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Abstract

The present work is concerned with the extension of modified potential operator
splitting methods to nonlinear evolution equations of Schrödinger and parabolic
type. Moreover, an invariance principle is deduced that has a significant impact
on the efficient realisation of the resulting modified operator splitting methods for
nonlinear Schrödinger equations.

Numerical illustrations for the time-dependent Gross–Pitaevskii equation in the
physically most relevant case of three space dimensions and for its parabolic coun-
terpart related to ground state and excited state computations confirm the benefits
of the proposed fourth-order modified operator splitting method in comparison with
standard splitting methods.

The presented results are novel and of particular interest from both, a theoretical
perspective to inspire future investigations of modified operator splitting methods
for other classes of nonlinear evolution equations and a practical perspective to
advance the reliable and efficient simulation of Gross–Pitaevskii systems in real and
imaginary time.
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1 Introduction

Scope of applications. A wide range of relevant applications in sciences
includes the numerical integration of initial value problems for nonlinear evo-
lution equations. In many cases, the function defining the right-hand side
comprises two or more parts


d
dt u(t) = F1

(
u(t)

)
+ F2

(
u(t)

)
,

u(0) = u0 , t ∈ [0, T ] .
(1)

As prominent instances, we highlight time-dependent nonlinear Schrödinger
equations, more specifically, Gross–Pitaevskii equations that arise in the de-
scription of Bose–Einstein condensation, see [15,23]. For a comprehensive
overview of the underlying principles of quantum theory, we refer to [22].

Nonlinear Schrödinger equation (Gross–Pitaevskii equation). A fun-
damental model for the nonlinear dynamics of a single Bose–Einstein conden-
sate reads asi ∂tΨ(x, t) = −∆Ψ(x, t) + V (x) Ψ(x, t) + ϑ |Ψ(x, t)|2 Ψ(x, t) ,

Ψ(x, 0) = Ψ0(x) , (x, t) ∈ Ω× [0, T ] ,
(2a)

where ∆ = ∂2
x1

+ · · · + ∂2
xd

denotes the Laplacian with respect to the spatial
variables x = (x1, . . . , xd) ∈ Rd, V : Rd → R a real-valued potential, ϑ ∈ R the
coupling constant, and Ψ : Ω× [0, T ] ⊂ Rd×R→ C the space-time-dependent
complex-valued macroscopic wave function. Assigning for a regular function
v : Ω→ C the linear differential and nonlinear multiplication operators

(
F1(v)

)
(x) = c∆ v(x) , c = i ,(

F2(v)
)
(x) = c̄

(
V (x) + ϑ |v(x)|2

)
v(x) , c̄ = − i ,

x ∈ Ω ,

(2b)

and setting u(t) = Ψ(·, t) for t ∈ [0, T ], we retain the general formulation (1).

Nonlinear parabolic equation. By analogy to the time-dependent Gross–
Pitaevskii equation (2a), we consider the parabolic problem

∂tU(x, t) = ∆U(x, t) + V (x)U(x, t) + ϑ |U(x, t)|2 U(x, t) ,

U(x, 0) = U0(x) , (x, t) ∈ Ω× [0, T ] ,
(3a)

for a real-valued solution U : Ω × [0, T ] ⊂ Rd × R → R. Accordingly, it
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corresponds to (2b) with different constant(
F1(v)

)
(x) = c∆ v(x) , c = 1 ,(

F2(v)
)
(x) = c̄

(
V (x) + ϑ |v(x)|2

)
v(x) , c̄ = 1 ,

x ∈ Ω ,

(3b)

and, setting u(t) = U(·, t) for t ∈ [0, T ], we obtain again the general form (1).
It is noteworthy that the parabolic equation (3a) arises in ground state and
excited state computations, see for instance [5,14].

Splitting methods. Within multiple scopes, for ordinary differential equa-
tions and time-dependent partial differential equations, for linear problems
as well as nonlinear problems, a variety of works has confirmed the benefits
of operator splitting methods regarding desirable features that are subsumed
under the central concepts stability, efficiency, and preservation of conserved
quantities. For general information, we refer to [21,27]. Specific studies in the
context of Schrödinger equations are given, e.g., in [6,8,10,32]. In order to make
our subsequent survey of standard and modified operator splitting methods
for nonlinear evolution equations accessible to a broader readership, we do not
presume the knowledge of the formal calculus of Lie-derivatives and explain
the required elementary means on occasion, see [33] for a detailed exposition.

Linear case. As an illustrative example, we state the simplest representative
of standard splitting methods, the first-order Lie–Trotter splitting method, for
a system of linear differential equations

d
dt u(t) = Au(t) +B u(t) ,

u(0) = u0 , t ∈ [0, T ] ,
(4)

defined by non-commuting time-independent complex matrices A,B ∈ CM×M .
For a positive integer number N ∈ N with associated time increment and
equidistant grid points

τ = T
N
, tn = n τ , n ∈ {0, 1, . . . , N} ,

numerical approximations to the exact solution values are obtained by the
recurrence

un+1 = eτB eτA un ≈ u(tn+1) , n ∈ {0, 1, . . . , N − 1} .

Higher-order splitting methods for (4) involve the action of several matrix
exponentials on the current approximation and can be cast into the format

un+1 = ebsτB easτA · · · eb1τB ea1τA un ≈ u(tn+1) , n ∈ {0, 1, . . . , N − 1} ,

with real or complex coefficients (aj, bj)
s
j=1, respectively.
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Nonlinear case. Their generalisation to nonlinear evolution equations (1) is
based on the composition of the solutions to the subproblems defined by F1

and F2. We henceforth employ the compact notation

d
dt u1(t) = αF1

(
u1(t)

)
, Eτ,αF1

(
u1(tn)

)
= u1(tn + τ) ,

d
dt u2(t) = βF2

(
u2(t)

)
, Eτ,βF2

(
u2(tn)

)
= u2(tn + τ) ,

α, β ∈ C , t ∈ [tn, tn + τ ] ,

(5a)

so that a higher-order splitting method applied to (1) reads as

un+1 =
(
Eτ,bsF2 ◦ Eτ,asF1 ◦ · · · ◦ Eτ,b1F2 ◦ Eτ,a1F1

)
(un) ≈ u(tn+1) ,

n ∈ {0, 1, . . . , N − 1} .
(5b)

Schemes. In view of numerical comparisons, we introduce the coefficients of
the first-order Lie–Trotter splitting method

s = 1 , a1 = 1 , b1 = 1 , (6a)

and the second-order Strang splitting method

s = 2 , a1 = 0 , a2 = 1 , b1 = 1
2

= b2 . (6b)

Setting s = 4 and imposing certain order and symmetry conditions, which
reduce to a cubic equation for one of the coefficients

48 b3
2 − 24 b2

2 + 1 = 0 ,

the well-known fourth-order splitting method by Yoshida [34]

s = 4 , a1 = 0 , a2 = 1− 2 b2 = a4 , a3 = 4 b2 − 1 ,

b1 = 1
2
− b2 = b4 , b2 = 1

6

(
1− 3
√

2− 1
2

3
√

4
)

= b3 ,
(6c)

a corresponding fourth-order splitting method with complex coefficients

s = 4 , a1 = 0 , a2 = 1− 2 b2 = a4 , a3 = 4 b2 − 1 ,

b1 = 1
2
− b2 = b4 , b2 = 1

6

(
1 + 1

2

3
√

2 + 1
4

3
√

4
)

+ i
√

3
12

(
1
2

3
√

4− 3
√

2
)

= b3 ,
(6d)

and its counterpart based on the complex conjugated coefficient b2 are re-
tained.

Stability issues. In connection with dissipative systems and evolution equa-
tions of parabolic type, operator splitting methods are subject to additional
stability constraints. In order to explain this matter of fact, we recall that
the application of a splitting method with real coefficients (aj, bj)

s
j=1 to the
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parabolic equation (3) involves the subproblems

∂tU(x, t) = aj ∆U(x, t) , (x, t) ∈ Ω× [tn, tn + τ ] , j ∈ {1, . . . , s} .

Evidently, requiring well-posedness of these subproblems or stability of the
resulting splitting method, respectively, implies

aj ≥ 0 , j ∈ {1, . . . , s} .

This positivity condition, however, excludes higher-order schemes, since any
splitting method that exceeds a second-order barrier necessarily comprises
negative coefficients, see for example [7,28,29]. Specifically, this holds true for
the fourth-order splitting method by Yoshida

a3 ≈ − 1.7 < 0 ,

see (6c). A feasible remedy to this issue is the design of splitting methods with
complex coefficients (aj, bj)

s
j=1 such that

<(aj) ≥ 0 , j ∈ {1, . . . , s} ,

see, e.g., [11,17]. The fourth-order scheme (6d) indeed fulfills these constraints

a1 = 0 , <(a2) = <(a4) ≈ 0.3 > 0 , <(a3) ≈ 0.4 > 0 .

For further considerations in the context of the imaginary time propagation of
the linear Schrödinger equation by complex splitting methods, we refer to [4].

Modified potential splitting methods for linear equations. Reviving
former work by Ruth and Suzuki, see for instance [26,29,30], a favourable
alternative to standard operator splitting methods was proposed by Chin. In
a seminal work [12], he developed a famous fourth-order scheme of splitting
type that comprises positive coefficients and hence overcomes the second-order
barrier for standard splitting methods with real coefficients. Expressed in his
own words, the basic idea is to incorporate an additional higher order com-
posite operator so that the implementation of one algorithm requires only one
evaluation of the force and one evaluation of the force and its gradient. For
linear evolution equations (4), the resulting scheme takes the form

un+1 = e
1
6
τB e

1
2
τA e

2
3
τB− 1

72
τ3[B,[B,A]] e

1
2
τA e

1
6
τB un ≈ u(tn+1) ,

n ∈ {0, 1, . . . , N − 1} .
(7)

Here, the iterated commutator of complex matrices A,B ∈ CM×M is given by

[B,A] = BA− AB ,
[
B, [B,A]

]
= B2A− 2BAB + AB2 . (8a)
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More generally, for linear differential and multiplication operators

(Av)(x) = c∆ v(x) ,

(B v)(x) = c̄ V (x) v(x) ,

x ∈ Ω , c ∈ C ,
(8b)

retained from (2) and (3) for the special choice ϑ = 0, a straightforward cal-
culation yields a linear multiplication operator that depends on the Euclidean
norm of the gradient of the potential

[
B, [B,A]

]
v(x)

= c̄ |c|2
((
V (x)

)2
∆ v(x)− 2V (x) ∆

(
V (x) v(x)

)
+ ∆

((
V (x)

)2
v(x)

))

= 2 c̄ |c|2
(
∇V (x)

)T
∇V (x) v(x) , x ∈ Ω .

(8c)

This explains the common notion force-gradient operator splitting method or
modified potential operator splitting method for the scheme (7) and related
splitting methods in the context of classical or quantum many-body problems
and beyond. More recent contributions that exploit (7) for linear ordinary and
partial differential equations are, e.g., [2,13,24,25].

Objectives and outline. The main objective of the present work is the
extension of the modified potential operator splitting method (7) to nonlinear
evolution equations of parabolic and Schrödinger type. So far, this scheme
has been introduced and studied merely for linear evolution equations. In
Sections 2 and 3, we state the formal generalisation to the nonlinear case and
then substantiate it for the Gross–Pitaevskii equation (2) and its parabolic
analogue (3). A fundamental invariance principle that includes a known result
for standard splitting methods as a special case is deduced in Section 4. In
Section 5, we detail the implementation of the novel modified operator splitting
method based on a Fourier spectral space discretisation and provide numerical
comparisons with standard splitting methods. The observed order reduction
of Yoshida’s fourth-order complex splitting method (6d) is analysed in the
appendix.

2 Modified operator splitting method

Formal generalisation. On the basis of the formal calculus of Lie-
derivatives, our educated guess to generalise the modified potential operator
splitting method (7) to the significantly more involved case of a nonlinear
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evolution equation (1) is

un+1 =
(
Eτ, 1

6
F2
◦ Eτ, 1

2
F1
◦ Eτ, 2

3
F2− 1

72
τ2G2
◦ Eτ, 1

2
F1
◦ Eτ, 1

6
F2

)
un ≈ u(tn+1) ,

n ∈ {0, 1, . . . , N − 1} .
(9a)

Presuming well-definedness on a suitably chosen domain, the nonlinear oper-
ator G2 replacing the iterated commutator is given by

G1(v) = F ′2(v)F1(v)− F ′1(v)F2(v) ,

G2(v) = F ′2(v)G1(v)−G′1(v)F2(v) .
(9b)

We here employ a simplified notation for the arising derivatives, which are
determined as Gâteaux derivatives generalising directional derivatives

H ′(v)w = lim
ε→0

1
ε

(
H(v + εw)−H(v)

)
, (10)

see also [18]. According to (5), the decisive operator is associated with a non-
linear evolution equation that comprises the time increment as parameter

d
dt ũ2(t) = β1F2

(
ũ2(t)

)
+ β2 τ

2G2

(
ũ2(t)

)
, t ∈ [tn, tn + τ ] ,

Eτ, β1F2+β2τ2G2

(
ũ2(tn)

)
= ũ2(tn + τ) , β1, β2 ∈ R .

(11)

Specification and implementation. In the subsequent sections, we com-
plete the remaining tasks. We first specify the iterated commutator (9b) for
the Gross–Pitaevskii equation (2) and contrast it to the result obtained for
the parabolic counterpart (3). Then, we deduce an invariance principle that
has a substantial impact on the efficiency of the modified operator splitting
method (9) when applied to the time-dependent Gross–Pitaevskii equation (2).
Implementation issues as well as strategies to reduce the computational cost
for parabolic equations are finally discussed in Section 5.

3 Iterated commutators

Generally speaking, the appropriate framework for the extension of iterated
commutators for matrices or linear operators, see (8), to nonlinear operators is
provided by the formal calculus of Lie-derivatives. In the present work, we con-
cretise and verify the heuristic characterisation (9) for relevant applications,
the time-dependent Gross–Pitaevskii equation (2) and the related parabolic
equation (3). In the context of Schrödinger equations, the arising functions
v, w : Ω → C take complex values, whereas it suffices to consider real-valued
functions v, w : Ω → R for parabolic problems. In both cases, suitable regu-
larity requirements apply. For notational simplicity, we omit the dependence
on the spatial variable.
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Derivatives. The Gâteaux derivatives of the linear differential and nonlinear
multiplication operators defined in (2) and (3) are given by

F1(v) = c∆v ,

F ′1(v)w = c∆w ,

F2(v) = c̄
(
V + ϑ |v|2

)
v = c̄

(
V v + ϑ v2 v̄

)
,

F ′2(v)w = c̄
(
V w + 2ϑ v̄ v w + ϑ v2w

)
,

see also (10).

First commutators. On the one hand, by performing differentiation twice,
we obtain

F ′1(v)F2(v)

= |c|2 ∆
(
V v + ϑ v2 v̄

)
= |c|2

(
∆V v + 2 (∇V )T ∇v + V∆v

)
+ |c|2 ϑ

(
2 ∆v v̄ v + ∆v̄ v2 + 2 (∇v)T ∇v v̄ + 4 (∇v)T ∇v̄ v

)
.

On the other hand, a simple replacement yields

F ′2(v)F1(v) = |c|2
(
V∆v + 2ϑ v̄ v∆v

)
+ c̄2 ϑ v2∆v̄ .

As a consequence, the difference is given by

G1(v) = F ′2(v)F1(v)− F ′1(v)F2(v)

= − |c|2
(
∆V v + 2 (∇V )T ∇v

)
+
(
c̄2 − |c|2

)
ϑ∆v̄ v2 − 2 |c|2 ϑ

(
(∇v)T ∇v v̄ + 2 (∇v)T ∇v̄ v

)
.

For the parabolic case (3) with c = 1 this implies

G1(v) = −∆V v − 2 (∇V )T ∇v − 6ϑ (∇v)T ∇v v ,

and the analogous result for the Schrödinger case (2) with c = i is

G1(v) = −∆V v − 2 (∇V )T ∇v − 2ϑ
(
∆v̄ v2 + (∇v)T ∇v v̄ + 2 (∇v)T ∇v̄ v

)
.

Iterated commutators. The iterated commutator associated with the
parabolic equation (3) results from straighforward but lengthy calculations

G2(v) = 2
(
(∇V )T (∇V ) + ϑ G̃2(v)

)
v ,

G̃2(v) = −∆V v2 + 6 (∇V )T (∇v) v + 6
(
V + 2ϑ v2

)
(∇v)T (∇v) ,

(12)
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and for the Gross–Pitaevskii equation (2), we instead arrive at

G2(v) = − 2 i
(

(∇V )T (∇V )− 2ϑ
(
G̃21(v) + ϑ G̃22(v)

))
v ,

G̃21(v) = |v|2 ∆V ,

G̃22(v) = |v|2
(
2<(v̄∆v) + 3 (∇v̄)T (∇v)

)
+ <

(
v̄2 (∇v)T (∇v)

)
.

(13)

For the special case of linear multiplication operators, i.e. ϑ = 0, we indeed
recover (8). It is also noteworthy that the operator in (13) involves ∆v and
hence implies stronger regularity requirements on v compared to the operator
in (12), which only comprises the gradient ∇v.

4 Invariance principle

In this section, we establish a fundamental result for the evolution operator

Eτ, β1F2+β2τ2G2
, τ, β1, β2 ∈ R ,

that has important implications concerning the efficient implementation of
the modified operator splitting method (9) for nonlinear Schrödinger equa-
tions such as (2), see also (11) and (13). Furthermore, it is connected with the
significance of the modified operator splitting method as a geometric integra-
tor, see [16,19] and references given therein. We point out that the invariance
principle, presented and applied in the context of (9), is a substantial extension
of the known result for standard splitting methods, retained for the special
choice β2 = 0.

Notation. With regard to a compact formulation as abstract evolution equa-
tion, we again omit the dependence of the potential and a regular complex-
valued function v : Ω→ C on the spatial variable. Besides, for accomplishing
relations of the form

F2(v) = c̄ f1(v) v , G2(v) = c̄ f2(v) v ,

it is convenient to introduce the abbreviations

f(v) = β1 f1(v) + β2 τ
2f2(v) ,

f1(v) = V + ϑ g1(v) , f2(v) = 2 (∇V )T (∇V )− 4ϑ g6(v) ,

g1(v) = |v|2 , g2(v) = <(v̄∆v) ,

g3(v) = (∇v̄)T (∇v) , g4(v) = <
(
v̄2 (∇v)T (∇v)

)
,

g5(v) = ϑ
(
2 g2(v) + 3 g3(v)

)
, g6(v) = g1(v)

(
∆V + g5(v)

)
+ ϑ g4(v) .

(14)

9



Theorem (Invariance principle). The solution to the subproblem


d
dt ψ(t) = − i f

(
ψ(t)

)
ψ(t) ,

ψ(0) = ψ0 , t ∈ [0, τ ] ,

with defining function introduced in (14) satisfies the invariance principle

f
(
ψ(t)

)
= f(ψ0) , t ∈ [0, τ ] .

Proof. In order to demonstrate that the invariance principle holds, we deter-
mine the Gâteaux derivatives of the defining functions

f ′(v)w = β1 f
′
1(v)w + β2 τ

2f ′2(v)w ,

f ′1(v)w = ϑ g′1(v)w , f ′2(v)w = − 4ϑ g′6(v)w ,

g′1(v)w = 2<(v̄ w) , g′2(v)w = <(∆v̄ w) + <(v̄∆w) ,

g′3(v)w = 2<
(
(∇v̄)T (∇w)

)
,

g′4(v)w = 2<
(
v̄ w (∇v)T (∇v)

)
+ 2<

(
v̄2 (∇v)T (∇w)

)
,

g′5(v)w = 2ϑ g′2(v)w + 3ϑ g′3(v)w ,

g′6(v)w =
(
∆V + g5(v)

)
g′1(v)w + g1(v) g′5(v)w + ϑ g′4(v)w ,

where suitable regularity requirements apply to v, w : Ω → C. Observing
that the potential V and the basic components g1, g2, g3, g4 define real-valued
functions, we have

(
gj(v)

)
(x) ∈ R , j ∈ {1, . . . , 6} ,(

fk(v)
)
(x) ∈ R , k ∈ {1, 2} ,

(
f(v)

)
(x) ∈ R , x ∈ Ω .

Evidently, this implies that the following composition vanishes

g′1(v)
(
i f(v) v

)
= 2<

(
i |v|2 f(v)

)
= 0 .

Certain contributions originating from the iterated commutator, however, re-
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quire a closer examination, namely

g′2(v)
(
i f(v) v

)
= <

(
i f(v)<

(
v̄∆v

))
+ <

(
i |v|2∆f(v)

)
+ 2<

(
i v̄
(
∇f(v)

)T
∇v

)
= 2<

(
i v̄
(
∇f(v)

)T
∇v

)
,

g′3(v)
(
i f(v) v

)
= 2<

(
i v
(
∇f(v)

)T
∇v̄

)
+ 2<

(
i f(v) (∇v̄)T ∇v

)
= 2<

(
i v
(
∇f(v)

)T
∇v̄

)
,

g′4(v)
(
i f(v) v

)
= − 2<

(
i f(v) v̄2 (∇v)T ∇v

)
+ 2<

(
i |v|2 v̄

(
∇f(v)

)T
∇v

)
+ 2<

(
i f(v) v̄2 (∇v)T ∇v

)
= 2<

(
i |v|2 v̄

(
∇f(v)

)T
∇v

)
.

On the basis of these identities, we conclude(
g1(v)

(
2 g′2(v) + 3 g′3(v)

)
+ g′4(v)

)) (
i f(v) v

)
= 12<

(
i |v|2

(
∇f(v)

)T
<
(
v̄∇v

))
= 0 .

This proves that any composition of the special form

f ′(v)
(
i f(v) v

)
= ϑ

(
β1 − 4 β2 τ

2
(
∆V + g5(v)

))
g′1(v)

(
i f(v) v

)
− 4ϑ2β2 τ

2
(
g1(v)

(
2 g′2(v) + 3 g′3(v)

)
+ g′4(v)

) (
i f(v) v

)
= 0

vanishes. As a consequence, the time-derivative of the decisive function is equal
to zero

d
dt f

(
ψ(t)

)
= f ′

(
ψ(t)

)
d
dt ψ(t) = − f ′

(
ψ(t)

) (
i f
(
ψ(t)

)
ψ(t)

)
= 0 , t ∈ [0, τ ] ,

and hence, the desired identity follows

f
(
ψ(t)

)
= f(ψ0) , t ∈ [0, τ ] .

Summary. For later use, we summarise the above considerations for the
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Gross–Pitaevskii equation (2). The realisation of the modified operator split-
ting method

ψn+1 =
(
Eτ, 1

6
F2
◦ Eτ, 1

2
F1
◦ Eτ, 2

3
F2− 1

72
τ2G2
◦ Eτ, 1

2
F1
◦ Eτ, 1

6
F2

)
ψn ,

n ∈ {0, 1, . . . , N − 1} ,

results in the numerical integration of the linear Schrödinger equation

d
dt ψ(t) = i∆ψ(t) , t ∈ [tn, tn + τ

2
] , Eτ, 1

2
F1

(
ψ(tn)

)
= ψ(tn + τ

2
) ,

and the evaluation of the solution representation

Eτ, β1F2+β2τ2G2
(ψ0) = e− i τ(β1f1(ψ0)+β2τ2f2(ψ0)) ψ0 , τ, β1, β2 ∈ R , (15)

which holds pointwise for any argument x ∈ Ω, see (14) for the definitions
of f1 and f2.

5 Numerical results

In the following, we illustrate the stability and global error behaviour of the
novel modified operator splitting method (9) for the time-dependent Gross–
Pitaevskii equation (2) and its parabolic analogue (3). The numerical tests,
performed in one, two, and three space dimensions, in particular confirm the
theoretical considerations of Sections 2 to 4. For the purpose of comparison, we
in addition include the corresponding results for widely-used standard splitting
methods.

Implementation. The practical realisation of standard operator splitting
methods such as (6) and of the modified operator splitting method (9), respec-
tively, requires the time integration of the subproblems involving the Laplacian
and the nonlinear multiplication operator. In our implementation, we make
use of fast Fourier techniques, which are based on the following considerations.

(i) Space grid. With regard to the employed Fourier spectral space dis-
cretisation, we replace the underlying unbounded domain by a Cartesian
product of sufficiently large intervals

a = 10 , x ∈ [− a, a]d ⊂ Ω ,

and choose the total number of equidistant spatial grid points according
to the dimension

d = 1 : M = 512 , d = 2 : M = 1282 , d = 3 : M = 643 .
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(ii) Derivatives. The iterated commutator arising in the modified operator
splitting method (9) for (2) and (3) involves the gradient ∇V and the
Laplacian ∆V of the space-dependent potential, which we may assume
to be known analytically. Otherwise, we employ the approach described
subsequently. The numerical computation of the spatial derivatives ∇v
and ∆v, where v represents the current value of the time-discrete solu-
tion, is traced back to a fast Fourier transform, pointwise multiplications,
and an inverse fast Fourier transform. Denoting by (Fm)m∈Zd the Fourier
functions with periodicity domain [− a, a]d, by (µm)m∈Zd the purely imag-
inary eigenvalues associated with the first spatial derivatives, and by
(λm)m∈Zd the corresponding real eigenvalues of the Laplace operator

Fm(x) = (2 a)−
d
2 e iπm1 (

x1
a

+1) · · · e iπmd (
xd
a

+1) ,

∇Fm = µmFm , µm = iπm
a
∈ Cd×1 ,

∆Fm = λmFm , λm = − π2|m|2
a2
∈ R ,

m = (m1, . . . ,md) ∈ Zd , x = (x1, . . . , xd) ∈ [− a, a]d ,

the following formal representations hold

v =
∑
m∈Zd

vmFm , vm =
∫

[− a,a]d
v(x)F−m(x) dx , m ∈ Zd ,

∇v =
∑
m∈Zd

µm vmFm , ∆v =
∑
m∈Zd

λm vmFm .

Their realisation relies on a suitable truncation of the infinite index set
M ⊂ Zd so that |M| = M and quadrature approximations by the
trapezoidal rule.

(iii) Linear subproblem. Formally, the solution to the linear subproblem is
given by a Fourier series

d
dt u1(t) = αF1

(
u(t)

)
= c α∆u1(t) , t ∈ [tn, tn + τ ] , α ∈ R ,

Eτ,αF1

(
u(tn)

)
= Eτ,αF1

( ∑
m∈Zd

u1,m(tn)Fm
)

=
∑
m∈Zd

e c α τλm u1,m(tn)Fm ,

see also (2), (3), and (5). Again, the application of fast Fourier techniques
permits the efficient computation of approximations to the spectral coef-
ficients and the evaluation of finite sums on the equidistant spatial grid
points covering the underlying domain

ũ1,m,n ≈ u1,m(tn) , m ∈M ,∑
m∈M

e c α τλm ũ1,m,nFm(x) , x ∈ [− a, a]d .

(iv) Nonlinear subproblem (Schrödinger equation). In the context of the
Gross–Pitaevskii equation (2), we make use of the fact that the solu-
tion to the nonlinear subproblem (11) satisfies the invariance principle
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deduced in Section 4. Consequently, it simply remains to evaluate the
representation (15) on the equidistant grid.

(v) Nonlinear subproblem (Parabolic equation). In the case of the parabolic
equation (3), we additionally apply an explicit Runge–Kutta method of
order four. Due to the stiffness of the problem, the time stepsize has to
be adjusted to the spatial grid width to ensure stability. Alternative ap-
proaches with improved stability properties and reduced computational
costs are detailed below.

Numerical results. In our numerical tests, we perform the time integration
of the Gross–Pitaevskii equation (2) and the parabolic equation (3), opposing
the nonlinear case with ϑ = 1 to the simplified linear case with ϑ = 0. We
prescribe the Gaussian-shaped initial state

u0(x) = e−
1
2

(x21+···+x2d) , x = (x1, . . . , xd) ∈ Rd ,

as well as the two polynomial potentials

V (x) = C0Cq
d∑
j=1

xqj ,

C2 = 1 , C4 = 1
24
, q ∈ {2, 4} , x = (x1, . . . , xd) ∈ Rd ,

for which the needed first- and second-order derivatives are known analytically.
For the special case of a quadratic potential with prefactor C0 ∈ {1,− 1}
chosen accordingly to the type of the equation and ϑ = 0, the knowledge of
the exact solution

u(x, t) = ed c̄ t u0(x) , (x, t) ∈ Rd × [0, T ] ,

permits the validation of the Fourier spectral space discretisation and the
time-splitting approach. In the general case, we instead determine a numerical
reference solution based on a refined time stepsize. The global errors of the
modified operator splitting method (9) at final time T = 1, measured in
a discrete L2-norm, are compared to those obtained by the standard Lie–
Trotter, Strang, and Yoshida splitting methods of non-stiff orders one, two,
and four, see also (6). The obtained results, displayed in Figures 1–4, confirm
the favourable behaviour of the modified operator splitting method.

Computational cost. In general, an expedient measure for the compu-
tational cost of the modified operator splitting method (9) for the Gross–
Pitaevskii equation (2) and the parabolic equation (3), respectively, is the
number of fast Fourier transforms and their inverses. Evidently, the numerical
solution of two linear subproblems per time step amounts to two fast Fourier
transforms and two inverse fast Fourier transforms. Besides, the time integra-
tion of the nonlinear subproblem requires the computation of space derivatives
via Fourier transforms.
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(i) For nonlinear Schrödinger equations such as (2), the validity of the in-
variance property permits to significantly reduce the cost related to the
evaluation of Eτ, 2

3
F2− 1

72
τ2G2

. Due to the fact that the spectral coefficients
of the current numerical solution v are available, the computation of
gradient ∇v and Laplacian ∆v results in d+1 inverse fast Fourier trans-
forms.

(ii) For the parabolic equation (3), a favourable approach is based on the
following considerations. The presence of the additional factor τ 2 in con-
nection with the double commutator permits to use an approximation
by means of the the second-oder Strang splitting method, that is

Eτ, 2
3
F2− 1

72
τ2G2
≈ E 1

2
τ, 2

3
F2
◦ Eτ,− 1

72
τ2G2
◦ E 1

2
τ, 2

3
F2
.

On the one hand, an explicit representation of the evolution operator
associated with the nonlinear ordinary differential equation

d
dt u(x, t) =

(
V (x) + ϑ |u(x, t)|2

)
u(x, t) , x ∈ Ω , t ∈ [0, τ ] ,

is known. On the other hand, for the time integration of the nonlinear
subproblem involving the double commutator, it suffices to apply the
first-order explicit Euler method. Numerical tests confirm the enhanced
stability, accuracy, and efficiency of the resulting approach, in particular,
in case of a fourth-order polynomial potential, see Figure 5.

6 Conclusions

In the present work, we have introduced a general framework for the generali-
sation of Chin’s fourth-order modified potential operator splitting method (7)
to nonlinear evolution equations. To the best of our knowledge, this matter is
novel and of major interest from theoretical and practical perspectives.

Moreover, we have specified the resulting fourth-order modified operator split-
ting method (9) for the time-dependent Gross–Pitaevskii equation (2) and its
parabolic counterpart (3). It seems likely that our approach and the drawn
conclusions also extend to Schrödinger equations involving nonlinear and pos-
sibly nonlocal terms of the form g(|Ψ(x, t)|) Ψ(x, t) .

Due to the fact that our numerical tests have confirmed the favourable per-
formance of the proposed fourth-order scheme in comparison with standard
real and complex splitting methods of order four, it is natural to extend our
considerations in various respects.

Proceeding our recent work [9] for linear evolution equations of parabolic and
Schrödinger type, we find it promising to design high-order modified opera-
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tor splitting methods for nonlinear evolution equations that are optimal with
regard to a preselected criterium such as efficiency. In contrast to the linear
case, we have to take into account the additional costs for the evaluation of
second iterated commutators and that higher-order iterated commutators will
not vanish, in general, see (8) as well as (12) and (13). Nonetheless, based on
the successful strategies for the efficient implementation of the fourth-order
scheme (9), it suggests itself to address an in-depth analysis of similarly struc-
tured modified operator splitting methods.

A desirable feature of the proposed fourth-order modified operator splitting
method is the positivity of the coefficients. Concerning the design of high-order
schemes, in light of contributions on the linear case, see for instance [3,13],
this will necessitate further deliberations on the appropriate format. Evidently,
positivity is intrinsically related to the issue of well-posedness and stability
for parabolic problems. Besides, it affects aliasing effects on truncated space
domains and the incorporation of artificial boundary conditions, which is of
particular interest in the context of nonlinear Schrödinger equations, see for
example [1] and references given therein.

Furthermore, we intend to carry out a rigorous convergence analysis of modi-
fied operator splitting methods applied to nonlinear evolution equations. We
point out that the study for the linear case [20] together with the formal
calculus of Lie-derivatives provides a guiding principle. However, as seen in
Section 3, the accomplishment for specific nonlinear evolution equations in-
volving unbounded operators requires careful calculations and investigations,
see also [31].
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Fig. 1. Time integration of the Gross–Pitaevskii equation (2) involving a quadratic
potential by standard splitting methods and the novel modified operator splitting
method. Global errors versus time stepsizes in space dimensions d ∈ {1, 2, 3}. Nonlin-
ear (ϑ = 1) versus simplified linear (ϑ = 0) case. Due to the validity of the invariance
principle, the application of an explicit Runge–Kutta method is not needed (RK0).
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Fig. 2. Time integration of the parabolic problem (3) involving a quadratic potential
by standard splitting methods and the novel modified operator splitting method.
Global errors versus time stepsizes in space dimensions d ∈ {1, 2, 3}. Nonlinear
(ϑ = 1) versus simplified linear (ϑ = 0) case. In order to resolve the nonlinear sub-
problem, a fourth-order explicit Runge–Kutta method is applied (RK4). Depending
on the stiffness of the equation, stability is ensured for sufficiently small time step-
sizes. For a naive implementation of the Yoshida splitting method with complex
coefficients, an order reduction is observed, see Appendix A.
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Fig. 3. Corresponding results for the time-dependent Gross–Pitaevskii equation (2)
involving a fourth-order polynomial potential.
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Fig. 4. Corresponding results for the parabolic problem (3) involving a fourth-order
polynomial potential.
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Fig. 5. Time integration of the one-dimensional parabolic equation (3) involving
a quadratic potential (left) or a fourth-order potential (right), respectively, by the
modified operator splitting method (9). Global errors versus time stepsizes. The orig-
inal approach is based on the application of an explicit fourth-order Runge–Kutta
method for the numerical solution of the nonlinear subproblem involving the dou-
ble commutator (cf. Eτ, 2

3
F2− 1

72
τ2G2

). Alternative approaches are based on the Strang
splitting method (cf. E 1

2
τ, 2

3
F2
◦ Eτ,− 1

72
τ2G2

◦ E 1
2
τ, 2

3
F2
). Here, a reduced number of (in-

verse) fast Fourier transforms is required and an improved accuracy is observed.
Furthermore, the knowledge of the exact solution to a component (cf. E 1

2
τ, 2

3
F2
) en-

hances the stability behaviour of the resulting time integration method for larger
time increments.
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A Appendix: Order reduction of complex splitting methods

In order to explain the observed order reduction for the complex splitting
method (6d), it suffices to study a nonlinear ordinary differential equation of
the form (1) with F1 = 0 and F2(u) = |u|2 u on a single subinterval of length
(0, τ). More precisely, we consider the nonlinear subproblems d

dt u(t) = F
(1)
2

(
u(t)

)
=
(
u(t)

)3
,

u(0) = u0 ∈ R , t ∈ (0, τ) ,


d
dt u(t) = F

(2)
2

(
u(t)

)
= |u(t)|2 u(t) ,

u(0) = u0 ∈ R , t ∈ (0, τ) ,

with coinciding real-valued solutions

E
τ,F

(1)
2

(u0) = u(τ) = E
τ,F

(2)
2

(u0) .

On the one hand, using the Taylor series expansion

u(τ) = u(0) + τ u′(0) + 1
2
τ 2 u′′(0) + 1

6
τ 3 u′′′(0) + 1

24
τ 4 u′′′′(0) +O

(
τ 5
)

in combination with the differential equation and derivatives thereof implies

u(τ) =
(

1 + τ u2
0 + 3

2
τ 2 u4

0 + 5
2
τ 3 u6

0 + 35
8
τ 4 u8

0

)
u0 +O

(
τ 5
)
.

As a consequence, for any real number b ∈ R, the relation

b ∈ R : u(b τ) =
(

1 + b τ u2
0 + 3

2
b2 τ 2 u4

0 + 5
2
b3 τ 3 u6

0 + 35
8
b4 τ 4 u8

0

)
u0 +O

(
τ 5
)

is valid. For complex numbers, however, the more general expansion

b, u0 ∈ C : E
τ,bF

(2)
2

(u0) =
(

1 + b τ |u0|2 +
(
b2 + 1

2
|b|2

)
τ 2 |u0|4

+
(
b3 + (7

6
b+ 1

3
b) |b|2

)
τ 3 |u0|6

+
(
b4 + 1

24
(46 b2 + 6 b

2
+ 29 |b|2) |b|2

)
τ 4 |u0|8

)
u0

+O
(
τ 5
)

is obtained by decomposing the solution and accordingly the defining function
into real and imaginary parts. In order to reproduce the approximation that
corresponds to the Yoshida splitting, we impose the basic symmetry and order
conditions

b4 = b1 , b3 = b2 , b1 + b2 + b3 + b4 = 1 ,

and then perform the fourfold composition

uSplitting(τ) =
(
E
τ,b1F

(2)
2
◦ E

τ,b2F
(2)
2
◦ E

τ,b2F
(2)
2
◦ E

τ,b1F
(2)
2

)
(u0) .
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Requiring this expansion to coincide with the expansion of the exact solution

uSplitting(τ)− u(τ) = C(u0)=(b1)
(
1−<(b1)

)
τ 3 +O

(
τ 4
)

leads to a condition that obviously contradicts the order conditions for split-
ting methods and explains the observation of local order three and global order
two. Similar arguments apply to evolution equations of Schrödinger type such
as the Gross–Pitaevskii equation. But, in this context, the invariance principle
permits to avoid the application of a fourth-order Runge–Kutta method to the
arising nonlinear subproblem

d
dt u(t) = F

(2)
2

(
u(t)

)
= − i |u(t)|2 u(t) , t ∈ (0, τ) .
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