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Abstract

When applying Hamiltonian operator splitting methods for the time integration of
multi-species Vlasov–Maxwell–Landau systems, the reliable and efficient numerical
approximation of the Landau equation represents a fundamental component of the
entire algorithm. Substantial computational issues arise from the treatment of the
physically most relevant three-dimensional case with Coulomb interaction.

This work is concerned with the introduction and numerical comparison of novel
approaches for the evaluation of the Landau collision operator. In the spirit of col-
location, common tools are the identification of fundamental integrals, series expan-
sions of the integral kernel and the density function on the main part of the velocity
domain, and interpolation as well as quadrature approximation nearby the singular-
ity of the kernel.

Focusing on the favourable choice of the Fourier spectral method, their practical
implementation uses the reduction to basic integrals, fast Fourier techniques, and
summations along certain directions. Moreover, an important observation is that
a significant percentage of the overall computational effort can be transferred to
precomputations which are independent of the density function.

For the purpose of exposition and numerical validation, the cases of constant,
regular, and singular integral kernels are distinguished, and the procedure is adapted
accordingly to the increasing complexity of the problem.

With regard to the time integration of the Landau equation, the most expedient
approach is applied in such a manner that the conservation of mass is ensured.
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1 Introduction

Scope of applications. The present work is inspired by various con-
tributions on the numerical simulation of kinetic equations modelling the
distribution of charged particles in a collisional plasma, see in particular
[1,2,3,6,7,8,9,11,14,15,17,18,19,20,22,23] and the references given therein. We
intend to lay the foundation for the application of Hamiltonian operator split-
ting methods to Vlasov–Maxwell–Landau and Vlasov–Poisson–Landau equa-
tions, where the efficient time integration of the Landau equation via spectral
methods represents a fundamental component of the entire algorithm.

Vlasov–Landau equation. Solving the inhomogeneous Vlasov–Landau
equation [13] is still one of the most computationally costly kinetic prob-
lems in the field and of paramount importance in plasma physics. With the
variables x ∈ Ω(x) ⊆ Rd, v ∈ Ω(v) ⊆ Rd, and t ∈ [t0, T ] ⊂ R representing
position, velocity, and time, the functions f : Ω(x) × Ω(v) × [t0, T ] → R and
F : Ω(x) × Ω(v) × [t0, T ] → R describing the distribution of charged parti-
cles and a given or self-consistent force field including electromagnetic effects,
and the Landau operator Q(f, f) capturing collisions between particles, the
Vlasov–Landau equation reads as

∂tf + v · ∇xf − F · ∇vf = Q(f, f) .

Throughout, for notational simplicity, we neglect dependences on variables
when appropriate and no confusion arises.

Landau operator. Our main concern is the efficient numerical evaluation of
the Landau collision operator

Q(f, f) = ∇v · Q(c)(f, f) , (1a)

which is given by the divergence of the integral operator

Q(c)(f, f)(v) = C
∫
Ω(v)

A(v − w)
(
f(w)∇vf(v)−∇wf(w) f(v)

)
dw

=: I(f)(v)∇vf(v) + J (f)(v) f(v) , v ∈ Ω(v) .
(1b)

Here, we set A(z) = |z|β (|z|2 Id − z ⊗ z) and denote by |z| =
√
zT z ∈ R≥0

and z ⊗ z = z zT ∈ Rd×d the Euclidean norm and the outer product of a
column vector z ∈ Rd, by Id ∈ Rd×d the identity matrix, and by C > 0 a
positive constant. For the gradient operator comprising the partial derivatives
with respect to the velocity components v = (v1, . . . , vd)

T ∈ Rd, we employ
the notation ∇v = (∂v1 , . . . , ∂vd)

T . The purpose of efficiently evaluating the
Landau operator (1) is closely related to the numerical approximation of the
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associated Landau equation

∂tf = ∇v · Q(c)(f, f) . (2)

Maxwellian molecules and Coulomb interaction. Henceforth, we tacitly
assume that the density function satisfies suitable regularity and integrability
requirements such that the Landau operator (1) is well-defined in the classical
sense. The choices d ∈ {2, 3}, Ω(v) = Rd, and β = 0, referred to as Maxwellian
molecules cases, serve as basic test examples, since the specification of density
functions like

d = 2 , f(v) = e−|v|2 |v|2 , v ∈ R2 ,

d = 3 , f(v) = e−|v|2
(
2 |v|2 − 1

)
, v ∈ R3 ,

permits to determine the integrals inside the Landau operators. We in par-
ticular aim at the treatment of the physically most relevant and numerically
challenging case of Coulomb interaction in three dimensions

d = 3 , Ω(v) = R3 , β = − 3 , (3)

which leads to a strong singularity in the integral operator.

Novel strategies. In this work, we propose novel approaches in the spirit
of collocation methods for the reliable and efficient numerical evaluation of
the Landau operator (1), to be applied in the time integration of the Landau
equation (2). We next sketch basic concepts for the relevant case of Coulomb
interaction (3) and essential components of the resulting algorithms. Our com-
mon starting point is the representation as a nonlocal drift-diffusion equation,
where we identify fundamental integrals of the form∫

R3
φ(v − w) p(v − w) g(w) dw

that involve the singular integral kernel φ : R3 → R, a polynomial of degree
two p : R3 → R, and a regular function g : R3 → R reflecting the values of the
density function or derivatives thereof, respectively. In addition, we make use
of the decomposition∫

R3
φ(v − w) p(v − w) g(w) dw =

∫
R3
ψ(v − w) p(v − w) g(w) dw (4a)

+
∫
R3
(φ− ψ)(v − w) p(v − w) g(w) dw ,

where ψ is a suitable regularisation of the kernel, obtained by interpolation
nearby the isolated singularity, such that the difference φ−ψ vanishes on the
main part of the velocity domain, see Figure 1. In order to numerically compute
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these integrals, we employ series expansions of ψ and g as well as quadrature
approximations. Due to the particular properties of Fourier functions

Fκ : R −→ R : ξ 7−→ 1√
2 b

eµκ(ξ+b) ,

Fm : R3 −→ R : v 7−→ Fm1(v1)Fm2(v2)Fm3(v3) ,

µκ =
π iκ
b

∈ C , µm =
(
µm1 , µm2 , µm3

)
∈ C1×3 ,

b > 0 , κ ∈ Z , m = (m1,m2,m3) ∈ Z3 ,

(4b)

and in view of the highly efficient practical implementation of Fourier series
expansions by fast transforms, i.e.

∑
m∈M

gmFm ≈ g ,
∑
m∈M

ψmFm ≈ ψ , M =
{
− M

2
, . . . , M

2
− 1

}3
, (4c)

for an even positive integer number M ∈ N, we favour the Fourier spectral
method. Under the reasonable presumption of a localised density function,
we may replace the unbounded velocity domain by a cartesian product of
intervals, characterised by a sufficiently large positive real number b > 0.
Accordingly, we choose uniform grid points that cover the truncated domain

vℓ ∈ [− b, b]3 , ℓ = (ℓ1, ℓ2, ℓ3) ∈ L = {1 , . . . ,M}3 , (4d)

Likewise, the relatively small neighbourhood of the origin, where the inter-
polant of the singular kernel is devised

(φ− ψ)
∣∣∣
[− b,b]3\[− b0,b0]3

= 0 , (4e)

is defined by a positive real number 0 < b0 << b, which we adjust in such a
way that the point (b0, 0, 0) coincides with a grid point. Thus, non-zero values

(φ− ψ)(vℓ) ̸= 0 , ℓ ∈ L̃ ⊂ L , (4f)

occur, but only for a small subset L̃ ⊂ L. Because of the multiplicativity of
Fourier functions, the concrete tasks for the numerical computation of the
fundamental integrals (4a) amount to determine one-dimensional integrals of
the form ∫ b

−b
ξiFκ(ξ) dξ , i ∈ {0, 1, 2} , κ ∈

{
− M

2
, . . . , M

2
− 1

}
, (4g)

to approximate three-dimensional integrals by quadrature∫
[− b0,b0]3

(φ− ψ)(w) p(w)Fm(w) dw , m ∈ M , (4h)

and to apply fast Fourier transforms or summations along certain directions,
respectively.
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Comparison with alternative spectral methods. The efficient imple-
mentation of our approaches strongly relies on spectral methods, in particu-
lar, on fast Fourier techniques. However, compared to [8,17,18,19,23], rather
than approximating the weak formulation of the Landau operator, we approx-
imate the distribution function in physical space by collocation. One of the
advantages of such a Fourier collocation method is the localisation of the sin-
gular Coulomb kernel in velocity space and the accurate representation of the
distribution function by Fourier series outside the truncated domain. As a con-
sequence, in connection with the future application of Hamiltonian splitting
methods for Vlasov–Maxwell–Landau systems, e.g., we can hand over the val-
ues of the density function to the solvers of the other subproblems. We propose
different approaches using or avoiding numerical differentiation, depending on
whether mass conservation or higher accuracy is preferable, respectively, see
Table 1 for an overview. Considering a Cartesian product of intervals, we have
the possibility to adjust the resolution along each velocity component. Making
use of the fact that the Coulomb kernel is well represented by Fourier series
except on a small neighbourhood of the singularity, restricting the quadra-
ture approximation to this neighbourhood has the advantage of significantly
reducing the precomputation times as well as the computations times during
evolution, see Table 2.

Outline. This manuscript has the following structure. In Section 2, we in-
troduce the considered numerical methods for the Landau operator involving
constant, regular, and singular kernels, respectively. Numerical comparisons
for different test problems are then discussed in Section 3.

2 Numerical methods

In this section, we develop the proposed spectral collocation methods for the
evaluation of the Landau operator and the time integration of the Landau
equation. We begin with an overview of the fundamental approach and then
describe in full detail a slight generalisation and related approaches.

2.1 Overview

Guide line. We point out that our approaches are designed for the numerical
approximation of the Landau equation (2) and that a significant percentage of
the overall computational effort per time step can be transferred to precom-
putations which are independent of the density function. In order to illustrate
the key aspects of the resulting algorithms, we introduce the forward Euler
method as simplest representative for standard classes of explicit and implicit,
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one-step and multi-step time integrators. Prescribing positive stepsizes (τn)N−1
n=0

such that τ0 + · · ·+ τN−1 = T and an initial approximation, the time-discrete
solution is determined by the recurrence f (n) = f (n−1) + τn−1∇v · Q(c)

(
f (n−1), f (n−1)

)
, n ∈ {1, . . . , N} ,

f (0) given .
(5)

Evidently, the main computational issue in each time step is related to the
numerical evaluation of the integral operator. Briefly summarised, we have the
following guide line.

Input (Problem data).

(i) The function f (0) defines the inital state of the density function, see (5).
(ii) The function φ defines the integral kernel with isolated singularity at the

origin, see (1) and (3).

Input (Discretisation).

(i) The positive real number b > 0 defines the truncated velocity domain,
see (4d).

(ii) The even positive integer number M ∈ N reflects the total numbers of
Fourier functions and uniform grid points covering the truncated domain,
see (4c) and (4d).

(iii) The small positive real number b0 > 0 is chosen such that (b0, 0, 0) coin-
cides with a grid point and defines a neighbourhood of the origin, where
a regularisation of the singular integral kernel is devised by interpolation,
see (4e) and Figure 1.

(iv) A sequence of positive time stepsizes (τn)N−1
n=0 is defined, and, if required

for stability and accuracy, suitably adapted during time integration,
see (5).

Precomputations.

(i) The uniform grid points (vℓ)ℓ∈L are computed and stored, see (4d).
(ii) The complex eigenvalues (µm)m∈M associated with the included Fourier

functions (Fm)m∈M are computed and stored, see (4b) and (4c).
(iii) The basic integrals (4g) are computed and stored.
(iv) The values of the integral kernel at the grid points are computed. Based

on them, the values of a suitable regularisation on the previously de-
fined neighbourhood of the origin are determined by interpolation. On
the one hand, the associated spectral coefficients (ψm)m∈M are computed
through a fast Fourier transform, see (4c). Auxiliary quantities involv-
ing the basic integrals (4g) and complex exponentials (4b) are computed
through summations along certain directions, in total three single sums
and three double sums. On the other hand, the non-zero values corre-
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sponding to the difference between the singular integral kernel and its
interpolant (

φ(vℓ)− ψ(vℓ)
)
ℓ∈L̃

,

are computed, see (4f). Based on these quantities, quadrature approxi-
mations to the in total 6M3 integrals∫

[− b0,b0]3
wiwj (φ− ψ)(w)Fm(w) dw ,

(i, j) ∈ {(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)} , m ∈ M ,

are computed and stored, see (4h).

Computations. From the values of the initially prescribed density function
at the velocity grid points, the associated spectral coefficients are computed
through a fast Fourier transform

n = 1 ,
(
f (n−1)(vℓ)

)
ℓ∈L

,
(
f (n−1)
m

)
m∈M

,

yielding the approximation

n = 1 ,
∑
m∈M

f (n−1)
m Fm ≈ f (n−1) ,

see also (4c). In each substep of the time integration, based for instance on
the explicit Euler method (5), the following computations are carried out, in
order to determine the values and spectral coefficients of the discrete solution.

(i) Numerical approximations to the values of the gradient at the veloc-
ity grid points are computed through pointwise multiplications by the
corresponding eigenvalues and three inverse fast Fourier transforms∑

m∈M
µm f

(n−1)
m Fm(vℓ) ≈ ∇vf

(n−1)(vℓ) , ℓ ∈ L ,

see (1b).
(ii) The main computational cost for the numerical approximation of fun-

damental integrals, which involve the regularised kernel, amounts to
pointwise multiplications and in total 18 inverse fast Fourier transforms,
see (4a).

(iii) The representation (1b) is used to determine the values of the integral
operator

Q(c)
(
f (n−1), f (n−1)

)
(vℓ) , ℓ ∈ L .

In each case, the divergence is computed by three fast Fourier transforms
and an additional inverse fast Fourier transform

∇v · Q(c)
(
f (n−1), f (n−1)

)
(vℓ) , ℓ ∈ L . (6)

7



Simple summations finally yield the values and spectral coefficients of
the new approximation(

f (n)(vℓ)
)
ℓ∈L

,
(
f (n)
m

)
m∈M

,

see also (5).

Output.

(i) By means of the above procedure, we obtain the values and the spectral
coefficients of the discrete solution(

f (n)(vℓ)
)
ℓ∈L

,
(
f (n)
m

)
m∈M

, n ∈ {0, 1, . . . , N} .

(ii) If desired, approximations at intermediate points can be computed
through the relation

f (n−1)(v) ≈
∑
m∈M

f (n−1)
m Fm(v) , v ∈ [− b, b]3 , n ∈ {0, 1, . . . , N} .

Computational cost. In the previously described situation, we may con-
sider the 26 Fourier transforms for the computation of the Landau operator in
a substep of the time integration as the computationally most elaborate com-
ponents. Other processes such as summations and pointwise multiplications
can be optimised by parallelisation. We point out that the choice of the neigh-
bourhood, where a regularisation of the singular integral kernel is determined,
is crucial, see Figure 1. Compared to a quadrature approximation on the whole
domain, a suitable adjustment of the relatively small subset makes it possible
to significantly reduce the precomputation time for the same accuracy, see
Table 2.

Implementation and improvements. In order to perform numerical com-
parisons and to design graphical illustrations, we found it convenient to imple-
ment our approaches in Matlab. An elementary code that has the purpose
to illustrate the practical implementation and reproduces numerical results
displayed in Figures 10 and 11 is available through [4]. As we prioritised read-
ability and the validation of common components, our code comprises several
subroutines, which lower speed. We thus consider the observed computation
times as rough indicators and see opportunities for improvements based on
efficient software packages. Detailed derivations in a more general setting and
additional numerical comparisons for different test examples with known solu-
tions are described in the subsequent sections, see also Table 1 for an overview.

Conservation of mass. A characteristical property of the solution to the
Landau equation (2) is that it conserves mass, momentum, and energy and
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that entropy decays over time

∫
Ω(v)

f(v, t) dv =
∫
Ω(v)

f(v, t0) dv ,∫
Ω(v)

v f(v, t) dv =
∫
Ω(v)

v f(v, t0) dv ,∫
Ω(v)

|v|2 f(v, t) dv =
∫
Ω(v)

|v|2 f(v, t0) dv ,∫
Ω(v)

f(v, t) ln
(
f(v, t)

)
dv ≤

∫
Ω(v)

f(v, t0) ln
(
f(v, t0)

)
dv ,

t ∈ [t0, T ] .

(7)

Due to the employed representation of the Landau operator in divergence
form, the conservation of mass is ensured for the discrete solution as well,
provided that the mass is computed subsequently to (6) through the trivial
identity for the associated spectral coefficients

f
(n)
0 = f

(n−1)
0 , n ∈ {1, . . . , N}.

Any additional application of a fast Fourier transform or inverse fast Fourier
transform, however, will cause numerical perturbations, since the values of a
regular function are not retained, in general, i.e.

IFFT
(
FFT(g)

)
̸= g ,

but we may expect highly accurate approximations. Likewise, we cannot en-
sure the preservation of momentum and energy as well as the strict positivity
of the density function and the decay of entropy in case the reconstruction
is positive, but we may expect highly accurate numerical approximations for
suitable discretisations based on the Fourier spectral method and geometric
time integrators, see for instance [10,12,16,21].

2.2 Detailed description

Compact exposition. For the benefit of compact representations, we employ
convenient abbreviations for the integral kernel and the term involving the
outer product

φ : Ω(φ) −→ R : v 7−→ C |v|β , Ω(φ) =

Rd if β ≥ 0 ,

Rd \ {0} if β < 0 ,

P : Rd −→ Rd×d : v 7−→ |v|2 Id − v ⊗ v .

(8a)
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When applicable, we omit the dependence of the density function, the integral
operator, and the Landau operator on the time variable, i.e., we write

Q(c)(f, f)(v) =
∫
Ω
(φP )(v − w)

(
∇v f(v) f(w)− f(v)∇w f(w)

)
dw ,

Q(f, f)(v) = ∇v · Q(c)(f, f)(v) ,

v ∈ Ω = Ω(v) ,

(8b)

for short. For the purpose of numerical validation and comparison, we distin-
guish the cases of constant, regular, and singular integral kernels and adapt
our procedure accordingly to the increasing complexity of the problem. We
exemplify calculations for two dimensions and state the analogous results for
the significantly more involved three-dimensional case.

2.3 Auxiliaries

In the following, we collect useful abbreviations and elementary results re-
lated to the Fourier spectral method. Its efficient implementation relies on
fast Fourier techniques.

Short notation. For the purpose of more compact representations, we in-
troduce the common short notation

vj = vj11 · · · vjdd , ∂jv = ∂j1v1 · · · ∂
jd
vd
,

v = (v1, . . . , vd) ∈ Rd , j = (j1, . . . , jd) ∈ Nd
≥0 .

(9)

Truncated velocity domain. With regard to the numerical approximation
of the integral operator in (8), it is required to truncate the initially unbounded
velocity domain Ω = Rd. Under the reasonable assumption that the density
function can be approximated with high accuracy by a localised function, we
may replace the original integral domain by a cartesian product of sufficiently
large intervals

Ω(b) = [b11, b12]× · · · × [bd1, bd2] ⊂ Ω . (10)

Fourier functions. For Fourier functions depending on a single variable, we
in addition specify the dependence on the canonical periodicity interval and
the number of oscillations

F (α)
κ (ξ) = 1√

α2−α1
eµ

(α)
κ (ξ−α1) , µ(α)

κ = 2π iκ
α2−α1

,

F (α)
κ (α1) =

1√
α2−α1

= F (α)
κ (α2) , ∂ξ F (α)

κ (ξ) = µ(α)
κ F (α)

κ (ξ) ,

κ ∈ Z , α = (α1, α2) ∈ R2 , α1 < α2 , ξ ∈ R .

(11a)
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Accordingly, for Fourier functions in several variables, we set

F (b)
m (v) = F (b11, b12)

m1
(v1) · · · F (bd1, bd2)

md
(vd) ,

m = (m1, . . . ,md) ∈ Zd , v = (v1, . . . , vd) ∈ Rd .
(11b)

Moreover, in view of compact representations, we employ the notation

µ(b)
m =

(
µ(b11, b12)
m1

, . . . , µ(bd1, bd2)
md

)
∈ C1×d ,

E (b)
m (v) = eµ

(b11, b12)
m1

v1 · · · eµ
(bd1, bd2)
md

vd ,

E (b)
m (b1) = eµ

(b11, b12)
m1

b11 · · · eµ
(bd1, bd2)
md

bd1 ,

m ∈ Zd , v ∈ Rd .

(11c)

Basic integrals and identities. Elementary calculations permit to deter-
mine the basic integrals

Ij(kj,mj) =
∫ bj2

bj1
w
kj
j F (bj1, bj2)

mj
(wj) dwj ,

Ij(kj,mj) =



√
bj2 − bj1 , kj = 0 , mj = 0 ,
b2j2−b

2
j1

2
√
bj2−bj1

, kj = 1 , mj = 0 ,

b3j2−b
3
j1

3
√
bj2−bj1

, kj = 2 , mj = 0 ,

0 , kj = 0 , mj ∈ Z \ {0} ,√
bj2−bj1

µ
(bj1, bj2)
mj

, kj = 1 , mj ∈ Z \ {0} ,

(b2j2−b
2
j1)µ

(bj1, bj2)
mj

−2 (bj2−bj1)
√
bj2−bj1

(
µ
(bj1, bj2)
mj

)2 , kj = 2 , mj ∈ Z \ {0} ,

I(k,m) =
∫
Ω(b)

wk F (b)
m (w) dw = I1(k1,m1) · · · Id(kd,md) ,

k ∈ {0, 1, 2}d , m ∈ Zd ,

(12)

see also (9). Due to their close connection to the complex exponential, Fourier
functions satisfy identities such as

F (b)
m (v − u) = F (b)

m (v) E (b)
−m(u) , (13a)

F (b)
ℓ (u)F (b)

m (v − u) = E (b)
−m(b1)F (b)

m (v)F (b)
ℓ−m(u) , (13b)

F (b)
ℓ (v − w)F (b)

m (w) = E (b)
−ℓ (b1)F

(b)
ℓ (v)F (b)

m−ℓ(w) , (13c)
ℓ,m ∈ Zd , u, v, w ∈ Rd .

Fourier series expansions. Accordingly to the regularity of a real-valued
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function g : Ω(b) → R and its partial derivatives, Fourier series expansions

g(v) ≈
∑

m∈MM

gmF (b)
m (v) , gm =

∫
Ω(b)

g(v)F (b)
−m(v) dv , m ∈ MM ,

∂vkg(v) ≈
∑

m∈MM

µ(bk1, bk2)
mk

gmF (b)
m (v) , k ∈ {1, . . . , d} ,

v ∈ Ω(b) ,

hold, where the index set

MM =
{
− M1

2
, . . . , M1

2
− 1

}
× · · · ×

{
− Md

2
, . . . , Md

2
− 1

}
⊂ Zd (14)

is characterised by M = (M1, . . . ,Md) ∈ Nd comprising even positive integers.
For the sake of compact representations, we initially identify functions with
their formal Fourier series

g(v) =
∑
m∈Zd

gmF (b)
m (v) , v ∈ Ω ,

and afterwards comment on the practical implementation of the Fourier spec-
tral method.

2.4 Approaches

In this section, we outline different approaches for the numerical evaluation of
the Landau operator (8), see Table 1. We begin with detailed considerations
for a natural procedure and then indicate possible alternatives. Useful means
are suitable reformulations of the integral operator obtained by Fourier series
expansions of the density function and a regularised integral kernel, the ap-
plication of a linear integral transform and a quadrature rule on a relatively
small neighbourhood of the origin, and subsequent differentiation. In order to
underline the sources of errors due to the truncation of the unbounded velocity
domain, the replacement of infinite by finite sums, and quadrature, we first
state the employed representations of the Landau operator on the basis of for-
mal series expansions and then sketch the corresponding algorithms. We recall
that auxiliary abbreviations and results related to the Fourier spectral method
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are found in Section 2.3. For the benefit of shorter formulas, we henceforth set

d = 2 ,

M1 = {(1, 1), (1, 2), (2, 2)} ,
M2 = {(1, 1, 2), (1, 2, 1), (1, 2, 2), (2, 2, 1)} ,

M3 = {(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2)} ,
d = 3 ,

M1 = {(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)} ,
M2 = {(1, 1, 2), (1, 1, 3), (1, 2, 1), (1, 2, 2), (1, 3, 1), (1, 3, 3),

(2, 2, 1), (2, 2, 3), (2, 3, 2), (2, 3, 3), (3, 3, 1), (3, 3, 2)} ,
M3 = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (2, 0, 0), (1, 1, 0),

(1, 0, 1), (0, 2, 0), (0, 1, 1), (0, 0, 2)} ,

(15)

2.5 Approach CST2 (Conservative form Singular kernel Transform twice)

Integral operator. Our starting point is the following representation of the
integral operator

Q(c)(f, f)(v) = I(f)(v)∇vf(v) + J (f)(v) f(v) , v ∈ Ω .

The arising matrix- and vector-valued operators

d = 2 ,

I =

 I22 −I12

−I12 I11

 , J =

−J221 + J122

J121 − J112

 ,

d = 3 ,

I =


I22 + I33 −I12 −I13

−I12 I11 + I33 −I23

−I13 −I23 I11 + I22

 ,

J =


−J221 − J331 + J122 + J133

J121 − J112 − J332 + J233

J131 + J232 − J113 − J223

 ,

13



are defined by fundamental integrals, which involve polynomials of degree two,
the singular kernel, and the density function

Iij(f)(v) =
∫
Ω
(vi − wi) (vj − wj)φ(v − w) f(w) dw , (i, j) ∈ M1 ,

Jijk(f)(v) =
∫
Ω
(vi − wi) (vj − wj)φ(v − w) ∂wk

f(w) dw , (i, j, k) ∈ M2 ,

v ∈ Ω .

For the sake of concreteness, we next explain our main strategy on the basis
of the two instances

I11(f)(v) =
∫
Ω
(v1 − w1)

2 φ(v − w) f(w) dw ,

J112(f)(v) =
∫
Ω
(v1 − w1)

2 φ(v − w) ∂w2f(w) dw ,

v ∈ Ω ,

(16)

and then state the corresponding representations obtained in the general case.

Singular integral kernel. Our basic idea is to exploit the evident identity

φ(v) = ψ(v) + (φ− ψ)(v) , v ∈ Ω , (17a)

and to adjust the regular function ψ such that the remainder φ− ψ vanishes
on the main part of the velocity domain. More concretely, we make use of the
fact that the singular integral kernel associated with the Coulomb potential is
regular outside a relatively small neighbourhood of the origin

Ω(0) = [b
(0)
11 , b

(0)
12 ]× · · · × [b

(0)
d1 , b

(0)
d2 ] ⊂ Ω(b) ⊂ Ω , (17b)

see also (10). Hence, excluding this set, the kernel defines a regular function

ψ(v) = φ(v) , v ∈ Ω \ Ω(0) . (17c)

Nearby the origin, straightforward interpolation of φ is applied to determine ψ.

Fourier series expansions. For the regularised integral kernel and the den-
sity function, we may assume that favourable approximations are provided by
Fourier series expansions. We meanwhile employ the formal representations

ψ(v) =
∑
ℓ∈Zd

ψℓF (b)
ℓ (v) ,

f(v) =
∑
m∈Zd

fmF (b)
m (v) , ∂vkf(v) =

∑
m∈Zd

µ(bk1, bk2)
mk

fmF (b)
m (v) ,

v ∈ Ω , k ∈ {1, . . . , d} .

(18)

Their practical implementation presupposes suitable truncations of the un-
bounded velocity domain to avoid significant aliasing effects, see for in-
stance [18,19]. Moreover, it requires truncations of the infinite sums as well as

14



the application of the trapezoidal rule for the numerical computation of the
spectral coefficients.

Decisive integrals. The above stated Fourier series expansions of the density
function and its partial derivatives imply representations such as

I11(f)(v) =
∑
m∈Zd

fm I(m)
11 (v) ,

J112(f)(v) =
∑
m∈Zd

µ(b21, b22)
m2

fm I(m)
11 (v) ,

I(m)
11 (v) =

∫
Ω
(v1 − w1)

2 φ(v − w)F (b)
m (w) dw , m ∈ Zd ,

v ∈ Ω ,

see (16) and (18). Due to the decomposition of the kernel into a regular func-
tion and a singular function that vanishes on the main part of the domain,
the decisive integrals comprise the two contributions

I(m)
11 (v) = I(m,ψ)

11 (v) + I(m,φ−ψ)
11 (v) ,

I(m,ψ)
11 (v) =

∫
Ω
(v1 − w1)

2 ψ(v − w)F (b)
m (w) dw ,

I(m,φ−ψ)
11 (v) =

∫
Ω
(v1 − w1)

2 (φ− ψ)(v − w)F (b)
m (w) dw ,

m ∈ Zd , v ∈ Ω ,

(19)

see also (17).

Linear integral transform. Applying in both cases the linear integral trans-
form u = v − w, yields the equivalent reformulations

I(m,ψ)
11 (v) =

∫
v−Ω

u21 ψ(u)F (b)
m (v − u) du ,

I(m,φ−ψ)
11 (v) =

∫
v−Ω

u21 (φ− ψ)(u)F (b)
m (v − u) du ,

m ∈ Zd , v ∈ Ω ,

where we employ a symbolic notation for the shifted domain comprising an
additional sign owing to duk = − dwk for k ∈ {1, . . . , d}. By means of the
Fourier series expansion of the regularised kernel (18) and the identity (13b),
the first multiple integral reduces to one-dimensional integrals

I(m,ψ)
11 (v) = E (b)

−m(b1)F (b)
m (v)

∑
ℓ∈Zd

ψℓ

∫
v−Ω

u21 F
(b)
ℓ−m(u) du , m ∈ Zd , v ∈ Ω .

For the second multiple integral, we instead apply the relation (13a) and have

I(m,φ−ψ)
11 (v) = F (b)

m (v)
∫
v−Ω

u21 (φ− ψ)(u) E (b)
−m(u) du , m ∈ Zd , v ∈ Ω .
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Approach CST2. Summarising the above procedure, we obtain the following
relations for the derivatives of the density function

∂vkf(v) =
∑
m∈Zd

µ(bk1, bk2)
mk

fmF (b)
m (v) , k ∈ {1, . . . , d} , v ∈ Ω , (20a)

the fundamental integrals

I(m,ψ)
ij (v) = E (b)

−m(b1)F (b)
m (v)

∑
ℓ∈Zd

ψℓ

∫
v−Ω

ui uj F (b)
ℓ−m(u) du ,

I(m,φ−ψ)
ij (v) = F (b)

m (v)
∫
v−Ω

ui uj (φ− ψ)(u) E (b)
−m(u) du ,

I(m)
ij (v) = I(m,ψ)

ij (v) + I(m,φ−ψ)
ij (v) ,

Iij(f)(v) =
∑
m∈Zd

fm I(m)
ij (v) , (i, j) ∈ M1 ,

Jijk(f)(v) =
∑
m∈Zd

µ(bk1, bk2)
mk

fm I(m)
ij (v) , (i, j, k) ∈ M2 ,

v ∈ Ω ,

(20b)

and the integral operator

Q(c)(f, f)(v) = I(f)(v)∇vf(v) + J (f)(v) f(v) ,

d = 2 ,

I =

 I22 −I12

−I12 I11

 , J =

−J221 + J122

J121 − J112

 ,

d = 3 ,

I =


I22 + I33 −I12 −I13

−I12 I11 + I33 −I23

−I13 −I23 I11 + I22

 ,

J =


−J221 − J331 + J122 + J133

J121 − J112 − J332 + J233

J131 + J232 − J113 − J223

 ,

v ∈ Ω .

(20c)

Furthermore, in order to determine the Landau operator, we use the associated
Fourier series representation

Q(c)(f, f)(v) =
∑
m∈Zd

Q(c)
m F (b)

m (v) ,

Q(f, f)(v) = ∇v · Q(c)(f, f)(v) =
∑
m∈Zd

µ(b)
m Q(c)

m F (b)
m (v) ,

v ∈ Ω .

(20d)
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Practical implementation. The practical implementation of (20) requires
suitable truncations of the velocity domain and the infinite sums. We point
out that replacing the shifted domain v − Ω by the truncated integral do-
main Ω(b) permits the application of fast Fourier techniques. We recall that
the essential steps of the algorithm, distinguishing between precomputations
that are independent of the density function and computations that are car-
ried out repeatedly in course of the time integration of the Landau equation,
are described in Section 1. Moreover, a link to an elementary Matlab code
is provided there.

2.6 Approach CST1 (Conservative form Singular kernel Transform once)

Modification. Regarding a possible modification of our first approach, we
reconsider the quantity

I(m,ψ)
ij (v) =

∫
Ω
(vi − wi) (vj − wj)ψ(v − w)F (b)

m (w) dw ,

(i, j) ∈ M1 , m ∈ Zd , v ∈ Ω ,

see also (19). Expanding the integrand, inserting the Fouries series represen-
tation of the regularised kernel (18), and applying the identity (13c) yields the
alternative reformulation

Ĩ
(m−ℓ)
ij (v) =

∫
Ω
(vi vj + viwj + vj wi + wiwj)F (b)

m−ℓ(w) dw ,

I(m,ψ)
ij (v) =

∑
ℓ∈Zd

ψℓ E (b)
−ℓ (b1)F

(b)
ℓ (v) Ĩ

(m−ℓ)
ij (v) ,

(i, j) ∈ M1 , m ∈ Zd , v ∈ Ω .

(21a)

Employing the short notation

Ĩ(k,m) =
∫
Ω
wk F (b)

m (w) dw , k ∈ M3 , m ∈ Zd , (21b)

the two-dimensional case takes the form

Ĩ
(m)
11 (v) = v21 Ĩ

(
(0, 0),m

)
+ 2 v1 Ĩ

(
(1, 0),m

)
+ Ĩ

(
(2, 0),m

)
,

Ĩ
(m)
22 (v) = v22 Ĩ

(
(0, 0),m

)
+ 2 v2 Ĩ

(
(0, 1),m

)
+ Ĩ

(
(0, 2),m

)
,

Ĩ
(m)
12 (v) = v1 v2 Ĩ

(
(0, 0),m

)
+ v1 Ĩ

(
(0, 1),m

)
+ v2 Ĩ

(
(1, 0),m

)
+ Ĩ

(
(1, 1),m

)
.

(21c)
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In three dimensions, we instead have

Ĩ
(m)
11 (v) = v21 Ĩ

(
(0, 0, 0),m

)
+ 2 v1 Ĩ

(
(1, 0, 0),m

)
+ Ĩ

(
(2, 0, 0),m

)
,

Ĩ
(m)
22 (v) = v22 Ĩ

(
(0, 0, 0),m

)
+ 2 v2 Ĩ

(
(0, 1, 0),m

)
+ Ĩ

(
(0, 2, 0),m

)
,

Ĩ
(m)
33 (v) = v23 Ĩ

(
(0, 0, 0),m

)
+ 2 v3 Ĩ

(
(0, 0, 1),m

)
+ Ĩ

(
(0, 0, 2),m

)
,

Ĩ
(m)
12 (v) = v1 v2 Ĩ

(
(0, 0, 0),m

)
+ v1 Ĩ

(
(0, 1, 0),m

)
+ v2 Ĩ

(
(1, 0, 0),m

)
+ Ĩ

(
(1, 1, 0),m

)
,

Ĩ
(m)
13 (v) = v1 v3 Ĩ

(
(0, 0, 0),m

)
+ v1 Ĩ

(
(0, 0, 1),m

)
+ v3 Ĩ

(
(1, 0, 0),m

)
+ Ĩ

(
(1, 0, 1),m

)
,

Ĩ
(m)
23 (v) = v2 v3 Ĩ

(
(0, 0, 0),m

)
+ v2 Ĩ

(
(0, 0, 1),m

)
+ v3 Ĩ

(
(0, 1, 0),m

)
+ Ĩ

(
(0, 1, 1),m

)
.

(21d)

Approach CST1. For the sake of completeness, we recapitulate the resulting
representations for the derivatives of the density function

∂vkf(v) =
∑
m∈Zd

µ(bk1, bk2)
mk

fmF (b)
m (v) , k ∈ {1, . . . , d} , v ∈ Ω , (22a)

the basic integrals given by polynomials and Fourier functions

Ĩ(k,m) =
∫
Ω
wk F (b)

m (w) dw , k ∈ M3 , m ∈ Zd , (22b)

the fundamental integrals involving the regularised kernel

Ĩ
(m−ℓ)
ij (v) = vi vj

∫
Ω
F (b)
m−ℓ(w) dw + vi

∫
Ω
wj F (b)

m−ℓ(w) dw

+ vj

∫
Ω
wiF (b)

m−ℓ(w) dw +
∫
Ω
wiwj F (b)

m−ℓ(w) dw ,

I(m,ψ)
ij (v) =

∑
ℓ∈Zd

ψℓ E (b)
−ℓ (b1)F

(b)
ℓ (v) Ĩ

(m−ℓ)
ij (v) ,

I(ψ)
ij (f)(v) =

∑
m∈Zd

fm I(m,ψ)
ij (v) , (i, j) ∈ M1 ,

J (ψ)
ijk (f)(v) =

∑
m∈Zd

µ(bk1, bk2)
mk

fm I(m,ψ)
ij (v) , (i, j, k) ∈ M2 ,

v ∈ Ω ,

(22c)

as well as the fundamental integrals involving the difference of the singular
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kernel and its regularisation

I(m,φ−ψ)
ij (v) = F (b)

m (v)
∫
v−Ω

ui uj (φ− ψ)(u) E (b)
−m(u) du ,

I(φ−ψ)
ij (f)(v) =

∑
m∈Zd

fm I(m,φ−ψ)
ij (v) , (i, j) ∈ M1 ,

J (φ−ψ)
ijk (f)(v) =

∑
m∈Zd

µ(bk1, bk2)
mk

fm I(m,φ−ψ)
ij (v) , (i, j, k) ∈ M2 ,

v ∈ Ω ,

(22d)

the corresponding sums

Iij(f)(v) = I(ψ)
ij (f)(v) + I(φ−ψ)

ij (f)(v) , (i, j) ∈ M1 ,

Jijk(f)(v) = J (ψ)
ijk (f)(v) + J (φ−ψ)

ijk (f)(v) , (i, j, k) ∈ M2 ,

v ∈ Ω ,

(22e)

and the integral operator

Q(c)(f, f)(v) = I(f)(v)∇vf(v) + J (f)(v) f(v) ,

d = 2 ,

I =

 I22 −I12

−I12 I11

 , J =

−J221 + J122

J121 − J112

 ,

d = 3 ,

I =


I22 + I33 −I12 −I13

−I12 I11 + I33 −I23

−I13 −I23 I11 + I22

 ,

J =


−J221 − J331 + J122 + J133

J121 − J112 − J332 + J233

J131 + J232 − J113 − J223

 ,

v ∈ Ω .

(22f)

Subsequent differentiation is again based on the Fourier series expansion

Q(c)(f, f)(v) =
∑
m∈Zd

Q(c)
m F (b)

m (v) ,

Q(f, f)(v) = ∇v · Q(c)(f, f)(v) =
∑
m∈Zd

µ(b)
m Q(c)

m F (b)
m (v) ,

v ∈ Ω .

(22g)

Practical implementation. Concerning the practical implementation
of (22), we prescribe the dimension d of the velocity domain, the integral
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kernel φ, and the value of the density function f at the initial time and the
considered space grid points. We replace the original integral domain Ω by the
truncated domain Ω(b) and make use of the fact that the integrals in (21) are
related to the basic integrals given in (12). It is again expedient to distinguish
between precomputations and computations in course of the time integration,
see also (5).

Input (Discretisation). We first specify

(i) the real numbers (bi1, bi2)di=1 with bi1 < bi2 for i ∈ {1, . . . , d} defining the
truncated domain Ω(b), see (10),

(ii) even positive integers to define the set MM reflecting the total number
of Fourier functions, see (14),

(iii) the real numbers (b
(0)
i1 , b

(0)
i2 )

d
i=1 with b

(0)
i1 < b

(0)
i2 for i ∈ {1, . . . , d} defining

the small restricted domain Ω(0), see (17).

Precomputations Due to the fact that certain quantities do not depend on the
values of the density function, it is advantageous to compute them in advance.
This in particular concerns

(i) the in total M1 · · ·Md equidistant grid points covering the truncated
domain Ω(b),

(ii) the eigenvalues (µ(b)
m )m∈MM

associated with the Fourier functions, see
also (11),

(iii) the basic integrals I(k,m) for k ∈ M3 and m ∈ MM , see (12),
(iv) the values of the integral kernel φ on the equidistant grid, excluding the

singularity at the origin,
(v) the values of the regularised kernel ψ on the grid points that are contained

in the small domain Ω(0), obtained by interpolation,
(vi) the associated spectral coefficients (ψℓ)ℓ∈MM

through a fast Fourier trans-
form as well as the products ψℓ E (b)

−ℓ (b1) for ℓ ∈ MM , see also (18),
(vii) and quadrature approximations to the integrals∫

Ω(0)
ui uj (φ− ψ)(u) E (b)

−m(u) du , (i, j) ∈ M1 , m ∈ Mm ,

see (15) and (22).

Computations Regarding the evaluation of the Landau operator, we compute
approximations to

(i) the spectral coefficients (fm)m∈MM
associated with the density function

through a fast Fourier transform,
(ii) the values of the derivatives ∂vkf for k ∈ {1, . . . , d} at the prescribed

equidistant grid points by means of the representations in (18), requiring
componentwise multiplications by eigenvalues and the application of fast
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inverse Fourier transforms,
(iii) on the one hand, the values of the following fundamental quantities at

the grid points

I(ψ)
ij (f)(v) =

∑
ℓ∈MM

ψℓ E (b)
−ℓ (b1)F

(b)
ℓ (v)

∑
m∈MM

fm Ĩ
(m−ℓ)
ij (v) ,

(i, j) ∈ M1 , v ∈ Ω ,
(23)

by summations along certain directions as well as fast inverse Fourier
transforms fundamental integrals and accordingly for J (ψ)

ijk (f) with
(i, j, k) ∈ M2,

(iv) on the other hand, the values of the fundamental quantities I(φ−ψ)
ij (f)

for (i, j) ∈ M1 and J (φ−ψ)
ijk (f) for (i, j, k) ∈ M2 by fast inverse Fourier

transforms,
(v) the products of their sums with the derivatives of the density function

to obtain the components of the integral operator Q(c),
(vi) and, in a final step, the divergence by multiplications with eigenvalues

and fast inverse Fourier transforms.

2.7 Approaches CCT1-2 (Constant kernel) and CRT1-2 (Regular kernel)

Simplified approaches. The consideration of the Maxwellian molecules case
and test problems involving regular integral kernels and permits significant
simplifications concerning the representations of the fundamental integrals.
On account of situations exemplified in (28), where the approach CST2 fails
due to the incorrect replacement of the shifted integral domain v − Ω by the
original domain Ω, we first include the details for approaches CRT1 and CCT1
and then, for the sake of completeness, the corresponding relations for ap-
proaches CRT2 and CCT2.

Approach CRT1. For a regular integral kernel with formal Fourier series
expansion

φ(v) =
∑
ℓ∈Zd

φℓF (b)
ℓ (v) , v ∈ Ω ,
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the fundamental integrals are given by

Ĩ(k,m− ℓ) =
∫
Ω
wk F (b)

m−ℓ(w) dw , k ∈ M3 ,

Ĩ
(m−ℓ)
ij (v) = vi vj

∫
Ω
F (b)
m−ℓ(w) dw + vi

∫
Ω
wj F (b)

m−ℓ(w) dw

+ vj

∫
Ω
wiF (b)

m−ℓ(w) dw +
∫
Ω
wiwj F (b)

m−ℓ(w) dw ,

I(m)
ij (v) =

∑
ℓ∈Zd

φℓ E (b)
−ℓ (b1)F

(b)
ℓ (v) Ĩ

(m−ℓ)
ij (v) ,

Iij(f)(v) =
∑
m∈Zd

fm I(m)
ij (v) , (i, j) ∈ M1 ,

Jijk(f)(v) =
∑
m∈Zd

µ(bk1, bk2)
mk

fm I(m)
ij (v) , (i, j, k) ∈ M2 ,

v ∈ Ω .

Approach CCT1. For a constant integral kernel, that is φ = C, we arrive
at the further simplification

Ĩ(k,m) =
∫
Ω
wk F (b)

m (w) dw , k ∈ M3 ,

I(m)
ij (v) = C

(
vi vj

∫
Ω
F (b)
m (w) dw + vi

∫
Ω
wj F (b)

m (w) dw

+ vj

∫
Ω
wiF (b)

m (w) dw +
∫
Ω
wiwj F (b)

m (w) dw

)
,

Iij(f)(v) =
∑
m∈Zd

fm I(m)
ij (v) , (i, j) ∈ M1 ,

Jijk(f)(v) =
∑
m∈Zd

µ(bk1, bk2)
mk

fm I(m)
ij (v) , (i, j, k) ∈ M2 ,

v ∈ Ω .

(24)

Approach CRT2. On the other hand, for a regular integral kernel, we obtain

I(m)
ij (v) = E (b)

−m(b1)F (b)
m (v)

∑
ℓ∈Zd

φℓ

∫
v−Ω

ui uj F (b)
ℓ−m(u) du ,

Iij(f)(v) =
∑
m∈Zd

fm I(m)
ij (v) , (i, j) ∈ M1 ,

Jijk(f)(v) =
∑
m∈Zd

µ(bk1, bk2)
mk

fm I(m)
ij (v) , (i, j, k) ∈ M2 ,

v ∈ Ω .

(25)

Approach CCT2. In case of a constant integral kernel, the former approach
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reduces to

I(m)
ij (v) = C F (b)

m (v)
∫
v−Ω

ui uj E (b)
−m(u) du ,

Iij(f)(v) =
∑
m∈Zd

fm I(m)
ij (v) , (i, j) ∈ M1 ,

Jijk(f)(v) =
∑
m∈Zd

µ(bk1, bk2)
mk

fm I(m)
ij (v) , (i, j, k) ∈ M2 ,

v ∈ Ω .

(26)

2.8 Approaches NST1 and NRT1 (Non-Conservative form)

Non-conservative formulation. With regard to numerical comparisons for
different test problems, it is worth mentioning that alternative approaches
in the lines of CST2 and CST1, based on a non-conservative formulation of
the Landau operator and hence avoiding numerical differentiation of the in-
tegral operator, are advantageous in certain situations, see for instance (28).
However, due to the fact that intrinsic properties such as the conservation
of mass are lost, additional technicalities are needed, and the overall com-
putation times are higher, we refrain from detailed descriptions and merely
include the numerical results obtained for the general approach NST1 and its
simplification NRT1 in the special case of a regular kernel.

3 Numerical validations and comparisons

In this section, we are concerned with a thorough numerical validation and
comparison of the approaches summarised in Table 1. For this purpose, we next
state test problems involving constant, regular, and singular integral kernels.

3.1 Test problems

Test problem A (Constant integral kernel, Unbounded domain). In
the special case of Maxwellian molecules in two and three dimensions, the
integral kernels are defined by certain constants

d = 2 , φ = C = 1
16
,

d = 3 , φ = C = 1
24
,

(27a)

and the underlying velocity domains coincide with the Euclidian spaces. In
our numerical experiments, we make use of the fact that particular choices of
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the density functions permit to determine the associated integral and Landau
operators by straightforward calculations

d = 2 ,

f(v) = 1
π
e−|v|2 |v|2 ,

Q(c)(f, f)(v) = − 1
16π

e−|v|2
(
|v|2 − 2

)
v ,

Q(f, f)(v) = 1
8π

e−|v|2
(
|v|4 − 4 |v|2 + 2

)
,

v ∈ Ω = R2 ,

(27b)

d = 3 ,

f(v) = 1
2π3/2 e

−|v|2
(
2 |v|2 − 1

)
,

Q(c)(f, f)(v) = − 1
12π3/2 e

−|v|2
(
|v|2 − 5

2

)
v ,

Q(f, f)(v) = 1
6π3/2 e

−|v|2
(
|v|4 − 5 |v|2 + 15

4

)
,

v ∈ Ω = R3 .

(27c)

Further numerical tests for the Landau equation rely on the knowledge of the
BKW solutions

d = 2 , (α1, α2, α3) =
(
2, 1, 1

8

)
,

d = 3 , (α1, α2, α3) =
(
5
2
, 3
2
, 1
6

)
,

K(t) = 1− 1
2
e−α3 t ,

f(v, t) = 1
(2πK(t))d/2

e−
1
2

1
K(t)

|v|2
(
α1 − α2

1
K(t)

+ 1
2

1−K(t)
(K(t))2

|v|2
)
,

v ∈ Ω = Rd , t ∈ [t0, T ] ,

(27d)

see [3, Ex. 1 and 2]. For three dimensions, the profile of the BKW solution is
illustrated in Figure 12.

Test problem B (Regular integral kernel, Bounded domain). First
artificial test problems in two and three dimensions involve regular integral
kernels and bounded velocity domains

φ(v) = cos(v1) · · · cos(vd) , v ∈ Ω = [−π, π]d . (28a)

The prescribed density functions

f(v) = sin(v1) · · · sin(vd) , v ∈ Ω = [−π, π]d , (28b)

are chosen such that the integral operators result from straightforward calcu-
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lations

d = 2 ,

q1(v) =
π2

8
cos(2 v2)

(
2 v1 cos(2 v1)− sin(2 v1)− 2 v1

)
,

q2(v) = − π2

4
cos(2 v1) sin(v2)

(
2 v2 sin(v2) + cos(v2)

)
,

Q(c)(f, f)(v) =
(
q1(v), q2(v)

)T
,

v ∈ Ω = [−π, π]2 ,

(28c)

d = 3 ,

q11(v) =
(
cos(2 v3)− 1

2

) (
v1 cos(2 v1)− 1

2
sin(2 v1)− v1

)
cos(2 v2) ,

q12(v) =
(
1
4
sin(2 v1)− 1

2
v1 cos(2 v1)

)
cos(2 v3) + v1

(
cos2(v3)− 1

2

)
,

q1(v) = − π3

4

(
q11(v) + q12(v)

)
,

q21(v) =
(
cos(2 v3)− 1

2

) (
v2 cos(2 v2)− 1

2
sin(2 v2)− v2

)
cos(2 v1) ,

q22(v) =
(
1
4
sin(2 v2)− 1

2
v2 cos(2 v2)

)
cos(2 v3) + v2

(
cos2(v3)− 1

2

)
,

q2(v) = − π3

4

(
q21(v) + q22(v)

)
,

q31(v) =
1
4

(
2 v3 cos(2 v3)− sin(2 v3)− 2 v3

)
,

q32(v) = 2 cos(2 v1) cos(2 v2)− cos(2 v1)− cos(2 v2) ,

q3(v) = − π3

4
q31(v) q32(v) ,

Q(c)(f, f)(v) =
(
q1(v), q2(v), q3(v)

)T
,

v ∈ Ω = [−π, π]3 .

(28d)

The associated Landau operators are obtained by differentiation

d = 2 ,

q1(v) =
(
2 v2 sin(2 v2) + 1

)
cos(2 v1) ,

q2(v) =
(
2 v1 sin(2 v1) + 1

)
cos(2 v2) ,

Q(f, f)(v) = − π2

4

(
q1(v) + q2(v)

)
,

v ∈ Ω = [−π, π]2 ,

(28e)
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d = 3 ,

q11(v) = v2 sin(2 v2) cos(2 v3) + v3 cos(2v2) sin(2 v3) ,

q12(v) =
1
2

(
− v2 sin(2 v2)− v3 sin(2 v3) + cos(2 v2) + cos(2 v3)− 1

)
,

q1(v) =
(
q11(v) + q12(v)

)
cos(2 v1) ,

q21(v) =
(
v1 sin(2 v1) +

1
2

)
cos(2 v3) ,

q22(v) = − 1
2

(
v1 sin(2 v1) + v3 sin(2 v3) + 1

)
,

q2(v) =
(
q21(v) + q22(v)

)
cos(2 v2) ,

q3(v) = − 1
2

(
v1 sin(2 v1) + v2 sin(2 v2)

)
cos(2 v3)− cos2(v3) +

1
2
,

Q(f, f)(v) = π3

2

(
q1(v) + q2(v) + q3(v)

)
,

v ∈ Ω = [−π, π]3 .

(28f)

Test problem C (Regular integral kernel, Unbounded domain). Fur-
ther artificial test problems in two and three dimensions are defined by
Gaussian-like integral kernels and density functions

d = 2 , φ(v) = e−v
2
1−2 v22 , f(v) = e−

1
2
v21−

1
4
v22 ,

d = 3 , φ(v) = e−v
2
1−2 v22−3 v23 , f(v) = e−

1
2
v21−

1
4
v22−

1
8
v23 ,

v ∈ Ω = Rd .

(29a)

The associated integral and Landau operators are given by

d = 2 ,

q1(v) =
√
6 π e−

5
6
v21−

17
36
v22 ,

Q(c)(f, f)(v) = q1(v)
(
− 1

2187
v1
(
v22 + 18

)
, 1
729

v2
(
v21 + 3

))T
,

Q(f, f)(v) = − 1
13122

q1(v)
(
7 v21 v

2
2 − 198 v21 + 57 v22 + 54) ,

v ∈ Ω = R2 ,

(29b)
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d = 3 ,

q1(v) =
√
3π3/2 e−

5
6
v21−

17
36
v22−

49
200

v23 ,

q21(v) = − 1
6834375

v1
(
1250 v22 + 243 v23 + 46800

)
,

q22(v) =
1

2278125
v2
(
1250 v21 − 9 v23 + 2850

)
,

q23(v) =
1

91125
v3
(
27 v21 + v22 + 99

)
,

Q(c)(f, f)(v) = 2 q1(v)
(
q21(v), q22(v), q23(v)

)T
,

q31(v) = 17500 v21 v
2
2 + 7047 v21 v

2
3 + 135 v22 v

2
3 ,

q31(v) = − 1005300 v21 + 111000 v22 + 46899 v23 + 369900 ,

Q(f, f)(v) = − 1
41006250

q1(v)
(
q31(v) + q32(v)

)
,

v ∈ Ω = R3 .

(29c)

Test problem D (Singular integral kernel, Unbounded domain). In
the lines of [3, Ex. 3 and 4] illustrating a two-dimensional anisotropic solu-
tion and the three-dimensional Rosenbluth problem with Coulomb potential,
we finally study the numerical evaluation of Landau operators that involve
singular integral kernels and density functions defined as

d = 2 ,

φ(v) = 1
16

1
|v|3 , f(v) = 1

4π

(
e−

1
2
((v1+2)2+(v2−1)2) + e−

1
2
(v21+(v2+1)2)

)
,

d = 3 ,

φ(v) = 1
4π

1
|v|3 , f(v) = 1

c21
e−c1/c

2
2 (|v|−c2)

2

, c1 = 10 , c2 =
3
10
,

v ∈ Ω = Rd .

(30)

For the relevant three-dimensional case, the profile of the solution to the as-
sociated Landau equation is shown in Figure 13.

3.2 Numerical results

Reliability and efficiency. In our numerical tests for the different ap-
proaches outlined in Table 1, we first resort to the test problems A–C with
known solutions, see (27) to (29). We in particular monitor the achieved accu-
racy when evaluating the Landau operator and integrating the associated Lan-
dau equation in time. In addition, we measure the reliability of our approaches
in a long-term integration through the conservation of mass, momentum, and
energy as well as the decay of entropy, see (7). Afterwards, we extend our
studies to the most relevant case of Coulomb interaction (30). We recall that
our strategy for the regularisation of the singular integral kernel is illustrated
in Figure 1. Throughout, with the conclusion from Table 2 in mind, we use
quadrature approximations based on few grid points. We point out that the
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observed computation times in Matlab are erratic and thus serve as rough
indicators for the overall cost. We expect improvements for implementations
based on efficient software packages.

First validation. In sight of the complexity of the problem, it is reasonable
to validate our theoretical considerations in two and three dimensions step-by-
step. First numerical tests rely on the knowledge of the Landau operators in the
Maxwellian molecules case (Test problem A) for special choices of the density
functions, see (27). We study the approaches CRT2 and CRT1, described in
Section 2.7, which are suitable for regular kernels. On the one hand, we vary
the truncated domain and the Fourier spectral discretisation in each direction

d = 2 ,

Ω(b) = [− 9, 10]× [− 10, 11] , M = (100, 110) ,

d = 3 ,

Ω(b) = [− 9, 10]× [− 10, 11]× [− 11, 12] , M = (100, 110, 120) ,

and on the other hand, we set

Ω(b) = [−10, 10]d , Mi = 100 , i ∈ {1, . . . , d} , (31)

see also (10) and (14). Besides, we contrast implementations using for-loops
over index sets such as (15) or not, respectively. Due to the fact that consistent
results regarding accuracy and computation time are observed in all cases, see
Figure 2, we proceed with thorough numerical comparisons of the different
approaches.

Numerical comparisons. We next contrast the results obtained for the gen-
eral approaches CST2, CST1, NST1 and their simplifications CRT2, CRT1,
NRT1. Setting again (31), we consider a Landau operator involving a con-
stant integral kernel (Maxwellian molecules case, Test problem A) and a reg-
ular kernel (Test problem C), respectively, see Figures 3 and 5. Moreover,
we demonstrate the issues of a bounded domain and numerical differentiation
(Test problem B), see Figure 4. Specifically, the integral operator does not
fulfill periodicity requirements and hence is not well represented by Fourier
series. In addition, we compare computation times and relative accuracies with
respect to approach CST2 when evaluating the Landau operator involving the
singular kernel (Coulomb interaction, Test problem D), see Figure 6. Presum-
ably, in the latter case, the main source of approximation errors is linked to
numerical quadrature. Due to the fact that the non-conservative approach
NST1 does not preserve mass and requires quadrature approximations of the
singular integral kernel and its first-order derivatives, we select the conserva-
tive approach CST2 with a reduced computation time for further numerical
tests.

Time integration. For the time integration of the Landau equation, as indi-
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cated in Section 1, we combine our approach CST2 with explicit Runge–Kutta
methods of non-stiff orders p ∈ {1, 2, 3, 4}. We once again set Ω(b) = [−10, 10]d

and choose 100×100 Fourier functions in two dimensions or 64×64×64 Fourier
functions in three dimensions, respectively. The results displayed in Fig-
ures 7 and 8 confirm highly accurate numerical outcomes for the Maxwellian
molecules case. Accordingly, we observe conservation of mass as well as nearby
conservation of momentum and energy over time, see Figure 9. Regarding the
decay of entropy, as negative contributions in the range of machine precision
may appear, we employ a projection on the strictly positive density function
values. The corresponding results for the significantly more demanding case
of Coulomb interaction are shown in Figure 10. As a final test, we prescribe a
significantly smaller truncated domain and larger equidistant time steps. We
observe expected quantitative effects, that is, a certain loss of accuracy, but
still retain qualitatively reliable results, see Figure 11.

Solution profiles. For the two relevant cases of Maxwellian molecules (Test
problem A) and Coulomb interaction (Test problem D), the solution profiles at
the initial and final times are shown in Figures 12 and 13. Movies illustrating
the time evolution are found through [5].
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Approach CST2 (Section 2.5)

Based on the conservative formulation of the Landau operator.

Uses numerical differentiation of the integral operator.

Adapted to kernels with an isolated singularity at the origin.

The integral transform is applied to the singular kernel and its regularisation.

Approach CST1 (Section 2.6)

Based on the conservative formulation of the Landau operator.

Uses numerical differentiation of the integral operator.

Adapted to kernels with an isolated singularity at the origin.

The integral transform is applied to the singular kernel.

Approaches CRT2 and CRT1 (Section 2.7)

Simplification of CST2 and CST1 for the case of a regular kernel.

Approach NST1 (Section 2.8)

Based on the non-conservative formulation of the Landau operator.

Avoids numerical differentiation of the integral operator.

Adapted to kernels with an isolated singularity at the origin.

The integral transform is applied to the singular kernel and its derivatives.

Approach NRT1 (Section 2.8)

Simplification of NST1 for the case of a regular kernel.

Table 1
Overview on different approaches for the numerical evaluation of the Landau collision
operator (1).

Quadrature on a small neighbourhood Precomputation time CT

Quadrature on the whole domain 88×CT

Table 2
Test problem C (regular integral kernel, unbounded domain, known solution) in
two dimensions. Numerical evaluation of the Landau operator based on 256 × 256
uniform grid points covering the truncated velocity domain [− 10, 10] × [− 10, 10].
Precomputation times observed for a quadrature approximation based on 5× 5 grid
points versus a quadrature approximation on the whole domain based on 256× 256
grid points. In both cases, an overall relative accuracy of about 4 ·10− 11 is obtained.
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Fig. 1. Illustration of the singular integral kernel φ : R3 \ {0} → R : v 7→ |v|− 3

arising in the case of Coulomb interaction, see (1) and (3). A regularised kernel is
obtained by interpolation on a small neighbourhood of the origin. The remaining
difference vanishes on the main part of the velocity domain.
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Fig. 2. Test problem A (Maxwellian molecules case) in two (d = 2) and three (d = 3)
dimensions. The evaluation of the Landau operator is based on the approaches CRT2
(left) and CRT1 (right) described in Section 2.7. For different implementations (ve-
locity domains defined by non-symmetric versus symmetric intervals, computation
of fundamental integrals without or with for-loops), consistent results concerning
accuracy and computation time are observed.
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Fig. 3. Test problem A (Maxwellian molecules case) in two and three dimensions.
Numerical comparisons of relative accuracies as well as precomputation and com-
putation times. First and second rows: General approaches for the evaluation of the
associated Landau operator based on the conservative form (CST2, CST1) and the
non-conservative form (NST1). Third and fourth rows: Simplifications to regular
kernels (CRT2, CRT1, NRT1). In all cases, highly accurate results are obtained.
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Fig. 4. Test problem B (regular integral kernel, bounded domain, known solution).
The approaches based on the non-conservative formulation yield a satisfactory result
(NST1, NRT1), whereas the approaches based on the conservative formulation and
numerical differentiation are not suitable (CST2, CST1, CRT2, CRT1).
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Fig. 5. Test problem C (regular integral kernel, unbounded domain, known solution)
in two and three dimensions. Numerical comparisons of relative accuracies as well
as precomputation and computation times. General approaches for the evaluation of
the associated Landau operator based on the conservative form (CST2, CST1) and
the non-conservative form (NST1). Simplifications to regular kernels (CRT2, CRT1,
NRT1).
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Fig. 6. Test problem D (Coulomb case) in two and three dimensions. Numerical
comparisons of relative accuracies with respect to the first approximation obtained
by approach CST2 as well as precomputation and computation times.

Fig. 7. Test problem A (Maxwellian molecules case) in two dimensions. Time inte-
gration of the Landau equation based on 100 × 100 Fourier functions and explicit
Runge–Kutta methods of orders p ∈ {1, 2, 3}. The absolute errors over time with
respect to the known solution values, obtained for a certain time increment and a
reduced increment, confirm the orders of convergence.
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Fig. 8. Test problem A (Maxwellian molecules case) in three dimensions. Time inte-
gration of the Landau equation based on 64× 64× 64 Fourier functions and explicit
Runge–Kutta methods of orders p ∈ {1, 2, 3}. Absolute errors over time with respect
to the known solution values, obtained for a certain time increment.

Fig. 9. Test problem A (Maxwellian molecules case) in two and three dimensions.
Time integration of the Landau equation based on an explicit Runge–Kutta method
of order p = 4. Mass is conserved. First momentum, energy, and entropy over time.
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Fig. 10. Test problem D (Coulomb case) in two and three dimensions. Time inte-
gration of the Landau equation based on an explicit Runge–Kutta method of order
p = 4. Mass is conserved. First momentum, energy, and entropy over time.

Fig. 11. Corresponding results for test problem D (Coulomb case) in three dimensions
with a significantly smaller truncated domain and a reduced number of time steps.
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Fig. 12. Numerical illustration of the BKW solution to the Landau equation involving
a constant kernel in three dimensions (Maxwellian molecules case), see (27). The
initial time t0 = 6 ln(54) is chosen in such a way that the non-negativity of the
solution is ensured.

Fig. 13. Numerical illustration of the solution to the Landau equation involving a
singular kernel in three dimensions (Coulomb case), see (30).
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