

∣∣∣2
+

1
4

∣∣∣√b(t)A kmum(t)
∣∣∣2

+
1
b

r

∑
i=1

∣∣∣A (`i−km)/2[ciA
(km+`i)/2um−1(t)]− [ciA

`ium−1(t)]
∣∣∣2 .

from which, as above, by time integration an energy estimate can be obtained.
A second energy estimate can be obtained by testing with

(0, . . . ,0,A km[bA `rum−1(t)],A `rum−1(t))T , (5.14)

which, by using (5.12) with c= b, p = km, q = `r yields

1
2

d
dt

∣∣∣√bA (km+`r)/2um−1

∣∣∣2(t)+ r

∑
i=1

∣∣∣√ciA
(`r+`i)/2um−1(t)

∣∣∣2
=
(
G (t)[u(t)]+ f (t)

∣∣∣A `rum−1(t)
)

+
1
2

(
b′(t)A (km+`r)/2um−1(t)

∣∣∣A (km+`r)/2um−1(t)
)

+
(

u′m−1

∣∣∣A (km+`r)/2[bA (km+`r)/2um−1(t)]−A km [bA `rum−1(t)]
)

+
r

∑
i=1

(
um−1

∣∣∣A (`r+`i)/2[ciA
(`r+`i)/2um−1(t)]−A `r [ciA

`ium−1(t)]
)

≤ 1
cr

∣∣∣G (t)[u(t)]+ f (t)
∣∣∣2 + 1

4

∣∣∣√crA
`rum−1(t)

∣∣∣2
+

1
2cr

∣∣∣b′(t)|L(H ,H )|
√
crA

(km+`r)/2um−1(t)
∣∣∣2

+
1
2

∣∣∣√bA kmum(t)
∣∣∣2 + 1

2b

∣∣∣A (`r−km)/2[bA (km+`r)/2um−1(t)]− [bA `rum−1(t)]
∣∣∣2

+
1
4

∣∣∣√crA
`rum−1(t)

∣∣∣2
+

1
cr

(
r

∑
i=1

∣∣∣A (`i−`r)/2[ciA
(`r+`i)/2um−1(t)]− [ciA

`ium−1(t)]
∣∣∣)2

.

(5.15)

Therewith considering all left hand side terms in (5.13), (5.15), we expect – after time inte-
gration – to obtain bounds on

‖A km/2um‖L∞(0,T ;H ), ‖A kmum‖L2(0,T ;H ),

‖A kmum−1‖L∞(0,T ;H ), ‖A (km+`r)/2um−1‖L∞(0,T ;H ), ‖A `rum−1‖L2(0,T ;H ),

‖A (km+`r)/2um−2‖L∞(0,T ;H ), ‖A `rum−2‖L∞(0,T ;H ),
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and therefore, via the identity u′j = u j+1 and the estimate

‖u j‖L∞(0,T ;Z) ≤ ‖u j(0)‖Z +
√

T‖u j+1‖L2(0,T ;Z),

which allows to inherit the regularity of higher time derivatives,

‖A km/2um‖L∞(0,T ;H ), ‖A kmum‖L2(0,T ;H ),

‖A max{km,(km+`r)/2}um−1‖L∞(0,T ;H ), ‖A max{km,`r}um−1‖L2(0,T ;H ),

‖A kmu′m−1‖L2(0,T ;H ),

‖A max{km,`r}u j‖L∞(0,T ;H ), ‖A max{km,`r}u′j‖L2(0,T ;H ), j ∈ {0, . . . ,m−2} .

(5.16)

Thus we define the energy induced spaces by

X =
(

L∞(0,T ;D(A max{km,`r}))∩H1(0,T ;D(A max{km,`r}))
)m−1

× L2(0,T ;D(A max{km,`r}))∩L∞(0,T ;D(A max{km,(km+`r)/2}))

∩H1(0,T ;D(A km))

× L2(0,T ;D(A km))∩L∞(0,T ;D(A km/2))

⊆ L∞(0,T ;X0)∩L2(0,T ;X1)

(5.17)

with
X0 = X0,0×X0,1×·· ·×X0,m

= D(A max{km,`r})m−1 × D(A max{km,(km+`r)/2}) × D(A km/2)

X1 = X1,0×X1,1×·· ·×X1,m

= D(A max{km,`r})m × D(A km) .

(5.18)

Indeed, integrating with respect to time and applying Gronwall’s inequality

η(t)≤ a(t)+
∫ t

0
b(s)η(s)ds for all t ∈ (0,T )

⇒ η(t)≤ a(t)+
∫ t

0
a(s)b(s) exp

(∫ t

s
b(σ)dσ

)
ds for all t ∈ (0,T )

(5.19)

for η ,a,b ≥ 0 (see, e.g, [TESCHL (2012), Lemma 2.7]) to the energy estimates resulting from
(5.13), (5.15), together with (5.2), u j(t) = u j(0)+

∫ t
0 u j+1(τ)dτ , as well as (5.10) and the fact

that X1,m−1 continuosly embeds into X0,m−2, yields uniform bounds on the energy terms (5.16),
provided the initial data satisfy the regularity

(u0(0),u1(0), . . . ,um(0)) ∈ X0 (5.20)

and the terms emerging from space dependence of the multipliers can be dominated by the
corresponding energy terms:

|A (`i−km)/2[ciA
(km+`i)/2um−1(t)]− [ciA

`ium−1(t)]|

+ |A (`r−km)/2[bA (km+`r)/2um−1(t)]− [bA `rum−1(t)]|

+ |A (`i−`r)/2[ciA
(`r+`i)/2um−1(t)]− [ciA

`ium−1(t)]|

≤Cbc

(
|A kmum−1(t)|+ |A (km+`r)/2um−1(t)|

)
+ cbc|A `rum−1(t)| .

(5.21)
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We therefore arrive at the following result.

Proposition 5.1. Under conditions (5.2), (5.4), (5.11), (5.20), (5.21), with cbc small enough,
any solution u to (5.5) satisfies the estimate

‖(u,∂tu, . . . ,∂ m
t u)‖X ≤C

(
‖(u(0),∂tu(0), . . . ,∂ m

t u(0))‖X0 +‖ f‖L2(0,T ;H )

)
for some C depending only on T and the constants bb, cci, CPF , Cbc, CG.

Remark 5.1. Existence of a solution to (5.5) with given initial data of the regularity prescribed
in Proposition 5.1 can be proven, e.g., by means of a Galerkin discretisation with eigenfunc-
tions of A and taking limits as the discretisation gets finer, based on energy estimates like those
in Proposition 5.1, cf., e.g., [KALTENBACHER, NIKOLIĆ (2019)]. Uniqueness follows from
Proposition 5.1, since the difference between any two solutions satisfies (5.5) with homoge-
neous initial data and f = 0.

5.2. Energy estimates and well-posendess in the nonlinear setting. To establish well-
posedness and energy estimates for the nonlinear equation (5.1), i.e., (5.3) with initial conditions

u(0) = (u(0),∂tu(0), . . . ,∂ m
t u(0)) =~u0 ∈ X0 , (5.22)

we define the fixed point operator T : BX
R(0)→ X by assigning to v∈ BX

R(0) = {v∈ X : ‖v‖X ≤
R} the solution of the linear initial value problem (5.5), i.e., (5.6) with

b(t) = b(v(t)) , ci(t) = ci(v(t)) , G (t)[~v] = B(v(t))[~v] , f = 0 (5.23)

and (5.22).
We assume that we can choose R > 0 such that

BX
R(0)⊆ {v ∈ X : b= b(v) , ci = ci(v) , G = B(v) satisfy (5.4), (5.11), (5.21)} (5.24)

(we will verfiy this for the nonlinear acoustics models from Section 2 in Section 5.3 below).
Proposition 5.1 then implies that T is a self-mapping on BX

R(0) provided ‖~u0‖X0 ≤ R
C .

To obtain contractivity of T we assume that

r

∑
i=1
‖ci(~v)− ci(~̃v)‖L(H ,H )C

r−i
PF ≤Cc‖~v−~̃v‖X0 , ‖b(~v)−b(~̃v)‖L(H ,H ) ≤Cb‖~v−~̃v‖X0

‖B(~v)−B(~̃v)‖L(X1,H ) ≤CB‖~v−~̃v‖X0 for all~v, ,~̃v ∈ X0

(5.25)

(again to be verified for the nonlinear acoustics models from Section 2 in Section 5.3 below)
and the fact that û := u− ũ := T (v)−T (ṽ) with v, ṽ ∈ BX

R(0) (thus, by the already shown
self-mapping property of T , also u, ũ ∈ BX

R(0)) satisfies (5.6) with b, ci, G as in (5.23),

f = (B(v)−B(ṽ))[ũ]+ (A(v)−A(ṽ))m+1ũ
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and homogeneous initial data. Proposition 5.1 and the estimate

‖ f‖L2(0,T ;H ) ≤ ‖(B(v)−B(ṽ))[ũ]‖L2(0,T ;H )

+‖
r

∑
i=1

(ci(v)− ci(ṽ)A `i ũm−1‖L2(0,T ;H )+‖(b(v)−b(ṽ)A km ũm‖L2(0,T ;H )

≤
(∫ T

0
‖B(v(t))−B(ṽ)‖2

L(X1,H )‖ũ(t)‖
2
X1

dt
)1/2

+
(∫ T

0
‖

r

∑
i=1

(ci(v(t))− ci(ṽ(t))Cr−i
PF ‖

2
L(H ,H )|A

`r ũm−1(t)|2 dt
)1/2

+
(∫ T

0
‖b(v(t))−b(ṽ(t))‖2

L(H ,H )|A
km ũm(t)|2 dt

)1/2

≤ (Cc +Cb +CB)R‖v− ṽ‖X

yields contractivity for R small enough. Thus from Banach’s Fixed Point Theorem we obtain
the following result.

Theorem 5.1. Under conditions (5.2), (5.24), (5.25), there exists R > 0 (sufficiently small) such
that for any initial data (5.22) with ‖~u0‖X0 ≤ R

C the initial value problem (5.1), (5.22) has a
unique solution u = (u,∂tu, . . . ,∂ m

t u) ∈ X and this solution satisfies the estimate

‖(u,∂tu, . . . ,∂ m
t u)‖X ≤C‖~u0‖X0

with C as in Proposition 5.1.

5.3. Application to models from nonlinear acoustics. We now verify conditions (5.24),
(5.25), i.e.,

‖v‖X ≤ R ⇒ b(v) ,ci(v) ∈ L∞(0,T ;L(H ,H ))∩W 1,1(0,T ;L(H ,H )) , (5.26)

‖~v‖X0 ≤ R ⇒(
b(~v)≥ b> 0 ci(~v)≥ ci > 0

|A (`i−km)/2[ci(~v)A (km+`i)/2wm−1]− [ci(~v)A `iwm−1]|

+ |A (`r−km)/2[b(~v)A (km+`r)/2wm−1]− [b(~v)A `rwm−1]|

+ |A (`i−`r)/2[ci(~v)A (`r+`i)/2wm−1]− [ci(~v)A `iwm−1]|

≤Cbc

(
|A kmwm−1|+ |A (km+`r)/2wm−1|

)
+ cbc|A `rwm−1| , for all ~w ∈ X1

|B(~v)[~w]| ≤CG‖~w‖X0 for all ~w ∈ X0

)
(5.27)

and
r

∑
i=1
‖ci(~v)− ci(~̃v)‖L(H ,H )C

r−i
PF ≤Cc‖~v−~̃v‖X0 ,

‖b(~v)−b(~̃v)‖L(H ,H ) ≤Cb‖~v−~̃v‖X0 ,

‖B(~v)−B(~̃v)‖L(X1,H ) ≤CB‖~v−~̃v‖X0 for all~v,~̃v ∈ X0

(5.28)

for the models from Section 2.
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BCBJK:. m = 2, km = 1, r = 2, `1 = 1, `r = 2,

X0 = D(A 2)×D(A 3/2)×D(A 1/2) , X1 = D(A 2)×D(A 2)×D(A ) ,

b(~v) =
β1

α(v1)
, c1(~v) =

β3

α(v1)
, c2(~v) =

β2

α(v1)
, α(v1) = 1+β5v1 ,

B(~v)[~w] =
1

α(v1)

(
−β4 A 2w0 +β5 v2 w2 +2∇v1 ·∇w1 +2∇v0 ·∇w2

)
.

Conditions (5.26), (5.27) follow from

| d
dt

b(v)(t)|L(H ,H ) = β1β5

∣∣∣ 1
α(v1(t))2 v2(t)

∣∣∣
L∞(Ω)

≤ β1β5

∣∣∣ 1
α(v1(t))

∣∣∣2
L∞(Ω)

|v2(t)|L∞(Ω)

and likewise for c1, c2, as well as the estimates

|v2|L1(0,T ;L∞(Ω)) ≤
√

TCD(A )→L∞(Ω)‖A v2‖L2(0,T ;H ) ≤
√

TCD(A )→L∞(Ω)R∣∣∣ 1
α(v1)

∣∣∣
L∞(0,T ;L∞(Ω)

≤ 1
1−|1−α(v1)|L∞(0,T ;L∞(Ω)

|1−α(v1)|L∞(0,T ;L∞(Ω) ≤ β5CD(A 3/2)→L∞(Ω)‖A v1‖L∞(0,T ;H )

≤ β5CD(A 3/2)→L∞(Ω)R

(5.29)

|A 1/2[ 1
α(v1)

A 3/2wm−1]− [ 1
α(v1)

A 2wm−1]|

= |∇[ 1
α(v1)

∇∆wm−1]− [ 1
α(v1)

∆
2wm−1]|= 1

c2
B
A |

1
α(v1)2 ∇v1 ·∇∆wm−1|

≤ 1
c2

B
A |

1
α(v1)2 |L(H ,H )CD(A )→L∞(Ω)|A 3/2v1| |A 3/2wm−1|

≤ 1
c2

B
A |

1
α(v1)2 |L(H ,H )CD(A )→L∞(Ω)R |A (km+`r)/2wm−1|

|A −1/2[ 1
α(v1)

A 3/2wm−1]− [ 1
α(v1)

A wm−1]|

= |A −1/2
(
[ 1

α(v1)
∇∆wm−1]−∇[ 1

α(v1)
∆wm−1]

)
|

= 1
c2

B
A |A

−1/2[ 1
α(v1)2 ∇v1 ∆wm−1]|

≤CPF
1
c2

B
A |

1
α(v1)2 |L(H ,H )CD(A )→L∞(Ω)R |A (km+`r)/2wm−1|

|B(~v)[~w]|

≤ | 1
α(v1)
|L(H ,H )

(
β4 |A 2w0|+β5 |v2 w2|+2 |∇v1 ·∇w1|+2 |∇v0 ·∇w2|

)
≤ | 1

α(v1)
|L(H ,H )

(
β4 |A 2w0|+β5C2

D(A 1/2)→L4(Ω)
|A 1/2v2| |A 1/2w2|

+2C2
D(A )→W 1,4(Ω)|A v1| |A w1|+2CD(A )→L∞(Ω)|A 3/2v0| |A 1/2w2|

)
≤ | 1

α(v1)
|L(H ,H )‖~w‖X0(

β4 +R
(

β5C2
D(A 1/2)→L4(Ω)

+2C2
D(A )→W 1,4(Ω)CPF +2CD(A )→L∞(Ω)|

))
.

(5.30)
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Condition (5.28) follows from the estimates

∣∣∣∣ 1
α(v1)

− 1
α(ṽ1)

∣∣∣∣
L(H ,H )

= β5

∣∣∣∣ 1
α(v1)α(ṽ1)

(v1− ṽ1)

∣∣∣∣
L∞(Ω)

≤ β5

∣∣∣∣ 1
α(v1)

∣∣∣∣
L∞(Ω)

∣∣∣∣ 1
α(ṽ1)

∣∣∣∣
L∞(Ω)

CD(A 3/2)→L∞(Ω)‖~v−~̃v‖X0

(5.31)

as well as the identity

B(~v)~w−B(~̃v)~w =
1

α(ṽ1)

(
(α(ṽ1)−α(v1))B(~v)~w

+β5 (v2− ṽ2)w2 +2∇(v1− ṽ1) ·∇w1 +2∇(v0− ṽ0) ·∇w2

)

and the estimates (5.29), (5.30), (5.31), as well as (analogously to (5.30))

|(v2− ṽ2)w2| ≤C2
D(A 1/2)→L4(Ω)

|A 1/2(v2− ṽ2)| |A 1/2w2|

|∇(v1− ṽ1) ·∇w1| ≤C2
D(A )→W 1,4(Ω)|A (v1− ṽ1)| |A w1|

|∇(v0− ṽ0) ·∇w2| ≤CD(A )→L∞(Ω)|A 3/2(v0− ṽ0)| |A 1/2w2| ,

hence altogether

|B(~v)~w−B(~̃v)~w| ≤CB‖~v−~̃v‖X0‖~w‖X0 .

JMGT:. m = 2, km = 0, r = 1, `r = 1

X0 = D(A )×D(A 1/2)×H , X1 = D(A )×D(A )×H ,

b(~v) =
α(v0)

Trel
, c(~v) =

b
Trel

, α(v0) = 1− 2βa

ρc2 v0 ,

B(~v)[~w] =− c2

Trel
A w0 +

2βa

ρc2 v1w1
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Conditions (5.26), (5.27) follow from

‖ 1
Trel
−b(v)(t)‖L∞(0,T ;L(H ,H ))) =

1
Trel
‖1−α(v0)‖L∞(0,T ;L∞(Ω))

≤ 1
Trel

2βa

ρc2‖v0(t)|L∞(0,T ;L∞(Ω) ≤
1

Trel

2βa

ρc2CD(A )→L∞(Ω)R

‖ d
dt

b(v)(t)‖L1(0,T ;L(H ,H )) =
1

Trel

2βa

ρc2‖v1‖L1(0,T ;L∞(Ω)) ≤
1

Trel

2βa

ρc2

√
TCD(A )→L∞(Ω)R

|A 1/2[α(v0)A
1/2wm−1− [α(v0)A wm−1|

= |∇[α(v0)∇w1− [α(v0)∆wm−1|= 2βa
ρc2 |∇v0 ·∇wm−1|

≤ 2βa
ρc2C2

D(A )→W 1,4(Ω)|A v0| |A wm−1| ≤ 2βa
ρc2C2

D(A )→W 1,4(Ω)R |A `rwm−1|

|B(~v)[~w]| ≤ c2

Trel
|A w0|+

2βa

ρc2 |v1w1|

≤ c2

Trel
|A w0|+

2βa

ρc2C2
D(A 1/2)→L4(Ω)

|A 1/2v1| |A 1/2w1|

≤
( c2

Trel
+

2βa

ρc2C2
D(A 1/2)→L4(Ω)

R
)
‖~w‖X0 ,

and condition (5.28) from

|α(v0)−α(ṽ0)|L(H ,H ) =
2βa
ρc2 |v0− ṽ0|L∞(Ω) ≤

2βa
ρc2C2

D(A )→L∞(Ω)|A (v0− ṽ0)|

≤ 2βa
ρc2C2

D(A )→L∞(Ω)‖~v−~̃v‖X0

|B(~v)[~w]−B(~̃v)[~w]|= 2βa

ρc2 |(v1− ṽ1)w1| ≤C2
D(A 1/2)→L4(Ω)

|A 1/2(v1− ṽ1)| |A 1/2w1|

≤C2
D(A 1/2)→L4(Ω)

‖~v−~̃v‖X0‖~w‖X0 .

Westervelt:. m = 1, km = 1, r = 1, `r = 1

X0 = D(A )×D(A 1/2) , X1 = D(A )×D(A ) ,

b(~v) =
b

α(v0)
, c(~v) =

c2

α(v0)
, α(v0) = 1− 2βa

ρc2 v0 ,

B(~v)[~w] =
2βa

ρc2 v1w1 .

Conditions (5.26), (5.27), (5.28) can be verified as for JMGT, just skipping the term − c2

Trel
A w0

in B and taking into account the fact that 1
α(v0)

− 1
α(ṽ0)

=− 1
α(v0)α(ṽ0)

(α(v0)−α(ṽ0)).

Corollary 5.1. There exists R > 0 (sufficiently small) such that for any initial data (5.22) with
‖~u0‖X0 ≤ R

C the initial value problems (2.3), (2.2), (with m = 2) (2.1) (with m = 1), (5.22) have
unique solutions u ∈ X̃ and these solutions satisfy the estimate

‖u‖X̃ ≤C‖~u0‖X0
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with

BCBJK: X̃ =W 2,∞(0,T ;H1
0 (Ω))∩H2(0,T ;H2

♦(Ω))

∩W 1,∞(0,T ;H3
♦(Ω))∩H1(0,T ;H4

♦(Ω)) ,

X0 = H4
♦(Ω)×H3

♦(Ω)×H1
0 (Ω)

JMGT: X̃ =W 2,∞(0,T ;L2(Ω))∩W 1,∞(0,T ;H1
0 (Ω))∩H1(0,T ;H2

♦(Ω)) ,

X0 = H2
♦(Ω)×H1

0 (Ω)×L2(Ω)

Westervelt: X̃ =W 1,∞(0,T ;H1
0 (Ω))∩H1(0,T ;H2

♦(Ω)) ,

X0 = H2
♦(Ω)×H1

0 (Ω)

where H2
♦(Ω) = H2(Ω)∩H1

0 (Ω), H3
♦(Ω) = H3(Ω)∩H1

0 (Ω), H4
♦(Ω) = {v ∈ H4(Ω) : v, ∆v ∈

H1
0 (Ω)}.

Remark 5.2. A comparison to [KALTENBACHER, LASIECKA (2009),
KALTENBACHER, NIKOLIĆ (2019), KALTENBACHER, THALHAMMER (2018)] where the
following regularity results have been established

u ∈W 2,∞(0,T ;H1
0 (Ω))∩H2(0,T ;H2

♦(Ω))∩L∞(0,T ;H3
♦(Ω)) ,

(u0,u1,u2) ∈ H3
♦(Ω)×H3

♦(Ω)×H1
0 (Ω) for BCBJK;

u ∈W 2,∞(0,T ;L2(Ω))∩W 1,∞(0,T ;H1
0 (Ω))∩L∞(0,T ;H2

♦(Ω)) ,

(u0,u1,u2) ∈ H2
♦(Ω)×H1

0 (Ω)×L2(Ω) for JMGT;

u ∈ H2(0,T ;H1
0 (Ω))∩W 2,∞(0,T ;L2(Ω))∩W 1,∞(0,T ;H1

0 (Ω))∩L∞(0,T ;H2
♦(Ω)) ,

(u0,u1) ∈ H2
♦(Ω)×H2

♦(Ω) for Westervelt;

shows that our results here give stronger regularity under stronger (or the same) smoothness
of the initial data for BCBJK and JMGT, and weaker regularity under weaker smoothness of
the initial data for Westervelt. Beyond such a comparison, our aim is a unified approach that
is amenable to implicit time stepping schemes, though, as we will carry out analogous energy
estimates in the following section.

6. ENERGY ESTIMATES, WELL-POSEDNESS AND CONVERGENCE OF TIME-DISCRETISED

SYSTEMS

In this section, we will transfer the energy estimates from Section 5 to the systems obtained
by an implicit discretisation with stiffly accurate Runge Kutta methods. This will enable us to
prove well- posedness of the (time) discretised problems. As the most transparent special case,
we will first of all study the implicit Euler scheme.

6.1. Euler scheme. For a fixed time grid t0 < t1 < · · ·< tN which for simplicity of exposition
we choose equidistant ti = iτ , τ = T

N we replace a time dependent function u : [0,T ]→ R by a
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vector uτ = (u(0), . . . ,u(N)) of approximations at the time instances. With some time discretisa-
tion D(n)

t uτ ≈ u′(tn), e.g., according to a backward Euler scheme D(n+1)
t := d(n+1)

t where

d(n+1)
t uτ :=

1
τ
(u(n+1)−u(n)) , (6.1)

we apply this component wise to the grid version uτ = (u0, . . . ,uN) of u to obtain an implicit
time discretisation of (5.3)

D(n+1)
t uτ +A(u(n+1))u(n+1) = (0, · · · ,0,B(u(n+1))[u(n+1)])T . (6.2)

and of (5.6)

D(n+1)
t uτ +A(n+1)u(n+1) = (0, · · · ,0,G (n+1)[u(n+1)]+ f (n+1)))T . (6.3)

respectively.
Time discrete counterparts of the function spaces in Section 5 can be defined by setting, for

some Hilbert space Z (of space dependent functions)

‖uτ‖Lp
τ (Z) :=

(
τ

N

∑
n=0
‖u(n)‖p

Z

)1/p
for 1≤ p < ∞ , ‖uτ‖L∞

τ (Z) := max
n∈{0,...,N}

‖u(n)‖Z ,

‖uτ‖W 1,p
τ (Z) := ‖dtuτ τ

‖Lp
τ (Z)

that satisfy the τ independent estimates (using the crude estimate (N +1)τ ≤ 2T )

‖uτ‖Lp
τ (Z) ≤ (2T )1/p‖uτ‖L∞

τ (Z) , ‖uτ‖L∞
τ (Z) ≤ ‖u

0‖Z +T (p−1)/p‖uτ‖W 1,p
τ (Z)

where the latter follows from Hölder’s inequality and the inverse triangle inequality

‖dtuτ τ
‖Lp

τ (Z) =
(

τ
1−p

N−1

∑
n=0
‖u(n+1)−u(n)‖p

Z

)1/p
≥ τ

1/p−1N1/p−1
N−1

∑
n=0
‖u(n+1)−u(n)‖Z

≥ T 1/p−1
N−1

∑
n=0

(
‖u(n+1)‖Z−‖u(n)‖Z

)
≥ T 1/p−1(‖uN‖Z−‖u0‖Z

)
.

Therewith we define, analogously to (5.17) and using the identity d
d t

(n)
u j

τ
= u(n)j+1

Xτ =
(

L∞
τ (D(A max{km,`r})∩H1

τ (D(A max{km,`r}))
)m−1

× L2
τ(D(A max{km,`r}))∩L∞

τ (D(A max{km,(km+`r)/2}))∩H1
τ (D(A km))

× L2
τ(D(A km))∩L∞

τ (D(A km/2))

⊆ L∞
τ (X0)∩L2

τ(X1)

(6.4)

For obtaining energy estimates the inequality(
D(n+1)

t uτ

∣∣∣u(n+1)
)
≥ 1

2τ

(∣∣∣u(n+1)
∣∣∣2− ∣∣∣u(n)∣∣∣2)= 1

2
d(n+1)

t
∣∣u∣∣2

τ
(6.5)

substituting its continuous counterpart
(
u′(t)

∣∣u(t)) = 1
2

d
dt |u|

2(t) will be crucial, which holds in

the implicit Euler case D(n+1)
t = d(n+1)

t due to(
v−w

∣∣v) = 1
2(
∣∣v∣∣2− ∣∣w∣∣2 + ∣∣v−w

∣∣2)≥ 1
2(
∣∣v∣∣2− ∣∣w∣∣2)



32 B. KALTENBACHER, M. THALHAMMER

[EMMRICH (2004), Eqns. (7.5.9), (7.5.10) p. 197]) but also for certain Runge Kutta methods,
see [EMMRICH, THALHAMMER (2010), GWINNER, THALHAMMER (2014)].

Energy estimates for (6.3) can be derived analogoulsy to those for (5.6) by testing with

(0, . . . ,0,
r

∑
i=1

A km[c
(n+1)
i A `iu(n+1)

m−1 ],A kmu(n+1)
m )T

and

(0, . . . ,0,A km [b(n+1)A `ru(n+1)
m−1 ],A `ru(n+1)

m−1 )T ,

respectively, cf. (5.7), (5.14), applying (6.5), substituting (5.12) by

1
2

d(n+1)
t

∣∣∣√cA (p+q)/2v
∣∣∣2

τ

=
1

2τ

((
A (p+q)/2v(n+1)

∣∣∣c(n+1)A (p+q)/2v(n+1)
)
−
(
A (p+q)/2v(n)

∣∣∣c(n)A (p+q)/2v(n)
))

=
1
2

(
d(n+1)

t vτ

∣∣∣A (p+q)/2[c(n+1)A (p+q)/2(v(n+1)+ v(n))]
)

+
1
2

(
v(n+1)

∣∣∣A (p+q)/2[(d(n+1)
t cτ)A

(p+q)/2v(n)]
)

=
(

D(n+1)
t vτ

∣∣∣A p[c(n+1)A qv(n+1)]
)

+
(

D(n+1)
t vτ

∣∣∣A (p+q)/2[c(n+1)A (p+q)/2v(n+1)]−A p[c(n+1)A qv(n+1)]
)

+
(

d(n+1)
t vτ −D(n+1)

t vτ

∣∣∣A (p+q)/2[c(n+1)A (p+q)/2v(n+1)]
)

− τ

(
d(n+1)

t vτ

∣∣∣A (p+q)/2[c(n+1)A (p+q)/2d(n+1)
t vτ ]

)
+

1
2

(
v(n+1)

∣∣∣A (p+q)/2[(d(n+1)
t cτ)A

(p+q)/2v(n)
)

(6.6)

and using D(n+1)
t uτ,m−1 = u(n+1)

m .

The term τ

(
d(n+1)

t vτ

∣∣∣A (p+q)/2[c(n+1)A (p+q)/2d(n+1)
t vτ

)
= τ

∣∣∣√c(n+1)A (p+q)/2d(n+1)
t vτ

∣∣∣2 is
nonnegative and can therefore be skipped in the estimate.

The additional term containing d(n+1)
t vτ −D(n+1)

t vτ in (6.6) clearly vanishes in case an im-
plicit Euler discretisation is used; otherwise it can be individually estimated.
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Altogether this yields, in place of (5.13), (5.15)

1
2

d(n+1)
t |A km/2um|2

τ
+

1
2

r

∑
i=1

d(n+1)
t |

√
ciA

(km+`i)/2um−1|2
τ
+ |
√
b(n+1)A kmu(n+1)

m |2

≤ 1
b
|G (n+1)[u(n+1)]+ f (n+1)|2 + 1

4
|
√
b(n+1)A kmu(n+1)

m |2

+
1
2

r

∑
i=1

1
ci
|(d(n+1)

t ciτ)|L(H ,H )|
√
c
(n+1)
i A (km+`i)/2u(n+1)

m−1 |
2

+
1
4
|
√
b(n+1)A kmu(n+1)

m |2

+
1
b

r

∑
i=1
|A (`i−km)/2[c

(n+1)
i A (km+`i)/2u(n+1)

m−1 ]− [c
(n+1)
i A `iu(n+1)

m−1 ]|2 ,

(6.7)

1
2

d(n+1)
t |

√
bA (km+`r)/2um−1|2

τ
+

r

∑
i=1
|
√
c
(n+1)
i A (`r+`i)/2u(n+1)

m−1 |
2

≤ 1
cr
|G (n+1)[u(n+1)]+ f (n+1)|2 + 1

4
|
√
c
(n+1)
r A `ru(n+1)

m−1 |
2

+
1

2cr
|(d(n+1)

t bτ)|L(H ,H )|
√
c
(n+1)
r A (km+`r)/2u(n+1)

m−1 |
2 +

1
2
|
√
b(n+1)A kmu(n+1)

m |2

+
1

2b
|A (`r−km)/2[b(n+1)A (km+`r)/2u(n+1)

m−1 ]− [b(n+1)A `ru(n+1)
m−1 ]|2

+
1
4
|
√
c
(n+1)
r A `ru(n+1)

m−1 |
2

+
1
cr

(
r

∑
i=1
|A (`i−`r)/2[c

(n+1)
i A (`r+`i)/2u(n+1)

m−1 ]− [c
(n+1)
i A `iu(n+1)

m−1 ]|

)2

.

(6.8)

The time integration step between (5.8) and (5.9), i.e., bewteen (5.13), (5.15) and the respec-
tive energy estimates, is replaced by τ weigthed summation, so that we get, e.g. in place of∫ t0

0
d
dt |A

km/2um|2(t)dt = |A km/2um(t0)|2−|A km/2um(0)|2 the identity

τ

n0−1

∑
n=0

d(n+1)
t

∣∣∣A km/2um

∣∣∣2
τ

=
n0−1

∑
n=0

(∣∣∣A km/2u(n+1)
m

∣∣∣2− ∣∣∣A km/2u(n)m

∣∣∣2)
=
∣∣∣A km/2u(n0)

m

∣∣∣2− ∣∣∣A km/2u(0)m

∣∣∣2
Moreover, we use the following time discrete version of Gronwall’s inequality:

η
(n) ≤ a(n)+ τ

n

∑
j=1

b( j)
η
( j) for all n ∈ {1, . . . ,N}

⇒ η
(n) ≤ a(n)+ τ

n

∑
j=1

a( j) b( j) exp
(

τ

n

∑
i= j

b(i)
)

for all n ∈ {1, . . . ,N}

for η
τ
, aτ , bτ ≥ 0, which follows by application of its continuous counterpart (5.19) to the

piecewise constant interpolants of η
τ
, aτ , bτ .

For the linear equation (6.3) we therefore get the following result.
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Proposition 6.1. Under conditions (5.2), (5.4), (5.11), (5.21), with cbc small enough, the time
discretised initial value problem (6.3), (5.22) with the implicit Euler scheme (6.1) has a unique
solution uτ ∈ Xτ and this solution satisfies the estimate

‖uτ‖Xτ
≤C

(
‖~u0‖X0 +‖ f‖L2

τ (H )

)
with C as in Proposition 5.1, in particular C independent of τ .

Proof. A Galerkin discretisation of (6.3), (5.22) with eigenfunctions φi of A , i.e., an Ansatz
u(n)j (x) =∑

I
i=1 u(n)i, j φi(x) after testing with φk, k ∈ {1, . . . , I} yields I linear m ·n×m ·n systems of

equations, one for each set of coefficients (u(n)i, j ) j∈{1,...,m},n∈{1,...,N}. (Note that the coefficients
u0

i, j =
(
u0

j

∣∣φi
)

are fixed by the initial data.) Due to mutual orthogonality of the eigenfunctions,
system i1 is decoupled from system i2 for i1 6= i2. System i reads as

D(n+1)
t uiτ = A(n+1)ui

(n+1)+(0, · · · ,0,G (n+1)[u(n+1)]+ f (n)i )T ,

with A(n) =


0 I 0 · · · 0
0 0 I 0 · · ·
... . . . . . . . . .
0 −∑

r
ν=1cν(tn)λ

`ν

i −b(tn)λ km
i

 ,
(6.9)

f (n)i =
(

f (n)
∣∣φi
)
, u(n)

i = (u(n)i,1 , . . . ,u
(n)
i,m) and u0

i = (u0
i,1, . . . ,u

0
i,m), that is, the Galerkin discreti-

sation simply replaces A by λi. Thus also the Galerkin approximation satisfies energy esti-
mates analogous to those in Proposition 5.1, which implies uniqueness and, via Fredholm’s
alternative (since we are in finite dimensions now), also existence of a solution to (6.9).
These energy estimates also yield uniform boundedness of the sequence (uiτ)i∈N defined by

u(n)(x) = ∑
I
i=1 u(n)

i φi(x) in Xτ and therefore its weak convergence to a limit uτ that by linearity
can easily be verified to be a solution to (6.3), to which the energy estimates transfer as well.
Uniqueness again follows from the energy estimates.

♦
This allows to transfer the well-posedness result and energy estimates from Theorem 5.1 to

the time discretised equation (6.2) under the following time discretised versions of the condi-
tions (5.26)

‖vτ‖Xτ
≤ R ⇒(

b(v)
τ
,ci(v)

τ
∈ L∞

τ (L(H ,H )) , dtb(v)
τ τ

,dtci(v)
τ τ

∈ L1
τ(L(H ,H ))

)
.

(6.10)

Theorem 6.1. Under conditions (5.2), (6.10), (5.27), (5.28), there exists R > 0 (sufficiently
small) such that for any ‖~u0‖X0 ≤ R

C the time discretised initial value problem (6.2), (5.22) with
the Euler scheme (6.1) has a unique solution uτ ∈ Xτ and this solution satisfies the estimate

‖uτ‖Xτ
≤C‖~u0‖X0

with C as in Proposition 5.1.
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Verification of (6.10) for the models from Section 2 can be done by using the estimates (with
i = 1, κ = β5 for BCBJK and i = 0, κ = 2βa

c2ρ
for JMGT, Westervelt)

max
n∈{0,...,N}

‖1−α(v(n)i )‖L(H ,H ) = κ‖viτ‖L∞
τ (L∞(Ω))

τ

N

∑
n=0

∥∥∥α(v(n+1)
i )−α(v(n)i )

τ

∥∥∥
L(H ,H )

≤ κτ

N

∑
n=0
‖d(n+1)

t viτ‖L∞(Ω)

≤ κ

(
‖vi+1

τ
‖L1

τ (L∞(Ω))+κτ

N

∑
n=0
‖d(n+1)

t viτ −D(n+1)
t viτ‖L∞(Ω)

)
due to D(n+1)

t viτ = v(n+1)
i+1 , and can therefore be estimated analogously to Section 5.3 in the Euler

case Dt = dt .

The time discretised versions of the models from Section 2 read as follows

• BCBJK:

D(n+1)
t ψ0

τ
= ψ

(n+1)
1

D(n+1)
t ψ1

τ
= ψ

(n+1)
2

D(n+1)
t ψ2

τ
=

1

1+β5ψ
(n+1)
1

(
β1∆ψ

(n+1)
2 −β2 ∆

2
ψ

(n+1)
1 +β3 ∆ψ

(n+1)
1 −β4 ∆

2
ψ

(n+1)
0

−β5
(
ψ

(n+1)
2

)2−2|∇ψ
(n+1)
1 |2−2∇ψ

(n+1)
0 ·∇ψ

(n+1)
2

)
(6.11)

• JMGT with β0 =
2βa
ρc2 :

D(n+1)
t p0

τ
= p(n+1)

1

D(n+1)
t p1

τ
= p(n+1)

2

D(n+1)
t p2

τ
=

1
Trel

(
−(1−β0 p(n+1)

0 ) p(n+1)
2 +b∆p(n+1)

1 + c2
∆p(n+1)

0 +β0
(

p(n+1)
1

)2
) (6.12)

• Westervelt with β0 =
2βa
ρc2 :

D(n+1)
t p0

τ
= p(n+1)

1

D(n+1)
t p1

τ
=

b

1−β0 p(n+1)
0

∆p(n+1)
1 +

c2

1−β0 p(n+1)
0

∆p(n+1)
0 +

β0

1−β0 p(n+1)
0

(
p(n+1)

1
)2 (6.13)

Corollary 6.1. There exists R > 0 (sufficiently small) such that for any ‖~u0‖X0 ≤ R
C the semidis-

crete PDEs (6.11), (6.12), (with m = 2) (6.13) (with m = 1), (5.22) with (6.1) have unique
solutions uτ = (u0τ

,u1τ
, . . . ,umτ

) ∈ Xτ and these solutions satisfy the estimate

‖(u0τ
,u1τ

, . . . ,umτ
)‖Xτ
≤C‖~u0‖X0
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with

BCBJK: Xτ = L∞
τ (H

4
♦(Ω))∩L2

τ(H
4
♦(Ω))∩H1

τ (H
4
♦(Ω))

× L∞
τ (H

3
♦(Ω))∩L2

τ(H
4
♦(Ω))∩H1

τ (H
2
♦(Ω)) × L∞

τ (H
1
0 (Ω))∩L2

τ(H
2
♦(Ω))

X0 = H4
♦(Ω)×H3

♦(Ω)×H1
0 (Ω)

JMGT: Xτ = L∞
τ (H

1
0 (Ω))∩L2

τ(H
2
♦(Ω))∩H1

τ (H
2
♦(Ω))

× L∞
τ (H

1
0 (Ω))∩L2

τ(H
2
♦(Ω)) × L∞

τ (L
2(Ω))

X0 = H2
♦(Ω)×H1

0 (Ω)×L2(Ω)

Westervelt: Xτ = L∞
τ (H

1
0 (Ω))∩L2

τ(H
2
♦(Ω))∩H1

τ (H
2
♦(Ω)) × L∞

τ (H
1
0 (Ω))∩L2

τ(H
2
♦(Ω))

X0 = H2
♦(Ω)×H1

0 (Ω)
(6.14)

6.2. Runge-Kutta methods. We consider a stiffly accurate Runge Kutta scheme with s stages

and Butcher tableau
c A

eTA
where A= (aµν)1≤µ,ν≤s ∈Rs×s, c, e= (0, . . . ,1)T ∈Rs, and we

additionally assume
s

∑
ν=1

asν = 1 , asν > 0 , A regular , B := diag(as·) , C :=BA−1

BA+ATB−as·aT
s·−ATC11TCTA positive semidefinite

(6.15)

cf. [EMMRICH, THALHAMMER (2010)], which allows to conclude the following inequality cf.
[EMMRICH, THALHAMMER (2010), Lemma 3.4]

(x1, . . . ,xs)C

 x1− x0
...

xs− x0

≥ 1
2(x

2
s − x2

0)

for all x0,x1, . . .xs ∈R. The latter carries over to the Hilbert space H in place of R in the sense
that

s

∑
µ=1

( s

∑
ν=1

Cµν(uν −u0)
∣∣∣uµ

)
≥ 1

2

(∣∣us∣∣2− ∣∣u0∣∣2) (6.16)

for all u0,u1, . . .us ∈H . Note that (6.15) can be verfied under fairly general compatibility
conditions, cf. [EMMRICH, THALHAMMER (2010), Theorem 3.1].

Inequality (6.16) is crucial for carrying over the energy estimates from Sec-
tion 6.1 to the Runge Kutta discretisation of (5.3), (5.6), which according to
[EMMRICH, THALHAMMER (2010), equations (1.1), (1.5), (4.1)], can be written as

s

∑
ν=1

Cµνd(n)t ν uτ +A(U(n)
µ )U(n)

µ = (0, · · · ,0,B(U(n)
µ )[U(n)

µ ])T , (6.17)

and of (5.6)
s

∑
ν=1

Cµνd(n)t ν uτ +A(n)
µ U(n)

µ = (0, · · · ,0,G (n)
µ [U(n)

µ ]+ f (n)µ ))T , (6.18)
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respectively, where in both cases

µ = 1, . . . ,s , u(n)
s =: u(n+1)

and we use the following abbreviations

v(n)ν ≈ v(tn + cντ) , v ∈ {u,u j,G , f} , d(n)t ν uτ :=
1
τ
(u(n)ν −u(n)) ,

with the vector uτ = (u0,1, . . . ,u0,s, . . . ,uN,1, . . . ,uN,s) of approximations at the time instances
(including the stages beween them).

Analogously to the previous section, cf. (5.7), (5.14) we test with

(0, . . . ,0,
r

∑
i=1

A km[c
(n)
i,µ A `iu(n)m−1,µ ],A

kmu(n)m,µ)
T

and

(0, . . . ,0,A km[b
(n)
µ A `ru(n)m−1,µ ],A

`ru(n)m−1,µ)
T ,

respectively, sum up over µ and apply (6.16). The identity (6.6) is substituted by an estimate as
follows.

1
2

d(n+1)
t

∣∣∣√cA (p+q)/2v
∣∣∣2

τ

≤
s

∑
µ=1

( s

∑
ν=1

Cµνd(n)t ν

√
cA (p+q)/2v

τ

∣∣∣√c
(n)
µ A (p+q)/2v(n)µ

)
=

s

∑
µ=1

( s

∑
ν=1

Cµνd(n)t ν vτ

∣∣∣A p[c
(n)
µ A qv(n)µ ]

)
+

s

∑
µ=1

s

∑
ν=1

CµνR(n+1)
µν

where we have used (6.16) in the first inequality and

R(n+1)
µν =

1
τ

(√
c
(n)
ν A (p+q)/2v(n)ν −

√
c(n)A (p+q)/2v(n)

∣∣∣√c
(n)
µ A (p+q)/2v(n)µ

)
− 1

τ

(
v(n)ν − v(n)

∣∣∣A p[c
(n)
µ A qv(n)µ ]

)
=

1
τ

(
(

√
c
(n)
ν −

√
c(n))A (p+q)/2v(n)ν +

√
c(n)A (p+q)/2(v(n)ν − v(n))

∣∣∣√c
(n)
µ A (p+q)/2v(n)µ

)
− 1

τ

(
v(n)ν − v(n)

∣∣∣A p[c
(n)
µ A qv(n)µ ]

)
=

1
τ

(
(

√
c
(n)
ν −

√
c(n))A (p+q)/2v(n)ν

∣∣∣√c
(n)
µ A (p+q)/2v(n)µ

)
+

1
τ

(
v(n)ν − v(n)

∣∣∣A (p+q)/2[
√
c(n)
√
c
(n)
µ A (p+q)/2v(n)µ ]−A p[c

(n)
µ A qv(n)µ ]

)
=
(
(d(n)t ν

√
c

τ
)A (p+q)/2v(n)ν

∣∣∣√c
(n)
µ A (p+q)/2v(n)µ

)
+
(

d(n)t ν vτ

∣∣∣A (p+q)/2[c
(n)
µ A (p+q)/2v(n)µ ]−A p[c

(n)
µ A qv(n)µ ]

)
− τ

(
d(n)t ν vτ

∣∣∣A (p+q)/2[(d(n)t µ

√
c

τ
)

√
c
(n)
µ A (p+q)/2v(n)µ ]

)
.
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Thus with v = um−1 and c= ci, p = km, q = `i (likewise for c= b, p = km, q = `r as needed in
the second energy estimate) we get, using ∑

s
ν=1Cµνd(n)t ν uτ,m−1 = u(n+1)

m , that

1
2

d(n+1)
t

∣∣∣√ciA
(km+`i)/2um−1

∣∣∣2
τ

≤
s

∑
µ=1

( s

∑
ν=1

Cµνd(n)t ν um−1
τ

∣∣∣A km [c
(n)
i,µ A `iu(n)m−1,µ ]

)
+

s

∑
µ=1

s

∑
ν=1

Cµν

(
(d(n)t ν

√
ci

τ
)A (km+`i)/2u(n)m−1,ν

∣∣∣√c
(n)
µ A (km+`i)/2u(n)m−1,µ

)
+

s

∑
µ=1

(
A kmu(n+1)

m

∣∣∣A (`i−km)/2[c
(n)
µ A (km+`i)/2u(n)m−1,µ ]− [c

(n)
µ A `iu(n)m−1,µ ]

)
− τ

s

∑
µ=1

(
A kmu(n+1)

m

∣∣∣A (`i−km)/2[(d(n)t µ

√
c

τ
)

√
c
(n)
µ A (km+`i)/2u(n)m−1,µ ]

)
.

Altogether we therefore obtain the same results as for the implicit Euler method.

Theorem 6.2. Under conditions (5.2), (6.10), (5.27), (5.28), there exists R > 0 (sufficiently
small) such that for any ‖~u0‖X0 ≤ R

C the time discretised initial value problem (6.17), (5.22)
with a stiffly accurate Runge Kutta method satisfying (6.15) has a unique solution uτ ∈ Xτ and
this solution satisfies the estimate

‖uτ‖Xτ
≤C‖~u0‖X0

with C as in Proposition 5.1.

Applying this to the models from Section 2 we get

• BCBJK:
s

∑
ν=1

Cµνd(n)t ν ψ0
τ
= ψ

(n)
1,µ

s

∑
ν=1

Cµνd(n)t ν ψ1
τ
= ψ

(n)
2,µ

s

∑
ν=1

Cµνd(n)t ν ψ2
τ
=

1

1+β5ψ
(n)
1,µ

(
β1∆ψ

(n)
2,µ −β2 ∆

2
ψ

(n)
1,µ +β3 ∆ψ

(n)
1,µ −β4 ∆

2
ψ

(n)
0,µ

−β5
(
ψ

(n)
2,µ
)2−2|∇ψ

(n)
1,µ |

2−2∇ψ
(n)
0,µ ·∇ψ

(n)
2,µ

)
(6.19)

• JMGT with β0 =
2βa
ρc2 :

s

∑
ν=1

Cµνd(n)t ν p0
τ
= p(n)1,µ

s

∑
ν=1

Cµνd(n)t ν p1
τ
= p(n)2,µ

s

∑
ν=1

Cµνd(n)t ν p2
τ
=

1
Trel

(
−(1−β0 p(n)0,µ) p(n)2,µ +b∆p(n)1,µ + c2

∆p(n)0,µ +β0
(

p(n)1,µ
)2
) (6.20)
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• Westervelt with β0 =
2βa
ρc2 :

s

∑
ν=1

Cµνd(n)t ν p0
τ
= p(n)1,µ

s

∑
ν=1

Cµνd(n)t ν p1
τ
=

b

1−β0 p(n)0,µ

∆p(n)1,µ +
c2

1−β0 p(n)0,µ

∆p(n)0,µ +
β0

1−β0 p(n)0,µ

(
p(n)1,µ

)2
(6.21)

Corollary 6.2 (Existence of time-discrete solutions). There exists R > 0 (sufficiently small but
independent of τ) such that for any ‖~u0‖X0 ≤ R

C the semidiscrete PDEs (6.11), (6.12), (6.13)
with initial data (5.22) and a stiffly accurate Runge Kutta method satisfying (6.15) have unique
solutions uτ = (u0τ

,u1τ
, . . . ,umτ

) ∈ Xτ and these solutions satisfy the estimate

‖(u0τ
,u1τ

, . . . ,umτ
)‖Xτ
≤C‖~u0‖X0

with Xτ as in (6.14).

For the following convergence result we will consider the piecewise linear interpolants

vτ(t) = v(n)ν +
v(n)

ν+1− v(n)ν

(cν+1− cν)τ
(t− tn− cντ), t ∈ [tn + cντ, tn + cν+1τ)

of grid functions vτ .

Corollary 6.3 (Convergence). Let R be chosen as in Corollary 6.2, assume ‖~u0‖X0 ≤ R
C , and

denote by uτ the piecewise linear interpolant of the solution uτ = (u0τ
,u1τ

, . . . ,umτ
) ∈ Xτ of

one of the semidiscrete first order systems (6.11), (6.12), (6.13), with initial data (5.22) and
a stiffly accurate Runge Kutta method satisfying (6.15). Then the family of these interpolants
(uτ)τ∈(0,τ̄) converges weakly* in X to the solution of the first order reformulation of the respec-
tive nonlinear initial value problem (2.3), (2.2), (2.1), with initial data (5.22) as τ tends to zero,
that is,

uτ ∗⇀ u in X as τ → 0

In particular uτ converges strongly to u in any space that is compactly embedded into X.

Proof. According to Corollary 6.2, the family of interpolants (uτ)τ∈(0,τ̄) is uniformly bounded
in X as defined in (5.17). Therefore, there exist a weakly* convergent subsequence, which we
denote by (uk)k∈N.

The fact that any weakly* convergent subsequence (uk)k∈N tends to the unique solution u can
be seen by considering, for arbitrary φ ∈C∞

0 (Ω), θ ∈C∞
0 (0,T ) and j ∈ {0, . . . ,m} the integrals

Lk
j +Nk

j :=
∫ T

0

∫
Ω

(
(L j(uk−u)(x, t)+

(
N j(uk)−N j(u)

)
(x, t)

)
φ(x)θ(t)dxdt

where L j and N j are the linear and nonlinear parts of the differential operators acting on the
respective component (note that in case of BCBJK the linear part also contains a term in B).
It is straigthforward to see that Lk

j → 0 as k→ ∞ due to the weak convergence uk ∗⇀ u in X .
For the nonlinear parts Nk

j we note that they vanish for j ∈ {0, . . . ,m− 1} and that Nk
m must
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be considered for the particular PDEs separately. We do so explicitely only for the Westervelt
equation, where we have

Nm(uk)−N j(u) = β0

( 1
1−β0uk

0

(
uk

1
)2− 1

1−β0u0

(
u1
)2
)
.

Hence with the functions ωk =
β 2

0

(
uk

1

)2

(1−β0uk
0)(1−β0u0)

+
β0(uk

1+u1)
(1−β0u0)

that are uniformly (with respect to

k) bounded in L∞(0,T ;L2(Ω)) due to nondegeneracy and boundedness of both the continuous
and the discrete solution, we have

Nk
m =

∫ T

0

∫
Ω

(
ω

k(x, t)(uk
0(x, t)−u0(x, t))φ(x)θ(t)dxdt

≤ ‖ωk‖L∞(0,T ;L2(Ω)‖uk
0−u0‖L2(0,T ;L2(Ω)‖φ‖L∞(Ω)‖θ‖L2(0,T ) → 0 as k→ ∞

due to compactness of the embedding H1(0,T ;H2
♦(Ω))→ L2(0,T,L2(Ω)). Similarly in prin-

ciple, but with more involved computations, convergence to zero of the nonlinear terms
can also be shown for JMGT and BCBJK. We point to [KALTENBACHER, NIKOLIĆ (2019),
KALTENBACHER, THALHAMMER (2018)] and the fact that the same differences of nonlinear
terms have to be tackled when studying convergence as one of the physical parameters in the
PDE tends to zero. These estimates can be directly used here, since we have the same or higher
regularity for BCBJK and JMGT, see Remark 5.2.

A subsequence-subsequence argument together with uniqueness of solutions to the respective
limiting (time continuous) equations yields the assertion. �
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