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Abstract. The present work provides a comprehensive study of
symmetric-conjugate operator splitting methods for the time in-
tegration of linear evolution equations. The natural approach to
incorporate complex coefficients with non-negative real parts per-
mits the design of favourable high-order schemes that remain stable
in the context of parabolic problems. This sets aside the second-
order barrier for standard splitting methods with real coefficients
as well as the fourth-order barrier for modified splitting methods
involving double commutators. Relevant applications include non-
reversible systems and ground state computations for Schrödinger
equations based on the imaginary time propagation.
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1. Introduction

General scope. A wide range of mathematical models for dynamical
processes involves initial value problems for ordinary and partial dif-
ferential equations. Specifically designed space and time discretisation
methods are of major importance in view of their effective simula-
tion. Over the last decades, a variety of contributions has established
theoretical and numerical evidence that the class of operator splitting
methods leads to favourable time integration methods and addition-
ally preserves structural properties of linear and nonlinear evolution
equations.

General references. The monographs [27, 31] give comprehensive
overviews of applications in quantum physics. Expositions of approved
functional analytical frameworks within the scope of parabolic and
Schrödinger equations are found in [20, 26, 29, 32]. For detailed infor-
mation on splitting and composition methods, we refer to [24, 30, 35].
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Objectives. In the present work, we study symmetric-conjugate op-
erator splitting methods for evolution equations of parabolic type. The
imposed positivity conditions on the real parts of the complex coeffi-
cients are crucial to ensure stability for nonreversible systems. We pro-
vide theoretical results and numerical illustrations, which confirm the
reliability and efficiency of this class of time integration methods for rel-
evant model problems including parabolic counterparts of Schrödinger
equations.

We exemplify the general observation that the numerical evolution
operator associated with a symmetric-conjugate splitting method in-
herits the fundamental property of self-adjointness, in contrast to com-
plex splitting methods with a strict symmetry in the configuration of
their coefficients.

As main benefit, we identify the possibility to design high-order
schemes, which remain stable in the context of parabolic problems and
thus overcome the order barriers for splitting methods with real coeffi-
cients: on the one hand, the second-order barrier for standard splitting
methods, and, on the other hand, the fourth-order barrier for modified
splitting methods involving double commutators.

Related works. Our investigations are inspired by a series of works
on real and complex splitting methods as well as modified splitting
methods. As an excerpt, we mention [1, 3, 4, 5, 6, 16, 17, 18, 19, 21,
23, 25, 28, 33, 34, 36, 37, 40] and our former contributions [2, 7, 8, 9,
10, 12, 13, 14, 15, 38, 39], where further references are given.

Outline. The present work has the following structure. In Section 2,
we introduce operator splitting methods and give a brief summary
of fundamental concepts for their convergence analysis and practical
implementation. Moreover, we introduce a unifying formulation for
relevant model problems such as parabolic analogues of Schrödinger
equations. In Section 3, we demonstrate the benefits of symmetric-
conjugate splitting methods over symmetric splitting methods. For
this purpose, in order to reduce the amount of technicalities, it is use-
ful to employ the generally understandable setting of real symmetric
matrices. In Section 4, we extend our considerations to linear evo-
lutions equations of parabolic type. Important tools for a rigorous
stability and error analysis are provided by the theory of sectorial op-
erators and analytic semigroups. We exemplify our approach on the
basis of a third-order scheme and indicate the derivation of general re-
sults in the lines of [38, 39]. Further explanations on the construction
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of higher-order splitting methods by composition and numerical com-
parisons of symmetric-conjugate splitting methods with standard and
modified splitting methods are finally given in Section 5.

2. Fundamental concepts and model problems

Linear evolution equation. The starting point of our considerations
is the linear evolution equation

(1)

{
u′(t) = F

(
u(t)

)
= Au(t) +B u(t) , t ∈ [t0, T ] ,

u(t0) given .

Throughout, we denote by (X, ‖ · ‖X) the underlying Banach space
and assume that the domains of the operators A : D(A) ⊂ X → X
and B : D(B) ⊂ X → X have a non-empty intersection. Under the
presumption of suitably restricted domains, the commutator of linear
operators is defined by [

A,B
]

= AB −BA .

More generally, iterated commutators are determined recursively

ad `A(B) =

{
B , ` = 0 ,[
A, ad `−1

A (B)
]
, ` ∈ N≥1 .

Splitting approach. For simplicity, we restrict ourselves to uniform
time grids

(2a) tn = t0 + nh , n ∈ {0, 1, . . . , N} , h = T−t0
N

> 0 ,

defined by positive integer numbers N ∈ N≥1. As usual in a time-
stepping approach, our aim is to compute approximations to the exact
solution values through a recurrence relation of the form

(2b) un = S(F )
h (un−1) ≈ u(tn) = E (F )

h

(
u(tn−1)

)
, n ∈ {1, . . . , N} ,

where E (F ) and S(F ) represent the exact and numerical evolution oper-
ators, respectively.

Operator splitting methods rely on the idea to treat the subproblems
that arise from the natural decomposition in (1) separately and to
compose their solutions in a favourable manner. With regard to (2b),
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we consider a single subinterval and denote the evolution operators
associated with{

v′(t) = Au(t) , t ∈ [tn−1, tn] ,

v(tn−1) given , v(tn) = E (A)
h

(
v(tn−1)

)
,{

w′(t) = B w(t) , t ∈ [tn−1, tn] ,

w(tn−1) given , w(tn) = E (B)
h

(
w(tn−1)

)
,

by E (A) and E (B), respectively. Incorporating suitably chosen real or
more generally complex coefficients

(2c) aj, bj ∈ C , j ∈ {1, . . . , s} ,

splitting methods for (1) can be cast into the format (2b) with

(2d) S(F )
h = E (bsB)

h ◦ E (asA)
h ◦ · · · ◦ E (b1B)

h ◦ E (a1A)
h .

Throughout, we denote by p ∈ N the classical order of a splitting
method and tacitly assume that the coefficients of the considered
schemes fulfill the elementary consistency condition

(2e)
s∑
j=1

aj = 1 ,
s∑
j=1

bj = 1 .

On occasion, when the structural characteristics are essential, we use
the compact symbolic notation

(2f) S(F )
h = h

(
bs, as, . . . , b1, a1

)
.

Symmetric-conjugate methods. Henceforth, we primarily focus
on symmetric-conjugate operator splitting methods of the form

(3a)

s = 2 r , a1 = 0 ,

as+2−j = aj , j ∈ {2, . . . , r} , bs+1−j = bj , j ∈ {1, . . . , r} ,

S(F )
h = h

(
b1, a2, b2, . . . , ar, br, ar+1, br, ar, . . . , b2, a2, b1

)
,

and impose the positivity conditions

(3b)
aj ∈ C , <(aj) > 0 , j ∈ {2, . . . , r + 1} ,
bj ∈ C , <(bj) > 0 , j ∈ {1, . . . , r} ,

to ensure well-definedness and thus stability for evolution equations
of parabolic type. It is natural to contrast symmetric-conjugate with
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symmetric splitting methods

(4)

s = 2 r , a1 = 0 ,

as+2−j = aj , j ∈ {2, . . . , r} , bs+1−j = bj , j ∈ {1, . . . , r} ,

S(F )
h = h

(
b1, a2, b2, . . . , ar, br, ar+1, br, ar, . . . , b2, a2, b1

)
.

The different behaviour exhibited by both classes of splitting methods
and the particularly favourable performance of symmetric-conjugate
schemes in the long-time integration of linear ordinary differential equa-
tions that are defined by real symmetric matrices deserves a detailed
analysis, which is carried out in this work.

Elementary splitting methods. As elementary instances, we in-
troduce the famous Lie–Trotter and Strang splitting methods and a
third-order symmetric-conjugate splitting method. We recall that the
positive integers s ∈ N≥1 and p ∈ N≥1 denote the number of stages and
the classical order of a splitting method (2).
(i) The simplest first-order scheme

p = 1 , s = 1 , a1 = 1 , b1 = 1 ,

S(F )
h = E (B)

h ◦ E (A)
h ≈ E (F )

h ,

is known as Lie–Trotter splitting method. Evidently, it fulfils
the positivity condition a1, b1 > 0, but it does not fit into the
classes (3) or (4), respectively.

(ii) The second-order Strang splitting method, which comprises two
stages and the symmetric composition

(5)
p = 2 , s = 2 , a1 = 0 , a2 = 1 , b1 = 1

2
= b2 ,

S(F )
h = E ( 1

2
B)

h ◦ E (A)
h ◦ E ( 1

2
B)

h ≈ E (F )
h ,

is contained in both classes (3) and (4) with r = 1.
(iii) The simplest symmetric-conjugate splitting method of order three

p = 3 , s = 3 , a1 = 0 , a2 = 1
2

(
1 + i 1√

3

)
, b1 = 1

2
a2 , b2 = 1

2
,

S(F )
h = E (b1B)

h ◦ E (a2A)
h ◦ E (b2B)

h ◦ E (a2A)
h ◦ E (b1B)

h ≈ E (F )
h ,

was proposed in [3]. Alternatively, it is retained as a special double
jump composition of the Strang splitting method

S(F )
h = S(F,Strang)

a2 h
◦ S(F, Strang)

a2 h
= h

(
1
2
a2, a2,

1
2

(a2 + a2), a2,
1
2
a2

)
.
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Higher-order splitting methods. In our numerical tests, detailed
in Section 5, we compare higher-order standard and modified oper-
ator splitting methods involving real coefficients with complex sym-
metric and symmetric-conjugate splitting methods, see Figure 1. For
the convenience of the readers, we display the method coefficients of
the symmetric-conjugate schemes with corresponding denominations
in Figures 5 and 6. Besides, a link to a Matlab code is provided in
Section 5.

A fourth-order symmetric scheme by Yoshida [40] comprises nega-
tive coefficients, wherefore instabilities arise for evolution equations of
parabolic type, see (27a). Its complex analogue given in (27b) leads
to a stable alternative. A non-standard scheme is Chin’s fourth-order
modified potential operator splitting method [18] involving positive co-
efficients and double commutators, see also [14, 15].

Moreover, we apply different complex symmetric and symmetric-
conjugate splitting methods, which satisfy the stability condition that
all coefficients have non-negative real parts. Optimised symmetric
schemes of order four and a symmetric scheme of order six are found
in [10].1 Amongst the symmetric-conjugate splitting methods, we high-
light a sixth-order scheme with 12 stages recently proposed in [7] for
linear unitary problems. It sets aside the second- and fourth-order bar-
riers for standard and modified splitting methods, see [1, 8, 36, 37, 21]
and references given therein. We point out that this scheme is charac-
terised by positive coefficients aj > 0 for j ∈ {2, . . . , 16}. Consequently,
it is suitable for the time integration of different classes of evolution
equations including parabolic as well as Schrödinger equations, see (6)
as well as (7) below and Table 1.

Model problems. As prototype models for linear evolution equations
of parabolic type, we study partial differential equations that involve
the Laplacian and a potential. This kind of nonreversible systems in
particular arises in ground and excited state computations based on
the imaginary time propagation, see [27, 31] for detailed information
on the theoretical foundations.

In the following, we denote by Ω ⊆ Rd the underlying space domain,
by ∆ = ∂2

x1
+· · ·+∂2

xd
the Laplacian with respect to the spatial variables

x = (x1, . . . , xd) ∈ Ω, and by V : Ω→ R a space-dependent real-valued
potential acting as multiplication operator. For notational simplicity,
we omit scaling constants and signs, unless they are significant with
regard to classifications as parabolic or Schrödinger equations.

1See also www.gicas.uji.es/Research/splitting-complex.html.



SYMMETRIC-CONJUGATE SPLITTING METHODS 7

As a test problem, we consider the linear parabolic problem

(6)

{
∂tU(x, t) = 1

2
∆U(x, t)− V (x)U(x, t) ,

U(x, t0) given , (x, t) ∈ Ω× [t0, T ] ,

for a real-valued solution U : Ω × [t0, T ] → R. This special choice is
justified by the imaginary time propagation of the linear Schrödinger
equation

(7)

{
i ∂tΨ(x, t) = − 1

2
∆Ψ(x, t) + V (x) Ψ(x, t) ,

Ψ(x, t0) given , (x, t) ∈ Ω× [t0, T ] ,

with complex-valued wave function Ψ : Ω × [t0, T ] → C, see Section 5
for further explanations.

Evidently, the above model problems (6) and (7) can be cast into
the unifying formulation

(8a)

{
∂tU(x, t) = α∆U(x, t) + β V (x)U(x, t) ,

U(x, t0) given , (x, t) ∈ Ω× [t0, T ] ,

with α , β ∈ C denoting certain constants and U : Ω× [t0, T ]→ C the
solution. Specifically, we chose the arising quantities as

α = 1
2
, β = − 1 ,(8b)

α = 1
2

i , β = − i .(8c)

Additional scaling constants and signs that are insignificant with re-
gard to classifications as parabolic or Schrödinger equations are again
neglected.

Practicable presumptions. In this work, we are primarily in-
terested in the time integration of parabolic initial-boundary value
problems by high-order operator splitting methods. Hence, to ensure
that the nonstiff orders of convergence are retained in our numerical
comparisons, we restrict ourselves to situations, where the problem
data satisfy suitable regularity and consistency requirements. Other-
wise, even though well-tailored higher-order schemes are generally more
favourable than lower-order schemes, we have to expect substantial or-
der reductions.

Furthermore, to implement the physically relevant and numerically
challenging case of three space dimensions by means of Fourier spectral
space discretisations, we simplify the general setting in this respect.
Specifically, we presume that it is appropriate to replace the underlying
space domain with a Cartesian product of sufficiently large intervals

(9a) Ω = [− a, a]d , a > 0 , d ∈ {1, 2, 3} ,
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and prescribe Gaussian-like initial states

(9b) U(x, t0) = c1 e− c2 |x−c3|
2

, x = (x1, . . . , xd) ∈ Ω ,

which fulfil intrinsic periodicity conditions on Ω with high accuracy.
In the following, we sketch the employed means that permit efficient

implementations of operator splitting methods for the model prob-
lem (8a) by fast Fourier techniques. For detailed descriptions, we refer
the readers to our former works [14, 15].

Fourier series representations. We denote by (Fm)m∈Zd the
Fourier functions with periodicity domain (9a) and by (λm)m∈Zd the
corresponding real eigenvalues of the Laplace operator

(9c)

Fm(x) = (2 a)−
d
2 e iπm1 (

x1
a

+1) · · · e iπmd (
xd
a

+1) ,

∆Fm = λmFm , λm = − π2|m|2
a2
∈ R ,

x = (x1, . . . , xd) ∈ Ω , m = (m1, . . . ,md) ∈ Zd .

Realisations of representations by Fourier series

(9d)

v =
∑
m∈Zd

vmFm , ∆v =
∑
m∈Zd

λm vmFm ,

vm =

∫
[− a,a]d

v(x)F−m(x) dx , m ∈ Zd ,

are based on suitable truncations of the infinite index sets M ⊂ Zd
such that |M| = M ∈ N as well as quadrature approximations by the
trapezoidal rule.

Stiff and nonstiff subproblems. We rewrite the partial differential
equation in (8a) as abstract evolution equation of the form (1) with
u(t) = U(·, t) for t ∈ [t0, T ]. We employ the natural decomposition
into a stiff and a nonstiff partial differential equation{

∂tU(x, t) = α∆U(x, t) ,

∂tU(x, t) = β V (x)U(x, t) .

Here, it should be noted that the considered Fourier spectral space
discretisation affects the definition of the operators.

Accordingly, we assign the first unbounded linear operator with the
Laplacian

(10a) A = α∆ , α ∈ R , α > 0 .
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For any complex coefficient a ∈ C with non-negative real part <(a) ≥ 0,
it is ensured that the corresponding subproblem

(10b)

v
′(t) = aA v(t) , t ∈ [tn−1, tn] ,

v(tn−1) =
∑
m∈Zd

vm(tn−1)Fm given ,

is well-posed and its solution formally given by the Fourier series rep-
resentation

(10c) v(tn) = E (aA)
h v(tn−1) =

∑
m∈Zd

e a hαλm vm(tn−1)Fm ,

see also (9).
The second nonstiff subproblem is defined by the potential, which

acts as a multiplication operator, and resolved by pointwise products.

Evolution equations of Schrödinger type. It is instructive to
observe that linear Schrödinger equations (7) are included in (8a), see
also (8c). For this reason, we may expect that the convergence analysis
provided in [38, 39] for Fourier spectral space discretisations combined
with high-order operator splitting methods based on real coefficients
can be transferred to evolution equations of parabolic type and com-
plex symmetric-conjugate splitting methods satisfying a positivity con-
dition. For the convenience of the readers, we next recall fundamental
notions and concepts.

Local and global errors. We employ a standard argument based on
the telescopic identity to conclude that the validity of stability bounds
combined with local error expansions implies global error estimates of
the form∥∥un − u(tn)

∥∥
X
≤ C

(∥∥u0 − u(t0)
∥∥
X

+ hp
)
, n ∈ {1, . . . , N} .

This fundamental principle serves as guide line for our convergence
analysis of operator splitting methods applied to evolution equations
of parabolic type.

The general approach is most comprehensible within the context of
evolution equations that are defined by bounded linear operators

u′(t) = F
(
u(t)

)
= (A+B)u(t) , t ∈ [t0, T ] , A,B : X −→ X ,

since then the exact and splitting solutions can be represented by ex-
ponential series

E (F )
h = eh (A+B) , S(F )

h = e bshB e ashA · · · e b1hB e a1hA ,
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and thus stability bounds follow at once from∥∥E (F )
h

∥∥
X←X ≤ eCh ,

∥∥S(F )
h

∥∥
X←X ≤ eCh ,

C = max

{
‖A‖X←X + ‖B‖X←X ,

s∑
j=1

(
|aj|‖A‖X←X + |bj|‖B‖X←X

)}
.

Provided that the coefficients satisfy certain order conditions such that
the local error expansion

L(F )
h = S(F )

h − E (F )
h = O

(
hp+1

)
holds, the desired global error estimate follows by means of the relations

un − u(tn) =
(
S(F )
h

)n (
u0 − u(t0)

)
+

n−1∑
k=0

(
S(F )
h

)n−1−kL(F )
h

(
E (F )
h

)k
u(t0) ,

∥∥un − u(tn)
∥∥
X
≤ eCtn

(∥∥u0 − u(t0)
∥∥
X

+ n
∥∥L(F )

h

∥∥
X←X

∥∥u(t0)
∥∥
X

)
,

n ∈ {1, . . . , N} .

3. Symmetric-conjugate versus symmetric methods

Structural properties of complex splitting methods. In this
section, we contrast the favourable properties of symmetric-conjugate
splitting methods comprising complex coefficients with those of sym-
metric splitting methods. Essential ingredients are series expansions
that characterise local errors and the spectral theorem. The construc-
tion of higher-order schemes by composition and numerical illustrations
are described in Section 5.

Restrictions and generalisations. We point out that our current
analysis based on infinite series expansions is powerful regarding the
treatment of high-order splitting methods, but it also has some restric-
tions.

Our main conclusions concerning the accumulation of inaccurate
imaginary parts rely on the assumption that the defining operators
correspond to real symmetric matrices.

To a certain extent, our setting is associated with spatial semi-
discretisations of partial differential equations, but it should be noted
that the constants CA, CB in (11) below increase when the space grids
are refined. Furthermore, for parabolic evolution equations, the in-
verses of E and S in (12) below are not well-defined, since they involve
evaluations at negative times, e.g.(

E(t)
)−1

= E(− t) , t ∈ (0, T − t0] .
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A rigorous analysis relies on suitable adaptations of the arguments and
requires specifications of the employed expansions and arising remain-
ders. Appropriate generalisations of solution representations to un-
bounded self-adjoint operators, specifically to the Laplacian and mul-
tiplication operators defined by real-valued potentials, are discussed in
Section 4.

Simplified setting of matrices. We consider the initial value prob-
lem for a linear ordinary differential equation

(11a)

{
u′(t) = F

(
u(t)

)
= Au(t) +B u(t) , t ∈ [t0, T ] ,

u(t0) ∈ RM given ,

under the additional assumption that the defining matrices are real and
symmetric

(11b)
A ∈ RM×M , ‖A‖ ≤ CA , A∗ = AT = A ,

B ∈ RM×M , ‖B‖ ≤ CB , B∗ = BT = B .

The exact and numerical evolution operators

(12)
Et = E(t) = e t (A+B) ∈ RM×M ,

St = S(t) = e bs tB e as t A · · · e b1 tB e a1 t A ∈ CM×M ,

t ∈ [0, T − t0] ,

are given by exponential series, that is

e t L =
∞∑
`=0

1
`!
t`L` ,

∥∥e t L
∥∥ ≤ e |t| ‖L‖ , t ∈ R .

We note that a splitting method involving complex coefficients yields
complex-valued approximations to the real-valued solution and recall
the consistency condition (2e) ensuring order p ∈ N≥1. For the ease of
notation, we only indicate the dependence on the time increment.

Series representations. In the context of matrices, we may use
formal infinite series expansions of decisive components to deduce sub-
stantive results for splitting methods with complex coefficients.

On the one hand, the exact evolution operator

E(t) = e t (A+B) , t ∈ [0, T − t0] ,

satisfies the initial value problem{
E ′(t) = (A+B) E(t) , t ∈ [0, T − t0] ,

E(0) = I ,
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where I ∈ RM×M denotes the identity matrix.
On the other hand, we make use of the fact that the evolution oper-

ator associated with a splitting method is given as the exponential of
a time-dependent operator

(13) S(t) = e Ω(t) = e tH(t) , t ∈ [0, T − t0] ,

and fulfills a related nonautonomous linear differential equation{
S ′(t) = G(t)S(t) , t ∈ [0, T − t0] ,

S(0) = I ,

where formally G = S ′ S−1 as well as Ω′ = (exp(adΩ) − I)−1 adΩ G.
Important findings are that statements on the difference H − (A+B)
allow to draw conclusions on G− (A+B) and hence on S − E .

More precisely, formal representations ofH−(A+B) as infinite series
can be found by applying recursively the Baker–Campbell–Hausdorff
formula to the numerical evolution operator (12). Considering the Lie
algebra L(A,B) generated by {A,B} with the commutator

[A,B] = AB −BA
as Lie bracket and denoting by L`(A,B) the homogeneous subspace of
degree ` ∈ N≥2 with kth basis element E`k(A,B) for k ∈ K`, e.g.

E21(A,B) = [A,B] , K2 = {1} ,
E31(A,B) =

[
A, [A,B]

]
, E32(A,B) =

[
B, [A,B]

]
, K3 = {1, 2} .

we obtain the formal series expansion

(14) H(t) = A+B+
∞∑
`=2

t`−1
∑
k∈K`

e`k(a, b)E`k(A,B) , t ∈ [0, T − t0] ,

where e`k(a, b) represents a polynomial of degree k with respect to the
complex coefficients (aj, bj)

s
j=1.

Particular structures of symmetric-conjugate schemes. The
above formal representation (14) is valid for arbitrary real matrices
A,B ∈ RM×M and splitting methods with complex coefficients. Pro-
vided that A and B are symmetric and the considered splitting methods
are symmetric-conjugate, it turns out thatH has a particular structure.

We henceforth fix the time increment h = T−t0
N

for some positive
integerN ∈ N≥1 and use again the convenient notation Eh = E(h), Sh =
S(h), andHh = H(h). For brevity, we do not indicate the dependencies
on the defining operators E`k = E`k(A,B) and the splitting coefficients
e`k = e`k(a, b).
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Evidently, the properties real and symmetric are inherited by the
exact evolution operator

Eh = ETh ∈ RM×M .

Moreover, for symmetric-conjugate splitting methods, we conclude that

(15) Sh = S∗h ∈ CM×M , Hh = H∗h ∈ CM×M ,

see also (3) and (11). Note, however, that this is in general not true for
symmetric splitting methods. Observing that the iterated commutators
of real symmetric matrices satisfy the relations

ET
`k = (−1)`+1E`k , k ∈ K` , ` ∈ N≥2 ,

e.g. ET
21 = [A,B]T = BA − AB = −E21, the difference of the formal

series expansion (14) and its adjoint

0 = Hh −H∗h =
∞∑
`=2

h`−1
∑
k∈K`

(
e`k E`k − e`k ET

`k

)
=
∞∑
`=2

h`−1
∑
k∈K`

((
1 + (−1)`

)
<(e`k) + i

(
1 + (−1)`+1

)
=(e`k)

)
E`k ,

imply that the arising coefficients are either real or purely imaginary
quantities{

e`k = r`k , ` odd ,
e`k = i r`k , ` even ,

r`k ∈ R , k ∈ K` , ` ∈ N≥2 .

In consequence, we obtain a decomposition of the complex matrix Hh

into real symmetric and skew-symmetric contributions

(16)

Hh = A+B +H
(R,sym)
h + iH

(R,skew)
h ,

H
(R,sym)
h =

∞∑
`=3
` odd

h`−1
∑
k∈K`

r`k E`k ∈ RM×M ,

H
(R,sym)
h =

(
H

(R,sym)
h

)T
,

H
(R,skew)
h =

∞∑
`=2
` even

h`−1
∑
k∈K`

r`k E`k ∈ RM×M ,

H
(R,skew)
h = −

(
H

(R,skew)
h

)T
.

Errors in imaginary parts. The subsequent considerations will ex-
plain the favourable behaviour of symmetric-conjugate splitting meth-
ods in comparison with symmetric splitting methods for linear ordinary
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differential equations that are defined by real symmetric matrices. We
first restate the above decomposition (16) in terms of local errors and
next analyse the accumulation of errors over time.
(i) A splitting method has order p ∈ N≥1, i.e. Sh − E = O(hp+1),

if Hh − (A + B) = O(hp). Specifically, if a symmetric-conjugate
operator is of even order p ∈ N≥2, then

H
(R,sym)
h = O

(
hp
)
, H

(R,skew)
h = O

(
hp+1

)
.

Otherwise, if it is of odd order p ∈ N≥1, then

H
(R,sym)
h = O

(
hp+1

)
, H

(R,skew)
h = O

(
hp
)
.

(ii) By means of the spectral theorem applied to the self-adjoint ma-
trix Hh = H∗h ∈ CM×M , see (15), we conclude that there ex-
ist a unitary matrix Uh ∈ CM×M and a real diagonal matrix
Dh ∈ RM×M such that

Hh = UhDh U
∗
h .

Notice that evaluation at h = 0 implies that the corresponding
transformation matrix is real

A+B = H0 = U0D0 U
T
0 , U0 ∈ RM×M .

Due to Hh = O(hp), the matrices depend smoothly on the time
increment

Uh = U0 +O
(
hp
)
, Dh = D0 +O

(
hp
)
.

In particular, the errors in the imaginary parts fulfill

=(Uh) = O
(
hp
)
.

In consequence, we obtain the following identities for the exact
and numerical evolution operators and multiple compositions

(17)

Eh = eh (A+B) = U0 ehD0 UT
0 ,

Enh =
(
U0 ehD0 UT

0

)n
= U0 enhD0 UT

0 ,

Sh = ehHh = Uh ehDh U∗h ,

Snh =
(
Uh ehDh U∗h

)n
= Uh enhDh U∗h ,

n ∈ {0, 1, . . . , N} .

As enhDh is uniformly bounded with respect to the time incre-
ment h and the number of time steps, we finally conclude that
the relation

(18) Snh = U0 enhDh UT
0 +O

(
hp
)
, n ∈ {0, 1, . . . , N} ,
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is valid, where the implicit constant in theO term does not depend
on n.

Conclusions. The identity in (18) has several remarkable conse-
quences, which we confirm and complement by numerical illustrations
for model problems with real-valued solutions in Section 5.
(i) When applied to the initial value problem

(19)

{
u′(t) = (A+B)u(t) , t ∈ [t0, T ] ,

u(t0) = u0 ,

with time increment h = T−t0
N

, any symmetric-conjugate splitting
method of order p ∈ N≥1 is conjugate to the exact solution to the
initial value problem{

v′(t) = Dh v(t) , t ∈ [t0, T ] ,

v(t0) = u0 ,

where the real diagonal matrix Dh = D0 +O(hp) is a perturbation
of the same order of the matrix diagonalising the real symmetric
matrix A+B, see (3) and (11).

(ii) The numerical approximation to the real-valued solution has an
imaginary part of the same order p, when p is odd, or of order
p+ 1, when p is even, respectively, see also Table 2.

(iii) This error does not accumulate, and, hence, it does not affect
the global performance. More precisely, for symmetric-conjugate
splitting methods, the relative errors in the imaginary part

‖=(un)‖
‖un‖

, un = Snhu0 , n ∈ {0, 1, . . . , N} .

remain bounded over time, since they are only due to the trans-
formation by Uh = U0 + O(hp). For a comparison of fourth-
order symmetric-conjugate versus symmetric splitting methods
in a long-term integration for a linear parabolic equation under
a quartic potential related to the ground state computation by
the imaginary time propagation, we refer to Figure 2. We there
mirror the errors in the imaginary parts and the ground state
energy.

Altogether, we conclude that symmetric-conjugate splitting methods
are particularly favourable for the numerical approximation of linear
ordinary differential equations that are defined by real symmetric ma-
trices (11). The incorporation of complex coefficients requires the use
of complex arithmetics and increases the computational effort, but it
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permits the design of high-order schemes, that satisfy the stability con-
dition (3) and thus overcome the second-order and fourth-order barriers
for standard and modified splitting methods. The generalisation of our
findings to evolution equations involving unbounded operators is dis-
cussed and illustrated in Sections 4 and 5.

4. Convergence analysis of splitting methods

Guide line. In order to deduce global error estimates for high-order
operator splitting methods involving complex coefficients in the context
of parabolic partial differential equations, we reconsider the conver-
gence analysis provided in [38, 39] for standard real splitting methods
applied to Schrödinger equations.

For this purpose, it is helpful to recognise similarities and distinc-
tions between the problem and method classes. Our main tasks are to
examine potential stability issues of complex splitting methods and to
review the approaches for local error expansions, detailed in [38, 39],
in the spirit of Section 3. In essence, due to the fact that infinite se-
ries expansions of the operators in (13) characterising the numerical
evolution operators are questionable in the context of unbounded self-
adjoint operators, we reinterpret the relations in (17) obtained from
the spectral theorem as

E (F )
h = U0Eh U

∗
0 ,

(
E (F )
h

)n
= U0E

n
h U

∗
0 ,

S(F )
h = Uh Sh U

∗
h ,

(
S(F )
h

)n
= Uh S

n
h U

∗
h ,

n ∈ {0, 1, . . . , N} ,

and deduce appropriate stepwise expansions of E (F )
h and S(F )

h that per-
mit conclusions on Sh − Eh and Uh − U0. Evidently, the stability be-
haviour of the splitting method is determined by the spectral properties
of the numerical evolution operator reflected in Sh. Further consider-
ations on the accumulation of inaccurate imaginary parts are valid for
problems with real-valued solutions.

We comment on two appropriate analytical frameworks for parabolic
problems. More generally, for the analysis of abstract evolution equa-
tions, we employ the analytical framework of sectorial operators on
Banach spaces. More concretely, a convergence analysis of space-time
discretisations relies on the Fourier spectral theory and the Hilbert
space of square-integrable functions.

We here refrain from a detailed repetition of the theoretical settings
and instead refer to the standard monographs [20, 26, 29, 32]. Brief
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descriptions of the powerful theory of sectorial operators generating an-
alytic semigroups and applications to nonautonomous as well as quasi-
linear parabolic problems are also found in our former works [11, 22].

Fundamental means. In the following, we exemplify our approach
for the derivation of suitable stability and local error bounds in the
context of the Laplacian and self-adjoint operators, respectively. Fun-
damental means for stepwise expansions of the exact and numerical
evolution operators, which ensure the specification of the arising re-
mainders, are provided by the variation-of-constants formula and Tay-
lor series expansions. The characterisation of the resulting regularity
requirements is linked to the identification of iterated commutators.

Stability bounds. Regarding the stability analysis of complex oper-
ator splitting methods for the parabolic model problem (8a), it is ex-
pedient to reconsider the decisive linear subproblem (10) involving the
Laplacian and complex coefficients. As extensions to higher dimensions
are straightforward, it suffices to study a single space dimension and
to normalise the underlying bounded domain Ω = [− π, π]. Conversely,
in view of the general concept of sectorial operators with spectrum
contained in a sector of the complex plane, we additionally include a
first-order derivative

aA = a
(
α1 ∂xx + α2 ∂x + α3 I

)
, a ∈ C , α1, α2, α3 ∈ R .

A natural choice for the underlying function space is provided by the
Lebesgue space of complex-valued square-integrable functions, endowed
with the standard inner product and the induced norm

(
L2(Ω,C), ‖ · ‖L2

)
.

A complete orthonormal system of this Hilbert space is given by the
family of Fourier functions (Fm)m∈Z, which forms a set of eigenfunc-
tions such that

aAFm = a
(
− α1m

2 + iα2m+ α3

)
Fm ,

a ∈ C , α1, α2, α3 ∈ R , m ∈ Z .
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As a consequence, by Fourier series representations and Parseval’s iden-
tity, we obtain the relations

v(tn−1) =
∑
m∈Z

vm(tn−1)Fm ,

E (aA)
h v(tn−1) = e aα3 h

∑
m∈Z

e− (aα1m−i aα2)mh vm(tn−1)Fm ,∥∥v(tn−1)
∥∥2

L2 =
∑
m∈Z

∣∣vm(tn−1)
∣∣2 ,

∥∥E (aA)
h v(tn−1)

∥∥2

L2 = e 2<(a)α3 h
∑
m∈Z

e− 2 (<(a)α1m+=(a)α2)mh
∣∣vm(tn−1)

∣∣2 .
This implies that the decisive condition on a symmetric-conjugate split-
ting method (3) to ensure stability in the context of parabolic equations
where α1 > 0 is

(20) <(aj) > 0 , j ∈ {2, . . . , s} .

For the parabolic model problem (8a), all splitting methods listed in
Figure 1 remain stable, except the real Yoshida splitting method com-
prising the negative coefficient a3 < 0. For a summary, see Table 1.

Local error expansions. We study initial value problems for linear
evolution equations{

u′(t) = F
(
u(t)

)
= (A+B)u(t) , t ∈ [t0, T ] ,

u(t0) given ,

which are defined by two unbounded self-adjoint operators

A : D(A) ⊆ X → X , A∗ = A , B : D(B) ⊆ X → X , B∗ = B .

A usual compact notation of the exact evolution and related operators
is based on the exponential

u(t0 + h) = E (F )
h u(t0) , E (F )

h = eh (A+B) ,

E (A)
h = ehA , E (B)

h = ehB .

In order to illustrate the general procedure for high-order operator
splitting methods, we consider a scheme of nonstiff order p involving
four stages. We meanwhile use the general form

s = 4 : u1 = S(F )
h u0 , S(F )

h = eBs eAs · · · eB1 eA1 ,

Aj = h aj A , Bj = h bj B , j ∈ {1, . . . , s} .
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(i) The derivation of appropriate expansion of the exact evolution op-
erators is based on a repeated application of the linear variation-
of-constants formula

u(t) = e (t−t0)A u(t0) +

∫ t

t0

e (t−τ)AB u(τ) dτ , t ∈ [t0, T ] .

Under certain restrictions on the underlying domain or regular-
ity requirements on the initial states, respectively, the resulting
representations

(21) E (F )
h = eh (A+B) =

p∑
k=0

E (F,k)
h +O

(
hp+1

)
with dominant terms given by iterated integrals such as

E (F, 0)
h = ehA ,

E (F, 1)
h =

∫ h

0

e (h−τ1)AB e τ1 A dτ1 ,

E (F, 2)
h =

∫ h

0

∫ τ1

0

e (h−τ1)AB e (τ1−τ2)AB e τ2 A dτ2 dτ1 ,

are well-defined. Detailed calculations and explanations, valid for
the general case, are found in [38].

(ii) For the operators arising in (21), the property of self-adjointness
is confirmed by suitable transformations of the underlying integral
domains. Using for instance the equivalent relations

(τ1, τ2) ∈ [0, h]× [0, τ1] , (τ2, τ1) ∈ [0, h]× [τ2, h] ,

σ2 = h− τ1 ∈ [0, h− τ2] , σ1 = h− τ2 ∈ [0, h] ,

we observe that the second-order contribution is self-adjoint

E (F, 2)
h =

∫ h

0

∫ τ1

0

e (h−τ1)AB e (τ1−τ2)AB e τ2 A dτ2 dτ1

=

∫ h

0

∫ h

τ2

e (h−τ1)AB e (τ1−τ2)AB e τ2 A dτ1 dτ2

=

∫ h

0

∫ σ1

0

eσ2 AB e (σ1−σ2)AB e (h−σ1)A dσ2 dσ1 =
(
E (F, 2)
h

)∗
.

(iii) As in the matrix case, it is evident that the numerical evolution
operators associated with symmetric-conjugate splitting methods
preserves self-adjointness. For instance, we have

(22)
a1 = 0 , a2 = a4 , a3 = a3 , b1 = b4 , b2 = b3 ,

A1 = 0 , A∗2 = A4 , A∗3 = A3 , B∗1 = B4 , B∗2 = B3 .
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(iv) For the numerical evolution operators, the derivation of appro-
priate representations that resemble (21) are obtained by Taylor
series expansions of the evolution operators associated with the
second subproblem. This is done step-by-step such that the re-
mainders reflect the regularity requirements. For detailed calcu-
lations and explanations, we again refer to [38]. In the case of the
above stated example, this yields a relation of the form

(23) S(F )
h = eB4 eA4 eB3 eA3 eB2 eA2 eB1 eA1 =

p∑
k=0

S(F,k)
h +O

(
hp+1

)
,

where the leading contributions are given by

S(F,0)
h = eA4+A3+A2+A1 ,

S(F,1)
h = B4 eA4+A3+A2+A1 + eA4 B3 eA3+A2+A1

+ eA4+A3 B2 eA2+A1 + eA4+A3+A2 B1 eA1 ,

S(F,2)
h = 1

2
B2

4 eA4+A3+A2+A1 +B4 eA4 B3 eA3+A2+A1

+B4 eA4+A3 B2 eA2+A1 +B4 eA4+A3+A2 B1 eA1

+ 1
2

eA4 B2
3 eA3+A2+A1 + eA4 B3 eA3 B2 eA2+A1

+ eA4 B3 eA3+A2 B1 eA1 + 1
2

eA4+A3 B2
2 eA2+A1

+ eA4+A3 B2 eA2 B1 eA1 + 1
2

eA4+A3+A2 B2
1 eA1 .

(v) Imposing the conditions in (22), we observe that the arising op-
erators are self-adjoint, e.g.

S(F,0)
h = eA3+A2+A∗

2 ,

S(F,1)
h = S11 + S∗11 + S12 + S∗12 ,

S11 = eA3+A2+A∗
2 B1 , S12 = eA3+A∗

2 B2 eA2 ,

S(F,2)
h = S21 + S∗21 + S22 + S∗22 + S23 + S∗23 + S24 + S∗24 + S25 + S26 ,

S21 = 1
2

eA3+A2+A∗
2 B2

1 , S22 = 1
2

eA3+A∗
2 B2

2 eA2 ,

S23 = eA
∗
2 B∗2 eA3+A2 B1 , S24 = eA3+A∗

2 B2 eA2 B1 ,

S25 = B∗1 eA3+A2+A∗
2 B1 S26 = eA

∗
2 B∗2 eA3 B2 eA2 .

(vi) The order conditions satisfied by operator splitting methods fol-
low from a further analysis of the differences

(24)
p∑

k=0

(
S(F,k)
h − E (F,k)

h

)
= O

(
hp+1

)
,
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see (21) and (23). For this pupose, the contributions in the ex-
pansions of the numerical evolution operators are understood as
quadrature approximations to the integrals arising in the expan-
sions of the exact evolution operators. Commutators naturally
result from suitable Taylor series expansions, which comprise ele-
ments such as

d
dτ

e (h−τ)AB e τ A = − e (h−τ)A adA(B) e τ A ,

d2

dτ2
e (h−τ)AB e τ A = e (h−τ)A ad 2

A(B) e τ A .

(vii) The rigorous treatment of high-order schemes, as detailed in [38],
includes the specification of the remainders and the characteri-
sation of the arising commutators. Regularity requirements are
related to fractional power spaces of sectorial operators or, more
concretely, to Sobolev spaces. In essence, for linear parabolic
equations involving the Laplacian and a regular potential, we re-
tain the nonstiff orders of convergences, provided that the initial
states and thus the exact solutions are contained in

D = D
(
(−A)p/2

)
, A = ∆ .

Global error estimates. Recalling the model problem (8) with oper-
ators A and B related to the Laplacian and a multiplication operator,
the above considerations and exemplifications lead us to the follow-
ing statement on the basis of an appropriate analytical framework for
abstract evolution equations of parabolic type.

We note that the global error estimate remains valid for any stable
operator splitting method (2). But, further conclusions formulated in
Section 3 that are related to the preservation of self-adjointness cannot
be drawn in general. This for instance concerns the boundedness of
relative errors in the imaginary parts over time, which is disproved
for complex symmetric splitting methods by numerical evidence, see
Section 5.

We point out that the analogue to Theorem 3 in [39] for space-time
discretisations by high-order time-splitting Fourier pseudo-spectral
methods holds as well. Its derivation relies on the setting of self-adjoint
operators on Hilbert spaces. Specifically, the knowledge of a complete
orthonormal system of eigenfunctions associated with the Laplacian is
utilised.

Confirming and complementing numerical examples for symmetric-
conjugate operators splitting methods applied to parabolic model prob-
lems are presented subsequently.
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Theorem 1. Let (X, ‖ · ‖X) denote the underlying Banach space. As-
sume that the parabolic evolution equation (1) comprises the sectorial
operator A : D(A) ⊆ X → X generating an analytic semingroup
(E (A)
t )t∈[t0,T ] and the operator B : D(B) ⊆ X → X. Suppose that

the coefficients of the considered symmetric-conjugate operator split-
ting method (3) fulfill the classical order conditions for some integer
p ∈ N≥1 and that in particular the validity of the stability bounds∥∥E (ajA)

t

∥∥
X←X ≤ eC1 t , t ∈ [t0, T ] , j ∈ {1, . . . , s} ,

is ensured. Then, provided that the solution values belong to a suitably
restricted subspace ∥∥u(t)

∥∥
D
≤ C2 , t ∈ [t0, T ] ,

that is defined by the requirement that the iterated commutators arising
in the expansion of the local error remain bounded∥∥ad `A(B)

∥∥
X←D ≤ C2 , ` ∈ {0, 1, . . . , p} ,

the following global error estimate holds∥∥un − u(tn)
∥∥
X
≤ C

(∥∥u0 − u(t0)
∥∥
X

+ hp
)
, n ∈ {1, . . . , N} .

The positive constant C > 0 depends on C1, C2, C3 > 0 and the final
time, but is independent of the time increment and the number of time
steps.

5. Test equations and numerical comparisons

Implementation. In this section, we provide numerical evidence
confirming and complementing our theoretical analysis of symmetric-
conjugate splitting methods for parabolic equations.

A Matlab code, which illustrates the practical implementation of
operator splitting methods combined with Fourier spectral space dis-
cretisations for three-dimensional model problems is available at

doi.org/10.5281/zenodo.8238819.
It in particular reproduces numerical results presented in the sequel.

In connection with simulations over longer times and the numerical
computation of global errors, we focus on the case of a single space
dimension. For schemes comprising negative coefficients or suffering
from stability restrictions, it is then feasible to monitor the effects of
instabilities by decreasing the time increments. Severe stability issues
have to be expected when the spatial grid width is refined, since then
the problems become significantly stiffer.
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Symmetric-conjugate versus symmetric methods. A first nu-
merical illustration is related to the relevant issue of ground state com-
putations for quantum-mechanical systems. The provided comparisons
for different splitting methods of order four verify and complement
our observations in Sections 3 and 4. In particular, they show that
symmetric-conjugate splitting methods possess distinctive features for
evolution equations that are defined by self-adjoint operators and have
real-valued solutions. Contrary to symmetric counterparts, it is en-
sured that the numerical evolution operators inherit the property of
self-adjointness, which results in favourable approximations over longer
times and is also reflected in the errors in the imaginary parts and the
ground state energies.

Test equation. We consider the linear Schrödinger equation (7) and
the related parabolic problem obtained by integration in imaginary
time, i.e. by replacing the time variable with − i t, see also (6) and (8a).
For the convenience of the readers, we restate the test equation

(25a)

{
∂tU(x, t) = 1

2
∆U(x, t)− V (x)U(x, t) ,

U(x, t0) = U0(x) , (x, t) ∈ Ω× [t0, T ] .

The underlying space discretisation and the time interval as well as
the quartic potential and the normalised Gaussian-like initial state are
chosen as follows

(25b)

Ω = [− a, a] , a = 10 , M = 256 , t0 = 0 , T = 100 ,

V : R −→ R : x 7−→ 5− 1
2
x2 + 1

80
x4 ,

U0 : R −→ R : x 7−→ 1
4√π e−

1
2

(x−1)2 .

Within our setting, it is evident that the eigenvalues of the Laplace
operator are non-positive, see (9). Moreover, due to the fact that the
potential takes non-negative values, it is ensured that the defining op-
erator 1

2
∆−V has negative eigenvalues. The time propagation of (25)

combined with suitable projection thus yields stationary states of the
quantum-mechanical system. The ground state is linked to the low-
est energy level in modulus, and excited states correspond to higher
energies in modulus.

Basically, these considerations can be transferred to the spatially
discretised system, which is defined by real and symmetric matrices
A,B ∈ RM×M , see (11) and (19), respectively. We in particular use
that the eigenvalues of A+B are negative numbers and that the solution
values can formally be written as linear combinations of associated
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normalised eigenvectors

(A+B) vm = Em vm ,

Em ∈ R<0 , vm ∈ RM , ‖vm‖ = 1 , m ∈ {0, 1, . . . ,M − 1} ,

u(t) =
M−1∑
m=0

cm e t Em vm , t ∈ [0, T ] .

Provided that the dominant eigenvalue is simple, i.e. Em < E0 for
m ∈ {1, . . . ,M − 1}, the corresponding coefficient nonzero c0 6= 0, and
the current time sufficiently large such that

u(t) = c0 e t E0

(
v0 +

M−1∑
m=1

cm
c0

e− t (E0−Em) vm

)
≈ c0 e t E0 v0 ,

this allows to determine a numerical approximation to the first eigen-
vector related to the ground state

1
‖u(t)‖ u(t) ≈ v0 .

The computation of the ground state energy then relies on the identity

E0 = vT0 (A+B) v0 .

The space discretisation and in particular the features of the time dis-
cretisation method will affect the quality of the obtained numerical
results.

Fourth-order splitting methods. For the time integration of (25), we
apply symmetric and symmetric-conjugate splitting methods of order
four, respectively, see Figures 1 and 5.

For the purpose of illustration, we comment on the construction of
the fourth-order schemes comprising four stages from the second-order
Strang splitting method

S(F )
h = S [2,R]

h = h
(

1
2
, 1, 1

2

)
,

by means of the composition technique, see also (2) and (5). In order
to distinguish different schemes, we adapt our former notation and
indicate the numbers of stages as well as structural characteristics,
but omit the defining function. Specifically, we use the triple jump
composition

S [4]
h = S [2]

α3 h
◦ S [2]

α2 h
◦ S [2]

α1 h

= h
(

1
2
α3, α3,

1
2

(α2 + α3), α2,
1
2

(α2 + α1), α1,
1
2
α1

)
.
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Provided that the arising coefficients fulfil the conditions

(26)
3∑
j=1

αj = 1 ,
3∑
j=1

α3
j = 0 ,

this leads to splitting methods of nonstiff order four. These algebraic
equations have the real-valued solutions

(27a)
γ = 2− 2

1
3 , α1 = γ−1 , α2 = 1− 2α1 , α3 = α1 ,

S [4,R,sym]
h = h

(
α1

2
, α1,

1−α1

2
, 1− 2α1,

1−α1

2
, α1,

α1

2

)
,

which define the standard symmetric Yoshida splitting method, see [40].
In addition, they admit a complex-valued solution, which correspond
to the symmetric splitting method

(27b)
γ = 2− 2

1
3 e 2/3 iπ , α1 = γ−1 , α2 = 1− 2α1 , α3 = α1 ,

S [4,C,sym]
h = h

(
α1

2
, α1,

1−α1

2
, 1− 2α1,

1−α1

2
, α1,

α1

2

)
,

as well as a complex-valued solution, which correspond to the
symmetric-conjugate splitting method

(27c)
α1 = 1

4
+ i

√
15

12
, α2 = 1

2
, α3 = α1 ,

S [4,C,sym-conj]
h = h

(
α1

2
, α1,

α1+α2

2
, α2,

α1+α2

2
, α1,

α1

2

)
.

Further schemes are obtained from (26) by complex conjugation. The
symmetric and symmetric-conjugate splitting methods have in common
that they contain the same number of exponentials and provide fourth-
order approximations. Moreover, the sizes of the main error terms at
order five, measured as

err =

∣∣∣∣ 3∑
j=1

α5
j

∣∣∣∣ ,
are about 200 times smaller than the error of the triple jump composi-
tion with real coefficients

err[4,R,sym]
h ≈ 5.3 , err[4,C,sym]

h ≈ 0.024 , err[4,C,sym-conj]
h ≈ 0.028 ,

see also [12].
The additionally considered symmetric and symmetric-conjugate

splitting methods of order four comprise a higher number of stages
s > 4 and include positive coefficients (aj)

s
j=1, which distinguishes them

from the schemes with four stages and ensures stability for parabolic
problems as well as Schrödinger equations. The selected optimised
symmetric-conjugate splitting method shows a favourable accuracy be-
haviour and leads to relatively small errors.
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Numerical results. In order to confirm the expected qualitative
and quantitative differences between the above described fourth-order
symmetric-conjugate and symmetric splitting methods, we prescribe a
certain time increment h > 0 and perform the integration until a suf-
ficiently large final time T = Nh is reached. In addition, a reference
solution u(T ) ∈ RM×M with real values up to machine precision and
the associated ground state energy E0 = u(T )T (A+ B)u(T ) are com-
puted numerically. Then, at each time step, the relative sizes of the
imaginary parts with respect to the solution values and the relative
errors of the ground state energies

‖=(un)‖
‖un‖

,

|E0 −<(un)T (A+B)<(un)|
|E0|

,

n ∈ {0, 1, . . . , N} ,

are determined.
As explained in Section 3, for the symmetric-conjugate splitting

methods, it is expected that the errors in the imaginary parts remain
bounded, whereas for symmetric splitting methods involving complex
coefficients a significant error growth over time may occur. Concern-
ing the errors in the approximation of the ground state energy, the
quantities <(un)T (A + B)<(un) for n ∈ {0, 1, . . . , N} constitute ap-
proximations to the ground state of a perturbed matrix that depends
on the splitting method and the time increment. Hence, it is expected
that the errors decrease up to a certain time, which depends on the
order of the method and the time increment. Beyond that time, it is
again assumed that the error accumulation in the imaginary part will
lead to a significant error growth for symmetric splitting methods and
bounded errors for symmetric-conjugate schemes.

The numerical results displayed in Figure 2 illustrate how the differ-
ent characters of symmetric-conjugate versus symmetric splitting meth-
ods manifest in practice. In the left panel, we depict the relative errors
in the imaginary parts of the numerical solutions over time. In the
right panel, we display the corresponding relative errors in the ground
state energy. We indeed observe that the symmetric schemes introduce
errors that grow linearly in a log-log scale, which may lead to unphys-
ical effects for larger time ranges. Contrary, after a transient time,
the errors committed by the symmetric-conjugate schemes are nearly
constant.
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Local and global errors. Specifically, we set α = 1 = β and study
quadratic and quartic potentials

(28a) V : R −→ R : x 7−→ x2 , V : R −→ R : x 7−→ 1
24
x4 .

The space grid points and the time interval are given by

(28b) Ω = [− a, a] , a = 10 , M = 100 , t0 = 0 , T ∈ {1, 10} .

For the linear test equation with quadratic potential and initial state

(28c) U0 : R −→ R : x 7−→ e−
1
2
x2 ,

the exact solution is known. In this special situation, we have the pos-
sibility to verify the correctness of the implementation and conclude
that the errors caused by the truncation of the space domain, the im-
plicitely imposed periodic boundary conditions, and the application of
the Fourier spectral discretisation method are insignificant. In the gen-
eral case, we determine the local and global time discretisation errors
with respect to numerical reference solutions.

Altogether, the results displayed in Figures 3 and 4 confirm the the-
oretical global error estimate stated in Section 4 and show that the
nonstiff orders of convergence are retained. For the errors in the imag-
inary parts of symmetric-conjugate schemes of even orders, we indeed
observe superconvergence, see Table 2 and Section 3.

6. Conclusions and future investigations

The present work is dedicated to a comprehensive analysis of
symmetric-conjugate operator splitting methods for the time integra-
tion of linear evolution equations. It is seen that the natural approach
to incorporate complex coefficients with non-negative real parts per-
mits the design of high-order schemes that remain stable in the con-
text of parabolic problems and thereby overcome the order barriers for
standard and modified splitting methods with real coefficients.

Moreover, it is demonstrated that symmetric-conjugate splitting
methods are particularly favourable in the numerical integration of
nonreversible systems defined by real and symmetric matrices. The
main reasons are that the errors in the imaginary parts and energies
remain bounded and hence do not lead to unphysical perturbations
over longer time ranges. Typically, this kind of problems arises in
ground and excited state computations for Schrödinger equations by
the imaginary time propagation, fractal path integrals with applica-
tions to many-body theories and statistical physics as well as Monte
Carlo simulations of quantum systems.
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Future theoretical and numerical investigations will concern exten-
sions to nonlinear evolution equations. Special attention will be given
to complex operator splitting methods applied to complex Ginzburg–
Landau equations, since this relevant type of problems interlinks cer-
tain characteristics of parabolic as well as Schrödinger-type equations.
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Lie–Trotter (real, p = 1, s = 1) Stability (a1 > 0)
Strang (real, p = 2, s = 2) Stability (a1, a2 ≥ 0)
Yoshida (real, p = 4, s = 4) Instability (a3 < 0)
Complex (symmetric, p = 4, s = 4) Stability (< a1, . . . ,< as ≥ 0)
Complex (symmetric, p = 4, s = 5) Stability (a1, . . . , as ≥ 0)
Complex (symmetric, p = 4, s = 6) Stability (a1, . . . , as ≥ 0)
Complex (symmetric, p = 6, s = 17) Stability (a1, . . . , as ≥ 0)
Complex (symmetric-conj., p = 3, s = 3) Stability (< a1, . . . ,< as ≥ 0)
Complex (symmetric-conj., p = 3, s = 4) Stability (a1, . . . , as ≥ 0)
Complex (symmetric-conj., p = 4, s = 4) Stability (< a1, . . . ,< as ≥ 0)
Complex (symmetric-conj., p = 4, s = 6) Stability (a1, . . . , as ≥ 0)
Complex (symmetric-conj., p = 6, s = 12) Stability (a1, . . . , as ≥ 0)
Complex (symmetric-conj., p = 6, s = 16) Stability (a1, . . . , as ≥ 0)

Table 1. Stability properties of real and complex split-
ting methods in the context of parabolic equations.
Schemes with non-negative coefficients (aj)

s
j=1 remain

stable for Schrödinger equations.

Lie–Trotter (real, p = 1) p num = p = 1 —
Strang (real, p = 2) p num = p = 2 —
Yoshida (real, p = 4) p num = p = 4 —
Complex (symmetric, p = 4) p num = p = 4 p num,= = p = 4
Complex (symmetric, p = 6) p num = p = 6 p num,= = p = 6

Complex (symmetric-conj., p = 3) p num = p = 3 p num,= = p = 3
Complex (symmetric-conj., p = 4) p num = p = 4 p num,= = p+ 1 = 5
Complex (symmetric-conj., p = 6) p num = p = 6 p num,= = p+ 1 = 7

Table 2. Application of real and complex splitting
methods to parabolic model problems with real-valued
solutions. Numerically observed global errors and as-
sociated orders of convergence for solution values and
imaginary parts.
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Figure 2. Long-term integration of the parabolic model
problem (25) by non-optimised and optimised fourth-
order operator splitting methods involving complex co-
efficients with time increments h = T

40
(top curves) and

h = T
400

(bottom curves). Relative errors in the imagi-
nary parts of the numerical solutions over time (left) and
corresponding errors in the ground state energy (right).
Symmetric schemes comprising s = 4 (thin black dashed
line) and s > 4 (thin black solid line) stages with increas-
ing errors in a log-log scale versus symmetric-conjugate
schemes comprising s = 4 (thick red dashed line) and
s > 4 (thick red solid line) stages with bounded errors.
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Figure 3. Time integration of the linear parabolic
model problem (8b) with real-valued solution by real and
complex splitting methods, see Figure 1. For the consid-
ered quadratic potential, the exact solution is known.
Left: Local and global errors. Right: Corresponding er-
rors in the imaginary parts.
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Figure 4. Time integration of the linear parabolic
model problem (8b) with real-valued solution by real and
complex splitting methods, see Figure 1. For the consid-
ered quartic potential, a numerical reference solution is
computed. Left: Local and global errors. Right: Corre-
sponding errors in the imaginary parts.
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    Legend = 'Complex splitting (symmetric-conjugate, p = 3, s = 3)';
    p = 3;
    a(2) = 1/2*(1 + 1i/sqrt(3));
    a(3) = conj(a(2));
    b(1) = 1/4*(1 + 1i/sqrt(3));
    b(2) = 1/2;
    b(3) = conj(b(1));
    Style = ':';
    Color = Red;

    Legend = 'Complex splitting (symmetric-conjugate, p = 3, s = 4)';
    p = 3;
    a(2) = 0.4706;
    a(3) = 1 - 2*a(2);
    a(4) = a(2);
    b(1) = 0.1655101882118 + 1i*0.03704896872215;
    b(2) = 1/2 - real(b) - 1i*0.6300845020773;
    b([3,4]) = conj(b([2,1]));
    Style = '--';
    Color = Red;

    Legend = 'Complex splitting (symmetric-conjugate, p = 4, s = 4)';
    p = 4;
    a(2) = 1/12*(3 + 1i*sqrt(15));
    a(3) = 1/2;
    a(4) = conj(a(2));
    b(1) = 1/24*(3 + 1i*sqrt(15));
    b(2) = 1/24*(9 + 1i*sqrt(15));
    b([3,4]) = conj(b([2,1]));
    Style = '^-';
    Color = Red;

    Legend = 'Complex splitting (symmetric-conjugate, p = 4, s = 6)';
    p = 4;
    a(2) = 37/250;
    a(3) = 0.22446218092466344;
    a(4) = 1 - 2*sum(a);
    a([5,6]) = a([3,2]);
    b(1) = 0.05338438633498185 - 1i*0.03218942894140047;
    b(2) = 0.19561815336463223 + 1i*0.0992879758243923;
    b(3) = 1/2 - sum(real(b)) - 1i*0.14783578044680548;
    b([4,5,6]) = conj(b([3,2,1]));
    Style = '>-';
    Color = Red;

    Legend = 'Complex splitting (symmetric-conjugate, p = 4, s = 6)';
    p = 4;
    a(2) = 0.17354158169943656;
    a(3) = 0.19379086394173623;
    a(4) = 1 - 2*sum(a);
    a([5,6]) = a([3,2]);
    b(1) =  0.06421454120274125 + 1i*0.0245540186592381;
    b(2) = 0.20166370500451958 - 1i*0.0982277975564409;
    b(3) = 1/2 - sum(real(b)) + 1i*0.1491719824749133;
    b([4,5,6]) = conj(b([3,2,1]));
    Style = 'v-';
    Color = Red;

    Figure 5. Coefficients of symmetric-conjugate operator
splitting methods applied in numerical tests.
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    Legend = 'Complex splitting (symmetric-conjugate, p = 6, s = 12)';
    p = 6;
    a(2) = 213/2500;
    a(3) = 0.047358568390005;
    a(4) = 0.1553620075936;
    a(5) = 0.10012117440925;
    a(6) = 0.10547836949919;
    a(7) = 1 - 2*sum(a);
    a([8:12]) = a([6:-1:2]);
    b(1) = 7/250 - 1i*0.009532915454170; 
    b(2) = 0.08562523731685 + 1i*0.0718344013568;
    b(3) = 0.09331583397900 - 1i*0.09161071812994;
    b(4) = 0.11799012127542 + 1i*0.0702739287203; 
    b(5) = 0.16176918420712 - 1i*0.04327349898459;
    b(6) = 1/2 - sum(real(b)) - 1i*0.2203293328195;
    b([7:12]) = conj(b([6:-1:1]));
    Style = 'h-';
    Color = Red;

    Legend = 'Complex splitting (symmetric-conjugate, p = 6, s = 16)';
    p = 6;
    a(2) = 0.08092666015955027;
    a(3) = 0.06736427978832901;
    a(4) = 0.057276240999706116;
    a(5) = 0.06428730473896961;
    a(6) = 0.05528732144478408;
    a(7) = 0.02566179136566552;
    a(8) = 0.10559039215618958;
    a(9) = 1 - 2*sum(a);
    a([10:16]) = a([8:-1:2]);
    b(1) = 3/100 - 1i*0.0028985018717006387;
    b(2) = 0.08826477458499815 + 1i*0.019065371639195743;
    b(3) = 0.07026507350715319 - 1i*0.05226928459003309;
    b(4) = 0.051044248093469226 + 1i*0.07580262639617709;
    b(5) = 0.040506044227148555 - 1i*0.07981221177569087;
    b(6) = 0.03061653536468681 + 1i*0.07254698089135206;
    b(7) = 0.10349890449629792 - 1i*0.03539199012223482;
    b(8) = 1/2 - sum(real(b)) + 1i*0.0111821298374971054;
    b([9:16]) = conj(b([8:-1:1]));
    Style = 'p-';
    Color = Red;

Figure 6. Coefficients of symmetric-conjugate operator
splitting methods applied in numerical tests.


