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Abstract

The year 2025 marks the 100 and 30 years anniversaries of the discovery of Bose—
Einstein condensation and its successful experimental realisation. Inspired by these
important research achievements, a conceptually simple approach is proposed to
facilitate reliable and efficient numerical simulations. The structure of the under-
lying systems of coupled Gross—Pitaevskii equations suggests the use of optimised
high-order operator splitting methods for dynamical evolution and ground state
computation. A second-order barrier, however, prevents the applicability of stan-
dard operator splitting methods for both, time evolution as well as imaginary time
propagation. An innovative alternative approach accomplishes the design of novel
modified operator splitting methods that remain stable under moderate smallness
assumptions on the time increments. The core idea is to incorporate commutators
of the defining differential and nonlinear multiplication operators, since this per-
mits to fulfill the basic stability requirement of positive method coefficients. Further
improvements with respect to convergence at the targeted precision arise from au-
tomatic adjustments of the time stepsizes by an inexpensive local error control. The
presented numerical experiments confirm the favourable performance of a specific
fourth-order modified operator splitting method. Amongst others, it is demonstrated
that the excellent mass and energy conservation in long-term evolutions, intrinsic at-
tributes of geometric numerical integrators for Hamiltonian systems, is maintained
for a sensible variation of the time stepsizes. Moreover, the benefits of adaptive
higher-order approximations in ground state computations are illustrated.
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1 Introduction

Main objective. In light of the 100 and 30 years anniversaries of the the-
oretical discovery of Bose-Einstein condensation [19] and its successful ex-
perimental realisation at ultracold temperatures [1], a main objective of the
present work is the introduction and exemplification of a novel and conceptu-
ally simple approach, in order to facilitate the reliable and efficient numerical
simulation of multi-species Bose-Einstein condensates.

Bose—Einstein condensates. The creation of Bose-Einstein condensate col-
lective systems occurs when a gas of bosons is cooled to nanokelvin temper-
atures by laser technologies, since the controlled reduction of atomic motion
causes a large number of microscopic particles to form a single macroscopic
quantum state at lowest energy. Worldwide, various experimental physics
groups devote their current research to the study and manipulation of this
particular state of matter. As an instance, we highlight the Strongly Corre-
lated Quantum Matter Group? at the University of Innsbruck, led by HANNS—
CHRISTOPH NAGERL, and the recent contribution [18].

Gross—Pitaevskii systems. Fundamental mathematical models that de-
scribe the dynamical evolution of the macroscopic wave functions associ-
ated with multi-species Bose—Einstein condensates are provided by systems
of coupled time-dependent Gross—Pitaevskii equations [20,25]. We focus on
typical instances that are characterised by partial differential equations of
Schrodinger-type comprising the Laplacian with respect to the spatial coordi-
nates, real-valued space-dependent functions, and non-analytic nonlinearities.
The defining operators reflect kinetic energies, external trapping and lattice
potentials, and the interactions between the particles of different species. The
physically most relevant setting corresponds to three space dimensions and
cubic nonlinearities. In addition, we study the special cases of one and two di-
mensions with the advantages of accelerating numerical tests and simplifying
the visualisations of solution profiles.

Operator splitting approach. The structures of the defining linear dif-
ferential and nonlinear multiplication operators suggest the use of standard
operator splitting methods combined with fast Fourier techniques for spatial
discretisation. The main idea is to divide the original problem into subprob-
lems and to apply adjusted solvers to each of the subproblems. Employing
a usual time-stepping approach, the respective approximations are composed
several times, whereby the time increments are scaled by certain method coef-
ficients. The particular choice of the method coefficients, linked to the number
of compositions per time step, determines the overall quantitative and qualita-
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tive properties of a specific splitting scheme. Detailed information on splitting
methods is found in [10,24]. A small selection of contributions in the context
of linear and nonlinear Schrodinger equations is [5,9,14,30-32], see also the
references given therein.

Geometric numerical integrators. Optimised high-order splitting meth-
ods exhibit a favourable behaviour regarding stability, accuracy, and efficiency.
By reason of their distinguishing attributes of geometric numerical integrators
for Hamiltonian systems [8,21,22,29], they also show an excellent preservation
of conserved quantities such as mass and energy over long times.

Limitations for non-reversible systems. However, the unified applicabil-
ity of standard operator splitting methods for both, the time evolution and
the imaginary time propagation of Gross—Pitaevskii systems, is limited by
a second-order barrier for systems that are non-reversible in time. In other
words, due to the fact that higher-order splitting methods necessarily involve
negative coefficients 7] and thus suffer from severe instabilities, they are ex-
cluded from ground and excited state computations. Hence, the symmetric
second-order Strang splitting method is left as canonical choice.

Modified operator splitting approach. In this contribution, we exploit
an alternative approach, which we refer to as modified operator splitting, and
illustrate its benefits over standard splitting methods. Within the context of
linear differential equations, the basic concept is known as modified poten-
tial or force-gradient operator splitting, see [3,11,15,16,23,27]. In our recent
work [12], we could accomplish the generalisation to a class of nonlinear partial
differential equations by means of the formal calculus of Lie-derivatives [34].
A key observation is that the incorporation of double commutators of the
defining differential and multiplication operators in the nonlinear subproblems
accomplishes for the design of fourth-order schemes with positive coefficients.
In what follows, we establish modified operator splitting methods for the first
time for Gross—Pitaevskii systems. Provided that the time stepsizes are mod-
erately small, we demonstrate that modified operator splitting methods with
positive coefficients remain stable for time-dependent Gross—Pitaevskii sys-
tems as well as for their parabolic-type counterparts arising in the imaginary
time propagation for ground and excited state computations, see [6,11,17,26].

Adaptivity in time. With regard to the evident advantages of adaptivity
in time, we propose an inexpensive local error control. According to the re-
quirements of the considered problem and the ranges of the decisive physical
parameters, this strategy automatically adapts the time increments to en-
sure stability and also enhances the targeted precision. We measure the effort
of the resulting adaptive modified splitting methods by the numbers of fast
Fourier transforms and their inverses, since these procedures constitute the
computationally most costly components.



Efficient realisation. Besides, we clarify the validity of an invariance princi-
ple that has a significant impact on the efficient realisation of modified splitting
methods for time-dependent Gross—Pitaevskii systems. In essence, it justifies
the replacement of nonlinear terms depending on the time-dependent solutions
by expressions involving only the initial solution values. As a consequence, for
the nonlinear subproblems that result from omitting the Laplacians, this in-
variance property provides the knowledge of the exact solutions on each of the
temporal subintervals.

Numerical experiments. Our numerical experiments for model problems
in one, two, and three space dimensions illustrate the benefits of a specific
adaptive fourth-order modified operator splitting method in comparison with
standard splitting methods based on uniform time grids. Amongst others,
we confirm the favourable energy conservation in long-term evolutions and
demonstrate the computation of ground states with high accuracy.

Notation. In the following, we denote by L?*(2,C) the Lebesgue space of
square integrable complex-valued functions, which forms a Hilbert space with
inner product and associated norm defined by

(V)2 = [ @@ B@ e, ollie =@ [ W)z, v € XQ0). (1a)

Accordingly, for vector-valued functions, we set

d
(90|¢ L2 2_: 90] |¢] 5 ”¢H(L2)d =

d
12
j:Zl ||¢]HL27 (lb)

0= (p1,...,04) € L*(,CY, = ,...,04) € L*(Q,C.

The arising derivatives of functionals are determined as Gateaux derivatives
generalising directional derivatives

Fo)w=lim?! (F(o+ew) = F(v)). (2)

Throughout, we tacitly assume that for the situations under consideration
sufficiently regular solutions are ensured such that the application of high-
order space and time discretisation methods is indeed expedient.

Outline. The present work is organised as follows. In Sections 2 and 3, we
state Gross—Pitaevskii equations as well as extended systems modelling multi-
species Bose—Einstein condensates. A compact symbolic notation permits to
emphasise the common structures of the initial value problems for dynami-
cal evolution and ground state computation. In Section 4, we first give a brief
summary of standard operator splitting methods and then detail our novel ap-
proach of modified operator splitting for the time evolution and imaginary time
propagation of Gross—Pitaevskii systems. Comparative numerical experiments



regarding the stability and accuracy behaviour of modified operator splitting
methods in short-term as well as long-term evolutions for two-component sys-
tems are presented in Section 5. Concluding remarks are given in the final
section 6.

2 Gross—Pitaevskii equations

Model problem. As a basic model for the nonlinear dynamics of a single-
species Bose-Einstein condensate, we consider the initial value problem for
a time-dependent Gross—Pitaevskii equation. For our purposes, it suffices to
study the dimensionless formulation

10,0 (z,t) = AV (z,t) + Vi s(z) Ua,t) + 0 |V(z, 1) U(z, 1), (30)
\IJ(JT,t()) = \Po(l'), (ZE,t) € x [tQ,T] .
Here, we denote by i € C the imaginary unit, by
U:Qx[tg, T] — C: (z,t) — Y(x,t) (3b)

the complex-valued macroscopic wave function, defined on a certain space
domain Q C R? and time interval [ty, 7] C R, by

d
2
Aa = Z (67 8% 5
i=1

a; e R\ {0}, ie{l,....d}, x=(x1,...,24) € Q,

(3¢)

the weighted Laplacian with respect to the spatial coordinates, by

d
Vg’%(g Q—R:z— Z (Bl 3712 + v Sin2(§i xz)) s (3d>
=1

6i>07 %,&GR, iE{l,...,d},

an external harmonic potential, possibly comprising an additional lattice, and
by ¥ € R the coupling constant.

Compact reformulation. Henceforth, we denote by ¢ : 2 — C a sufficiently
regular space-dependent function and employ convenient abbreviations

H(y) = Hi(¥) + Ha(¢) ,

Hy(0) = Ao+ Vas b Haw) = 0|0 0 (42)

for the operators defining the right-hand side of the partial differential equation



n (3a). Consequently, we in particular obtain the compact reformulation

{thlf(m,t) = —iH(V(x,1)),

(4b)
U(x,tg) = Wo(z), (x,t)€ QX [t,T].

Conserved quantities. A fundamental attribute of time-dependent Gross—
Pitaevskii equations is the preservation of physical quantities such as total
mass (or particle number) and energy

M) = ¥l7>, E@)=Ei(d)+ 5 Ea(¥),

Ev(¥) = (Hi(®)[v) .. Es(¥) = (Ha(¥)]¢) (5a)

2’ 2’

see (1) and (3)—(4). Integration-by-parts under the requirement that the
boundary terms vanish yields

Ex(@) =9 ([0 | [¢I?) ., , (5b)

d
E1(¢) = - Zai (8521/))2+ (Vﬁ,’y,ts ‘ |77Z)|2)L2 ) 12’
i=1

which reveals that the energy functional is real-valued and positive for non-
trivial solutions, provided that the weights in the Laplacian are negative and
that the potential as well as the coupling constant are non-negative. Straight-
forward calculations show that the Gateaux derivatives are given by

M'() ¢ = 2R | ¢)r2 = 2S(i (¥ 9)12)

, . (5¢)
E'(¢) ¢ =2R(H(®) | ¢)r2 = 23(i (HW) | ¢)r2) ,

see also (2). As a consequence, for regular solutions to the Gross—Pitaevskii
equation (3)—(4), this implies

LM (W 1) = M (¥, 0) 0 (,0) = =28 (B (¥(,0) + Ba(¥(,0)) ) =0,
0

SE(W( 1) = E'(W(1) (- t) = —2$<HH(\II(-,t))
t € [to,T],

and thus confirms the characterisations of mass and energy conservation as

M(W( 1) = M(U( t)), E(U(1) = E(W(-t0)), tE€lto,T]. (5d)

Regularity and normalisation conditions. For the time-dependent
Gross—Pitaevskii equation (3)—(4), due to mass conservation, it is justified
to impose the normalisation condition

1W( )2 = /No, € [to,T],



with a strictly positive real number Ny > 0. Besides, we tacitely suppose that
the prescribed initial states and hence the associated solutions are sufficiently
regular such that in particular the energy functional is well-defined. Stronger
regularity requirements are needed in the context of higher-order operator
splitting methods to retain the full orders of convergence.

Ground and excited states. Ground and excited states are solutions to
Schrodinger equations with separate dependencies on space and time variables.
More precisely, inserting the ansatz

U(x,t) =e(t)®(x), (z,t)€ QX [ty,T],

63[t0,T]—>C, ’€<t)’:1, te[t(]?T]?

D0 R, [0 =/No,
into the Gross—Pitaevskii equation (3)—(4), implies
ie/(t) B(x) = e(t) H(®(x)), (x,t) € Qx [to, 7],
and hence e(t) = e~ '** for t € [ty, T] with u € R as well as
H(®(z)) = pd(x), z€Q.

Taking the inner product and performing integration-by-parts shows the close
connection of the so-called chemical potential with the energy

Nopt = (H(®)|®)12 = B(®) + 5 B>(®) = E(¥( 1)) + 5 E2(W(- 1))
te [t07T]7

and in particular confirms that it is a real-valued quantity. Summarised, the
ground state solution at minimal energy level is given by a pair (P, u) that
satisfies the relations

U(r,t) =e " d(x), (1,t)€Qx[te,T], [Pz =1/ No, (©)
H@) =p®, p=(E(@)+}E(P)).

Accordingly, solutions of this form at higher energy levels are referred to as
excited states.

Imaginary time propagation. The imaginary time propagation is a heuris-
tic approach for the computation of ground and first excited state solutions.
It relies on the time integration of the parabolic counterpart of the Gross—
Pitaevskii equation

{8t\if(x,t) = — H(¥(x,1)),

N - (7a)
(x,to) = Vo(z), (x,t) € QX [ty,T],



formally retained from (3)—(4) by multiplying the time variable by the imag-
inary unit and using that 10; = — 0;4. For well-definedness, it is essential
that the weights in the Laplacian are negative. In order to ensure convergence
towards a non-trivial stationary solution, an additional normalisation condi-
tion is imposed, which is often realised by a straightforward scaling of the
numerical solution values at certain intermediate times. For suitably chosen
real-valued initial states and sufficiently large final times, it is expected that
this approach yields appropriate approximations to ground and excited state
solutions through

U(z,T) N
\/ﬁo”@(_,%ub(x), reQ. (7b)

More precisely, the resulting space-dependent function ® : 2 — R deter-
mines 1 € R and hence ¥ : Q X [tg,T] — C as stated in (6). In brief, the
imaginary time propagation is substantiated by the application of the gradi-
ent descent method for the computation of the solution with minimal energy

Ve = Uora — 7E' (‘i’old) = Wyq — 2 TH(@M)

and its interpretation as explicit Euler approximation to (7a). Hereby, the
connection between the directional derivative of the energy functional and
the operator defining the right-hand side of the partial differential equation
in (7a) is used, see (5¢). Further enhancements of the procedure incorporate
the knowledge of approximate ground and first excited state solutions in sim-
plified settings and stepwise adaptations to the problem under consideration.
Specifically, for harmonic potentials, the first Hermite function

v=0, ie{l,....dy, 9=0,

d i Bt [ Bi g2
W(w,t):mﬂ(yﬁe A A ’>, r=(x1,...,24) € R?,

Vrd
i=1
(8)

and the Thomas-Fermi approximation

=0, =0, ic{l, ... d},

B(x) W(x), W(I)Z%(M—ng(s(x))>0,
0, Wi(x) <0,

V16 P19*NG d

= 91/2/B1B29Ny, d

T By s 2N, d

U(x,t) =e " d(z), zecR?,

L,
2,
3,

yield ground state solutions for the linear Schrodinger equation and the lim-
iting case of a negligible kinetic part, respectively. Another option to improve



the convergence properties of the algorithm is the application of the gradient
descent with momentum, where (7a) is replaced by

{attqj($at) = - Cat\i’@» - H(@(x,t)) ’ (10a)
to

t)
\ij(l’,to) = @10(I) ) 8t\il(x, ) = @20(I), (.f,t) €N x {to,T] R
or an associated first-order system such as

8t\ill(x,t) = \ijg(l’,t),
Oy (x,t) = —cUy(x,t) — H(@ﬂx,t)) , (10b)
Uy (2,t0) = Uro(z), Wa(z,to) = Ugo(z), (x,t) € Q x [to, T],

with suitably chosen initial conditions for the solution and its time derivative.

3 Gross—Pitaevskii systems

Model problem. In order to exemplify systems of coupled time-dependent
Gross—Pitaevskii equations describing the dynamical evolution of multi-species
Bose—Einstein condensates, we consider the model problem

10,V (x,t) = Ag, Vi(x,t) + Vi, .5 (7) Wj(2,t)
J
+Z?9jk|\1’k($,t)’2 U, (x,t), (11a)
=1

\Ilj(x,to):\lloj(x), (l‘,t)GQX[to,T], ]E{l,,J}

By analogy to (3), the vector-valued macroscopic wave function is defined on
a certain space domain and time interval

U x [to, T] — C: (0,8) — U(a, 1) = (Vi(a,0),..., Uyla, 1)), (11)

and the weighted Laplace operators and external potentials are given by
d
Aaj :Zajif)i, Oéj: (Oéjl,...,O[jd),
i=1

d
V,Bj,’yj,éj Q—R:z+— Z (631 3712 -+ Yji sin2((5ji .CEZ)) , (11C>

i=1

5j:(5j17-~->5jd)7 ’Yj:(’lea---,’de), 5j:(6j17--~75jd)7
Oéjiaﬂji>0a ’in,(SjZ'GR, ie{l,...,d}, jG{l,,J}

Compact reformulation. With regard to (4), we rewrite (11a) in compact



form as

{ 10,0 (x,t) = H(¥(x,1)) (122)
qj(l’,to) = \Il()(l’) , (.T,t) €N x [tQ,T] s
where we employ the convenient short notation
H() = Hi(¢) + Ha(¢),
W= (e )", HW) = (Ha(¥),..., Huy($)) . €€ {1,2},
(12b)

J
Hij(V) = Ao,y + V5,05, Hoj(¥) = Zﬁjk ‘wk‘2¢ja
k=1

je{l,....,J}.
Conserved quantities and ground states. By means of these abbrevia-
tions, it is straightforward to extend our considerations for a single Gross—

Pitaevskii equation to systems. That is, for regular solutions to (11)—(12),
total mass and energy

M) = [, E@W) = Ei(¥) + 5 Ba(y),
Ey(0) = (HyW) |4y),, . Buw) = (Hiw) |9) 0, = D By,

te{l,2}y, je{1,...,J},

2’

are preserved over time
M(W(, 1) = M(W(-to)), E(U(1) = E(¥(t0)), tE€[to,T],

which justifies the normalisation condition

[U( )2y = \/No, t€[to,T],

with a strictly positive real number Ny > 0, see also (1) and (5). Ground and
first excited state solutions are characterised by the relations

\I/j(x,t) = e_i“ftq)j(x), (I,t) € Q) x [to,T] y ||(I)jH(L2)d = \/N()j,

Hyj(®) + Haj (D) = i 5, py = i (Eyg(®5) + Eoy(®))) (13)

J
Noj >0, Y Ngi=No, je{l,....J},
j=1

see (6). Accordingly, their numerical computation relies on the time integration
of the non-reversible system

{8t\if(x,t) = — H(¥(x,1)),

- - (14a)
U(z,tg) = Yo(x), (x,t)€Qxty,T],

10



under the normalisation condition

U(z,T)
SNg—5L) b)), zeQ), ab
18D - ) o€ (140)

or a related second-order in time system, respectively, see (7) and (10).

4 Operator splitting methods

General initial value problem. In this section, to emphasise common fea-

tures of our approaches for different situations, we introduce standard modified

operator splitting methods for the general initial value problem

OU (. t) = F(U(x,t)) = Fy(U(x,1)) + Fa(U(z, 1)) , (15)
U(x,ty) given, (z,t) € Q x [to,T].

Subsequently, we include detailed information concerning their realisation for
Gross—Pitaevskii equations and extended systems, see also (3)—(4), (7), (10),
(11)—(12), and (14).

Time-stepping approach. Due to the fact that the memory capacities
needed in the time integration and imaginary time propagation of Gross—
Pitaevskii systems in three space dimensions is limited, we find it most practi-
cable to employ a time-stepping approach and to store a relatively low number
of numerical solution values at once. That is, we subdivide the considered time
interval in appropriately chosen subintervals and determine numerical approx-
imation values at certain intermediate times through a recursive procedure

to<ti <---<ty=T1T, Un%U<,tn), ne{O,l,...,N}.
Incorporating the evident advantages of an adaptive strategy based on a local

error control, we permit non-uniform temporal grid points and denote the
associated time increments by

To=tps1 —tn, nef{0,1,...,N—1}.

In view of the statement of standard and modified operator splitting methods,
we express the exact solutions to (15) and the associated subproblems

{&tuj(x,t) = Fj(u(,1)) , je{1,2}, (16)

uj(x,ty) given, (z,t) € Q x [to, T,

11



in terms of the corresponding evolution operators

Erior(U(t0)) = U(-1)

5t7t07Fj (uj('7t0>) = uj('vt)7 j S {1’ 2}7
t e lty, 1],

The analogous relations for the numerical solution values in terms of the re-
spective splitting operators read as

Unit = S i (Un) m Ul tnar) = &, p (UG tn)), n€{0,1,...,N =1}

For a juxtaposition with modified operator splitting methods, we next include
the general format of standard operator splitting methods and specify example
methods.

Standard splitting methods. Operator splitting methods for the time inte-
gration of nonlinear evolution equations make use of the fact that the defining
operators naturally decompose into two or more parts and that the numerical
approximation of the associated subproblems is significantly simpler compared
to the numerical approximation of the original problem, see (15) and (16). Any
standard high-order splitting method is given by a composition of the form

Uny1 = STn,F(Un) ~ U('vtn-H) = ng,F(U(',tn» )
STn;F = ngybsFQ o ng7aSF1 ©---0 5TnyblF2 o ngyalFl )

ne{0,1,...,N—1},

with suitably chosen real coefficients (a;, b;)5_;. Prominant instances are the
first-order Lie-Trotter splitting method involving a single composition per step

s=1, a=1, b =1, (17a)

the second-order Strang splitting method based on a symmetric composition
822, CL1:0, a2:1, blzl:bg, (17b>

and the symmetric fourth-order splitting method by YOSHIDA [35] including
four compositions

s=4, a1=0, ay=1—2by=ay4, az3=4by—1,

=L —by=b, by=4(1- V2 1Vd) =0 (170)
A variety of higher-order operator splitting methods are found in the liter-
ature, see for instance [10,24]. For our numerical experiments, we select an
optimised fourth-order splitting method proposed in [13] as a renowned in-
stance with excellent properties regarding stability, accuracy, efficiency, and
energy preservation over long times.

12



Modified operator splitting methods. As already indicated in the in-
troduction, higher-order operator splitting methods such as (17¢) necessarily
involve negative coefficients. Because of severe stability issues in the context
of non-reversible systems, they are thus inappropriate for ground and excited
state computations. A remedy to these shortcomings of standard operator
splitting methods is the application of modified operator splitting methods,
which can be cast into the general form

Un—l-l - STn,F(Un) ~ U('7 tn—l-l) - ng,F (U(7 tn)) )

STnyF = €T7L7bsF2+cs7—721G o STnyasFl ©---0 ngablFQ‘i‘ClTy%G © ngﬂlFl )

ne{0,1,...,N—1},

(18a)

with certain real coefficients (a;, b;, ¢;)5_;. More precisely, this kind of splitting
methods relies on the efficient numerical approximation of the subproblems

Opu(w,1) = a; Fy (wy(2,1)) . (2, t,) given,
Oyuz(x,t) = b; Fy (UQ(x,t)) + e 72 G(UQ(x,t)) . ug(z,t,) given,  (18Db)
(x,t) € XX [ty tn+ 1), i€{l,...,s}.

Hereby, it is remarkable that the incorporation of the operator

G(v) = F{'(v) F2(v) F>(v) + Fi(v) F3(v) Fa(v) + F3(v) F3(v) Fi(v) (15¢)

— F3(v) Fi(v) Fa(v) — 2 F3(v) Fi(v) F>(v)
permits the design of schemes such that the principal coefficients (a;, b;);_, are
non-negative. In conjunction with the additional factor 72, this ensures stabil-
ity for reversible as well as non-reversible systems under moderate smallness
assumptions on the time increments. The arising derivatives are again under-
stood as Gateaux derivatives, see (2).

Historical context and novel aspects. The alternative approach of mod-
ified operator splitting methods goes back to a seminal work of CHIN [15],
where so-called modified potential or force-gradient operator splitting meth-
ods were proposed in the context of linear partial differential equations. In
our recent contribution [12], we could extend this class of methods within a
nonlinear setting such that the operator defined in (18c) results as iterated
commutator [Dg,, [Dg,, D |] of the associated Lie-derivatives. In the present
work, we generalise the underlying idea to incorporate commutators of the
defining operators to the time integration and imaginary time propagation of
Gross—Pitaevskii systems. We specify (18c) for systems comprising two cou-
pled time-dependent Gross—Pitaevskii equations (11)—(12) and their parabolic
counterparts (14), which are of particular relevance in view of actual labora-
tory set-ups, see for instance [28,33].

Iterated commutators (J = 2). As important objectives regarding the

13



practical implementation of modified operator splitting methods (18), we next
state the iterated commutators for Gross-Pitaevskii systems involving two
coupled equations. For this purpose, we use the following abbreviations for
the component functions and the weighted gradients

U= (@1,¢’2)T7 U= (‘Ifl,‘l’z)T, G = (GlaGQ)Ta
V= (axp"'aaxd)T? vaj = (ajl aar,‘l;--'aajdaxd)Ta V} = V,Bj;yj,éj )
je{1,2},

see also (11) and (14).

(i) We begin with the study of the parabolic-type case (14), where the first
component of the operator in (18¢) is given by

Gl(\ifl, \i’g) =2 (So + Sl<\i/1, \NIIQ) + SQ(\ifl, \ilg) + Sg(\i’l, @2)) 5 (19&)

So = Ve, Vi-VV1 U, (19b)
S1(Uy, Ty) = 6091, Vi Vo, Uy - VI Ty

201,V (v% (2 Va1 Wy + Vi, Ty )

(D Uy — A, Ty) w)

+2Vo, Vi - (3001 VI Wy + 201 VI Wy) (19¢)

+ 20 (vmv2 V0,

+2 (Vo Vo = Vi Va) - Vi \131> o,

=911 Ao, Vi U3 4 015 (A0, Vo — 248,,V5) 0, U3,

Sy (4, y) = 2 (6 92, W, 0, - V0, 0
+3 (V11012 + V12 U21) Vi, Uy - VI ¥y W3
— 201509, Vo, Uy - VU, T, 2
+ 40919 09y Vo, Uy - VI, U3
+6 (1911 V2 + V12 1921) Vo, U1 - VU, U2 0,y (194d)
— 4091509y Vo, Uy - VU, U2 0,
+ (V12021 — V11 012) Vi, Wa - VT 0
+ 2092, V,, Uy - VI, Uy 2
691205 (Vay = Vg ) s - V2 0 \1/3) ,
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(T, By) = 2 (2 D1z (Day — Ag,) by U203
+ (7911 tha — V12 ?921) (AQQ - Aal)\ifz U3 0, (19e)
2013 0y Dy — Ay ) T2 04 \1@) .

It is remarkable that only Sy remains in the simplified linear case. The
first and second spatial derivatives of the potentials arising in S are
often known explicitly. The term S5 comprises second spatial derivatives
of the solution components, whenever the weights in the Laplacians are
different. For the second component, we have to exchange the index one
by two and two by one, respectively.

(ii) The corresponding identity for (11) reads as

Gr(W1, Wp) = 2i (So+ S1(W1, Wa) + Sp(Wy, W) + Ss(Wy, ¥5)) Wy, (20a)

So = Vo, ViV, (20b)
$1(01,0) =2 (201 (Vo Vi = Vi) - R(VE T3)

(20c)
— (7911 Ay, Vi |‘I’1|2 + V12 Ay, Vo "I’2|2>) )

Sy(Wy, Uy) = — 2 (ﬂ%l R(Va, Uy - VU, T)
+ 393, Vo, ¥y - VU |0 ?
+ 201999, Vo, Uy - VU [Uy]2,
+ 291209 %(Vag\l’l VU, Uy Uy
+ Va, U1 - VB U1 W)
— 9%, <3‘E(Va1\112 -V, \1722) (20d)
LV, U, Wg\%y?)
+ 2912 V90 <§R<Va2‘112 -V, ‘1’722)
L2V, V%\%P)
+ 2911112V, Uy VU, |‘I’1’2> )

Sy(Wy, Wy) = — 2 <2 R(02 Doy 3 T [0
+ V12 Va1 Do, Wy U [W5)7))
+ 2R (V11 V12 Do, W T3 |V 2
+ D12 Y AQQ%%\%P)) .

The analogous identity holds for the second component, but with the in-
dex one replaced by two and two by one, respectively. Again, in the sim-

(20e)
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plified linear case, only the term Sy remains. Usually, the first and second
spatial derivatives of the potentials that are present in S; can be calcu-
lated explicitly, whereas the first and second spatial derivatives of the
solution components have to be computed numerically. However, hereby
it is most remarkable that in the first component a common factor ¥y
and in the second component a common factor ¥, can be extracted.
Together with the validity of an invariance principle stated below, this
special structure of the iterated commutator provides the knowledge of
the exact solutions to the nonlinear subproblems on each of the temporal
subintervals and hence considerably enhances the efficiency of modified
operator splitting methods for time-dependent Gross—Pitaevskii systems.

Iterated commutator (J = 1). By setting a« = (a1,...,014),
(a217"‘7a2d) = 0,0 =, % =00 =00 =0,V =V, = V8.6 and
Vo =01in (19) as well as (20), the corresponding identities for a single Gross—
Pitaevskii equation result.

(i) On the one hand, in the context of the non-reversible equation (7), we
retain the significant simplification

G) =2(VaV - VV 40 (6V Vol - VI +6V,V - VI T - A,V )
F2P VT VI §

(ii) On the other hand, in the context of the time-dependent Gross—Pitaevskii
equation (3), we instead retain

G(V) = 2i (VaV VUV =20 80,V [U2 = 20° R(V, 0 - V\I@Q)

— 697Vl - VU U — 40° R(A, U T) |x1/y2> v,

For the special case o = (1,...,1) € R? both relations are consistent with
equations (14) and (15) in [12].

Invariance principle. As indicated in the introduction and shortly before,
an invariance principle permits the replacement of the nonlinear subproblems
associated with time-dependent Gross—Pitaevskii systems by simplified linear
systems with known exact solutions. In view of a compact formulation of this
fundamental result, we make use of the fact that the defining operators can
be rewritten as

Hy(y) = Hy(¥) v, G)=GW)v.

Moreover, neglecting for notational simplicity the dependencies on the method
coefficients b;, ¢; € R and the time increment 7,, > 0, we set

Fy(v) = =i (b Hao() + 72 e: G()), i€ {l,...,s},
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see also (18b). Our finding is that the solution to the initial value problem

O (x,t) = Fy(W(w,1)) U(x, 1),
U(x, t,) given, (z,t) € QX [tn, tn+ 0],

fulfills the simplified linear problem

0 (x,t) = Fy(W(w,t,)) W(a,t)
U(x, t,) given, (z,t) € QX [tn, tn+ 0],

and hence is given by the explicit representation
U(z,t) = el BEE) G(r ) (2,8) € QX [tn, tn + Tl - (21)

A rigorous derivation of this relation relies on the calculation of the Gateaux
derivative and the verification of the resulting identity

SE(W(, 1) = F(W (1) 0W(- 1)
— By(w(.1)) <F3(\I/(x,t)) \IJ(x,t)) — 0, tE [ttt 7,

see also (2) and (5). We here omit the technical details and instead refer to
confirming numerical experiments.

Practical implementation. Modified operator splitting methods for the
time integration and imaginary time propagation of Gross—Pitaevskii systems
make use of the fact that both, the numerical approximation of the associated
linear subproblems involving weighted Laplacians and the subproblems com-
prising the potentials and nonlinearities can be realised in a highly efficient
manner by Fast Fourier transforms and their inverses, respectively, als well as
pointwise multiplications. 3

(i) Fourier series representations. Employing the reasonable assumption
that the prescribed initial states and hence the solutions to (11)—(12) are
localised and sufficiently regular, we may replace the underlying domains
by Cartesian products of suitably chosen symmetric intervals

Q:

7

d
[—wi,wi], wi>0, Ze{]_,,d}

=1

3 An elementary MATLAB code that illustrates the realisation of a specific mod-
ified operator splitting method for a single Gross—Pitaevskii equation is available
through the publicly accessible link doi.org/10.5281 /zenodo.7945624. The extension
to two-component systems involves a certain amount of technical details. However,
in essence, it requires the implementation of (19) and (20).
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Consequently, denoting by (F,,)meze the periodic Fourier functions

d
Fn: RE—C:x= (X1, ..., xq) — H (—le elmmi (xi/wi“)) ,
i=1
m:(ml,...,md) GZd,

and using that they form a complete orthonormal system of the Hilbert
space L%(Q,C), Fourier series representations and Parseval’s identities
hold true

=3 ¥ Fn. wmz/gw<x)£m<x)dx, m ez,

meZd

1972 = > [ml®, ¥ € L*(Q,C).

meza

Moreover, by means of the following abbreviations for the purely imag-
inary eigenvalues associated with first spatial derivatives as well as the
corresponding non-positive eigenvalues of second derivatives

axjfm:umjfma ﬂmj:”rmjeiRv

Wi

_ d dx1 _ d dx1
Hm = (Mmj)jzl € (C ) /~La,m - (Oéj ,U/mj) _— S C 3
me:,umfma Vafmzﬂa,mfma

w2 m?2
07 Fn = Ay Fns Amy = iy, = — 2+ € Reg,
J
d d
)\m:ZAmJ ERS(), /\a’m:ZOéj /\mj ERS(),
=1 j=1

A~F‘m:)\m-r.m7 Aa]:m:Aa,mFma

d
m=(my,...,mg) €EZ%, x=(x1,...,249) €,
we obtain series representations such as

Vi = Z P Ym Fm s Ay = Z A Um Fon s

mezZa meZd

and their analogues for weighted gradients and Laplacians.

Deriwatives and linear subproblems. The above identities permit to de-
termine on the one hand the spatial derivatives of the current values of
the time-discrete solutions arising in the iterated commutators and on
the other hand the solutions to the linear subproblems, which can be
cast into the form

Lu(z,t) = CAqu(z,t), u(z,t,) given,

(2,t) € AX [ty tn+1], C€C, acR?,

u('atn-l—l) — ng,CAa< Z um(atn) Fm) = Z eCTnAa’m Um(',tn> fm,

mezZd mezd
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with high accuracy and efficiency by fast Fourier transforms, pointwise
multiplications, and inverse fast Fourier transforms. In general, these
procedures constitute the computationally most expensive components.

(iii) Nonlinear subproblems (Time integration). For Schrodinger-type sys-
tems as they arise in the time integration of (11)-(12), the invariance
principle stated above permits to determine the true solutions to the
nonlinear subproblems by pointwise multiplications, see (21).

(iv) Nonlinear subproblems (Imaginary time propagation). For parabolic-
type systems (14), numerical approximations are obtained by the ap-
plication of explicit Runge-Kutta methods. More concretely, in order
to enhance the efficiency behaviour of fourth-order modified operator
methods, we combine the second-order Strang splitting method yielding

‘ngrn,b,-Fg O Crpyeit?Ga © g%rn,bin ~ ng,bin-i-CiT,%G y LE {1’ T 73} )

with the first-order explicit Euler method for &, ..-2¢, and a fourth-order
Runge-Kutta method Eém,bi Fy> Tespectively. Whenever appropriate, for
instance in the case of a single Gross—Pitaevskii equation, we may also
use explicit solution representations for &1 4 p,.

Example method. In our numerical experiments, we focus a fourth-order
modified operator splitting method involving a low number of compositions
and a single evaluation of the iterated commutator

1

== bp===0> by =

2 as, 1 16 3 2 (22>
Cl—_O—_Cg, CQ—_—TQ.

s=3, a=0, a=

wWINo

This scheme goes back to a modified potential operator splitting method that
was introduced by CHIN [15] in the context of linear problems. Here, it is
remarkable that the principal coefficients (a;, b;);_; are non-negative and that
the additional factor 72 ensures stability of the method for non-reversible sys-
tems under moderate smallness assumptions on the time increments. It is a
common assessment that the validity of nonstiff order conditions deduced for
linear ordinary differential equations and the presumption of sufficiently reg-
ular initial states and hence solutions is adequate to retain the full order of
convergence in substantially more complex settings of nonlinear partial differ-
ential equations. However, it remains an open question to rigorously justify
this implication in the lines of [30,31].

Adaptivity in time. With regard to the evident advantages of adaptivity
in time, also observed in our numerical experiments, we combine the fourth-
order modified operator splitting method (22) with the second-order Strang
splitting method. Due to the fact that both schemes are suitable for both, the
time integration and imaginary time propagation of Gross—Pitaevskii systems,
this simple approach for a local error control permits to automatically adapt
the time increments and enhances stability, accuracy, and efficiency.
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5 Numerical experiments

In our numerical experiments, we demonstrate the favourable stability, accu-
racy, and long-term behaviour of adaptive modified operator splitting methods
for Gross—Pitaevskii systems in comparison with standard operator splitting
methods. As renowned instances, we consider the first-order Lie-Trotter split-
ting method (17a), the second-order Strang splitting method (17b), an op-
timised fourth-order splitting method proposed in [13|, and the fourth-order
modified operator splitting method (18) for the particular choice (22). In the
headlines of the graphics, we specify the decisive parameters, the weights
in the Laplacians Cy = (ayi)je(i,...J},ic{1,...d}, the weights in the harmonic
potentials Co = (Bji)jef1,...7},ie{1,....4}, the weights in the lattice potentials
Cs = (Vji)jeq1,...0},ie{1,...}, and the constants in the cubic nonlinearities
Cy = (Vji)jkeqr,...sy, see (11). We implement the time evolution from the
initial time t; = 0 up to a prescribed final time 7. The imaginary time prop-
agation is stopped when either the change in energy is below the tolerance
Tol = 107! or the total number of iterations exceeds a certain number.
We begin with numerical experiments for one-dimensional Gross—Pitaevskii
equations and two-component systems involving M = 512 spatial grid points
as well as two-dimensional Gross—Pitaevskii equations with M = 5122 grid
points. The most elaborate and time-consuming three-dimensional case with
M = 100? is treated in final experiments. The estimation of the width of
the Thomas—Fermi approximation yields a first indication for an appropriate
choice of the underlying spatial domain. In view of our model problems, it is
satisfactory to set [— 10, 10]¢ by default, see Figures 11 to 13.

Stability and accuracy. In a first numerical experiment, we study
reversible-in-time and non-reversible model problems reflecting the type of
problems that arise in the time evolution and imaginary time propagation
of Gross—Pitaevskii systems. For the purpose of verification, we make use of
the fact that exact solutions are known in simplified linear cases. For the
more complex nonlinear cases, numerical reference solutions are computed for
refined time increments. In Figures 1 to 5, we display the global errors ver-
sus the time stepsizes in a logarithmic scale such that the slopes of the lines
reflect the temporal orders of convergence. Due to the fact that the chosen
initial states and hence the solutions satisfy certain regularity and consistency
requirements, the nonstiff orders of convergence are indeed retained. When-
ever highly accurate results are desirable, the fourth-order methods perform
significantly better compared to the lower-order schemes, and the modified
operator splitting method is competitive in accuracy and efficiency with the
optimised standard scheme. Our main observation is that standard higher-
order splitting methods applied to non-reversible systems encounter severe
stability issues and even fail, whereas modified splitting methods remain sta-
ble also in higher space dimensions, provided that the time stepsizes satisfy
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moderate smallness assumptions. As illustrated below, these moderate stabil-
ity requirements can be fulfilled by means of an inexpensive local error control
based on the second-order Strang splitting method to automatically adjust
the time increments.

Energy conservation. In a second numerical experiment, we illustrate the
favourable behaviour of adaptive modified operator splitting methods over
longer times. At first, we perform the time evolution of Gross—Pitaevskii sys-
tems by the standard splitting methods of orders two and four, respectively,
for a prescribed sequence of time stepsizes. Then, we apply the fourth-order
modified operator splitting method with a local error control based on the
second-order Strang splitting method. We point out that the use of a local
error control to automatically adapt the time stepsizes releases the users from
the task to find suitable time stepsize ranges. That is, without an error control,
suitable time increments had to be determined by several reruns, which involve
high computational efforts, especially for the long-term evolution of Gross—
Pitaevskii systems in three space dimensions. For the purpose of an initial test,
we prescribe different tolerances Tol ranging from 10~ to 10~® and maintain
a tentative approach in the sense that we leave aside the option to enlarge
the time increments by additional scaling factors. Subsequently, we replace
the local error estimate Errp .. based on the difference of current approxima-
tions Waiodified a0d Wgirang by the local error estimate 72 Errpoca and repeat the
long-term evolution. For the resulting numbers of time steps /N, we then once
again apply the Strang splitting method and the optimised standard fourth-
order splitting method with the corresonding equidistant time increments.
We report that all splitting methods show an excellent mass conservation,
which is a well-known intrinsic distinction to other classes of time integration
methods such as Runge-Kutta and linear multistep methods. Concerning the
conservation of total energy, also indicators for the achievable accuracy in the
solution, the obtained results are displayed in Figures 6 to 9. We observe an
excellent performance of higher-order standard and adaptive modified opera-
tor splitting methods compared to lower-order schemes. Specifically for more
involved nonlinear settings, the results also suggest that adaptive modified
splitting methods with the conservative strategy based on Wyisdified — Wstrang
are preferable, whenever highly accurate results enclosing a favourable energy
preservation are desirable, whereas efficiency is enhanced with the adapted
stategy based on 72 Errpoca. In order to confirm the reliability of our adaptive
approach for sequences of prescribed tolerances, we include the outcomes for
a Gross—Pitaevskii equation in two space dimensions and a one-dimensional
two-component Gross—Pitaevskii system in Figure 10.

Imaginary time propagation and time evolution. In a final numerical
experiment, we consider Gross—Pitaevskii equations in one, two, and three
space dimensions for different parameter ranges. We contrast the case of a
moderate constant in the nonlinearity to the case of an additional multiple
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lattice potential and a large constant in the nonlinearity, which is of par-
ticular relevance for physical experimental set-ups. Simplified linear cases,
where the exact ground state and time-dependent solutions are known, are
once again included for the purpose of validation. Moreover, it is remarkable
that the knowledge of the ground state solutions and the associated chem-
ical potentials define the time-dependent solutions W(x,t) = e~ '#!®(z) for
(x,t) € Q X [to, T], see (13). Consequently, in modulus, the time-dependent
solutions coincide with the ground states. Based on the adaptive fourth-order
modified operator splitting method, we first perform the imaginary time prop-
agation for the numerical computation of the ground state solutions and then
evolve the Gross—Pitaevskii systems in time. For the linear cases, we prescribe
constant initial states, and for the nonlinear cases, we determine the Thomas—
Fermi approximations (9). We point out that the second-order Strang splitting
method and the optimised standard fourth-oder splitting method fail in the
imaginary time propagation, when applied with time increment 7 = %, al-
ready in a single space dimension. On the contrary, the adaptive fourth-order
modified operator splitting method yields reliable results in the ground state
computation for the initial time stepsize 7 = % and the tolerance Tol = 107°.
The profiles of the chosen real-valued initial states for the imaginary time
propagation, the resulting ground state solutions at imaginary time 7', and
the modulus of the time-dependent solutions evolved from ¢ty = 0 to the fi-
nal time T are illustrated in Figures 11 to 13. In space dimension three, we
determine the section along z3 = 0 and display the corresponding values
U(zq,x9,0,t). As additional information and indicators for the overall accu-
racy, we include the total energy and the corresponding errors in the headlines
of the figures. Alltogether, we conclude that the adaptive fourth-order mod-
ified operator splitting method leads to reliable and accurate results in the
imaginary time propagation and the time evolution of Gross—Pitaevskii equa-
tions.

6 Conclusions

Summary. The present work has been devoted to the introduction of adap-
tive modified operator splitting methods for the reliable imaginary time prop-
agation and the efficient time evolution of two-component Gross—Pitaevskii
systems. In a series of numerical tests, we have demonstrated the excellent
performance of a specific adaptive fourth-order modified operator splitting
method involving positive coefficients in comparison with renowned standard
splitting methods. We have implemented two strategies for an inexpensive ex-
pedient local error control that are advantageous for successful computations.

Generalisations. Straightforward extensions that require minor adaptations
of our approach concern more general particle interaction terms such as quintic
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or fractional power nonlinearities. Besides, it appears feasible to treat Gross—
Pitaevskii equations with fractional Laplacians [2] by means of a straightfor-
ward calculation of the iterated commutators, neglecting possible simplifica-
tions in the resulting relations. The numerical simulation of rotating Bose—
Einstein condensates under the influence of external magnetic fields, modelled
by Gross—Pitaevskii equations with additional rotation terms, is based on suit-
able reformulations within the rotating frames. This yields non-autonomous
problems of similar structures, which are resolved by the combination of
Magnus-type integrators with modified operator splitting methods [4].

Future investigations. Our studies in the near future will be dedicated to
the efficient numerical simulation of concrete settings that arise in actual lab-
oratory set-ups. Amongst others, this will include the investigation of strongly
interacting quantum systems driven by laser kicks and double species Bose—
Einstein condensates.
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C1 = (-0.5,-0.6), C2 = (0.5,0.6), C3 = (1,1),C4 = 1.
5 J=1.T=1.M=262144.
10 T T
Standard splitting (p = 1).
Standard splitting (p = 2).
—<}- Standard splitting (p = 4).
1000 —&— Modified splitting (p = 4).

10-15
103

10 107" 100

Time stepsize

Fig. 1. Time evolution of linear (first column) versus nonlinear (second column) re-
versible-in-time model problems in one (first row) and two (second row) space dimen-
sions. Application of standard and modified operator splitting methods, specifically
the first-order Lie—Trotter splitting (17a), the second-order Strang splitting (17b),
the optimised fourth-order splitting by BLANES, MOAN [13], and the fourth-order
modified splitting based on (22). The slopes of the lines reflect the temporal orders
of convergence and confirm the preservation of the nonstiff orders for problems with
sufficiently regular solutions. Modified splitting methods remain stable and compet-
itive in accuracy and efficiency in all test cases.
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Reversible system. Nonlinear case.

Reversible system. Linear case.

5 Standard splitting (p =1). J=1,d=1. 5 Standard splitting (p =1). J=1,d=1.
10° 1 Standard splitting (p=2). J=1,d=1. 7 10° 1 Standard splitting (p=2). J=1,d=1.
—<|— Standard spliting (p=4). J=1,d =1. —<|— Standard splitting (p=4). J=1,d = 1.
- MDgi:ieg sp:imng :p = 1;. j = 1 g =; - mogureg sp:mlng Ep 3; j = 1 S = 12
— — Modified splitting (p = 4). J = = — — Modified splitting (p = = =2.
100F Modified splitting (p=4). J=2,d=1. 100 Modified splitting (p=4). J=2,d=1.
s s
o o
T ©
g 10° g 10°
G} G}
10-10 10-10
1(),15, L L L 10'15 L L
103 102 107! 10° 103 102 107 100

Time stepsize Time stepsize

Fig. 2. Comparisons of the results displayed in Figure 1 with related two-compo-
nent systems (dotted lines). The good agreement of the global errors for the cases
(J,d) € {(1,1),(1,2),(2,1)} suggests a similar behaviour regarding stability and
accuracy for more complex settings in three space dimensions, see Figure 5.
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Time evolution. Non-reversible system. Time evolution. Non-reversible system.

C1=05,C2=-0.5,C3=0,C4=0. C1=05,C2=-0.5,C3=-1,C4=-1.
J=1.T=1.M=512. J=1.T=1.M=512.
5 Standard splitting (p = 1). 5 Standard splitting (p = 1).
10° Standard splitting (p = 2). ] 10°[ Standard splitting (p = 2).
—<|— Standard splitting (p = 4). —<}— Standard splitting (p = 4).
—&— Modified splitting (p = 4). —&— Modified splitting (p = 4).
9 Refinement (Nonlinear subproblem). 5 Refinement (Nonlinear subproblem).
10" [|—— Refinement (Nonlinear subproblem). g 10" [|—— Refinement (Nonlinear subproblem).
S S
o o
© © 5
L | 10
[0 0]
1 071 0
107 : :
103 10?2 107 10° 103 102 10 10°
Time stepsize Time stepsize
Time evolution. Non-reversible system. Time evolution. Non-reversible system.
C1=(0.5,0.6), C2 = (-0.5,-0.6), C3 = (0,0), C4 = 0. C1=(0.5,0.6), C2 = (-0.5,-0.6), C3 = (-1,-1), C4 = -1.
J=1.T=1.M=262144. J=1.T=1.M=262144.
5[ Standard splitting (p = 1). 1 50 Standard splitting (p = 1).
10 Standard splitting (p = 2). 10 Standard splitting (p = 2).
—<}- Standard splitting (p = 4). —<}- Standard splitting (p = 4).
—&— Modified splitting (p = 4). —&— Modified splitting (p = 4).
Refinement (Nonlinear subproblem). Refinement (Nonlinear subproblem).
10° | —— Refinement (Nonlinear subproblem). 10° | —— Refinement (Nonlinear subproblem).
o o
o o
© ©
g 107 1 £ £
[0 0]
10710 1 10710
<
10715 : . 10715 . |
108 102 107 10° 107 10 107 10°
Time stepsize Time stepsize

Fig. 3. Time evolution of linear (first column) versus nonlinear (second column)
non-reversible model problems in one (first row) and two (second row) space dimen-
sions. Application of standard and modified operator splitting methods, see Figure 1.
The slopes of the lines reflect the temporal orders of convergence and confirm the
preservation of the nonstiff orders for problems with sufficiently regular solutions.
For standard fourth-order splitting methods applied to non-reversible systems, se-
vere stability issues due to the occurence of negative method coefficients and hence
even failures for larger time stepsizes are observed. On the contrary, modified split-
ting methods remain stable and yield highly accurate results for one space dimension
(first row). For problems in two space dimensions with increased stiffness (second
row), the time integration of the subproblems comprising the potentials and the
nonlinearites with refined time increments (factor % for Strang splitting, factor % for
modified splitting) leads to significant improvements.
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Non-reversible system. Linear case.
: .

5 Standard splitting (p =1). J=1,d=1.
10° 1 Standard splitting (p=2). J=1,d=1.
—<}— Standard splitting (p=4). J=1,d=1.
—&— Modified splitting (p=4). J=1,d = 1.
— — Modified splitting (p=4). J=1,d =2.
100 Modified splitting (p=4). J=2,d = 1.
s
o
T
g 10°
[}
10-10
10715 f L L

10

102 107!
Time stepsize

Global error

1051 Standard splitting (p = 2).

10'15

Non-reversible system. Nonlinear case.
:

Standard sphmng p=1).J

J
—<}— Standard splitting (p = 4). J
—&— Modified splitting (p = 4). J
— — Modified splitting (p = 4). J

Modified splitting (p = 4). J

103 102
Time stepsize

107" 10°

Fig. 4. Comparisons of the results displayed in Figure 3 with related two-compo-
nent systems (dotted lines). The good agreement of the global errors for the cases
(J,d) € {(1,1),(1,2),(2,1)} suggests a similar behaviour regarding stability and
accuracy for more complex settings in three space dimensions, see Figure 5. Due to
severe instabililies for non-reversible systems, standard higher-order operator split-
ting methods fail for larger time increments, whereas modified splitting methods with
an appropriate resolution of the nonlinear subproblems remain stable and favourable

in accuracy.
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Time evolution. Reversible system.
C1 =(-0.5,-0.6,-0.7), C2 = (0.5,0.6,0.7), C3 = (1,1,1), C4 = 1.
J=1.T=1.M=1000000.

Time evolution. Reversible system.
C1 =(-0.5,-0.6,-0.7), C2 = (0.5,0.6,0.7), C3 = (0,0,0), C4 = 0.

108 J=1.T=1.M=1000000. 10
—0— Modified splitting (p = 4).
1001 ] 1001
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Qo Qo
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1071 4 10710
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107 10° 107 10°
Time stepsize Time stepsize
Time evolution. Non-reversible system. Time evolution. Non-reversible system.
C1=(0.5,0.6,0.7), C2 = (-0.5,-0.6,-0.7), C3 = (0,0,0), C4 = 0. C1=(0.5,0.6,0.7), C2 = (-0.5,-0.6,-0.7), C3 = (-1,-1,-1), C4 = -1.
J=1.T=1.M=1000000. J=1.T=1.M=1000000.
105 ‘# Modified splitting (p = 4). Refinement (Nonlinear subproblem). ‘ ] 105 7‘% Modified splitting (p = 4). Refinement (Nonlinear subproblem). ‘ ]
1001 ] 10° ]
5 5
@ 5
® 5 R ]
S 10 § 10 5
0] 6]
1070 10710 i
10718 : 1018 |
107 10° 107" 10°

Time stepsize Time stepsize

Fig. 5. Confirmation of the favourable stability and accuracy behaviour of
fourth-order modified splitting methods applied to linear (left column) versus non-
linear (right column) and reversible-in-time (first row) versus non-reversible (second
row) model problems in three space dimensions. In order to ensure a reliable nu-
merical approximation of the subproblems comprising the potentials and the non-

linearites for larger time stepsizes, these stepsizes are refined by a factor 1—16.
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Long-term evolution. Reversible system. Long-term evolution. Reversible system.

C1=-0.5,C2=0.5,C3=0,C4=0. C1=-0.5,C2=0.5,C3=0,C4=0.
J=1.T=100. M =512. J=1.T=100. M =512.
Standard splitting (p = 2). Error in energy. Standard splitting (p = 4). Error in energy.
——N =500 ——N =500
100 F|——N = 1000 1 10° F|——N=1000 1
——N = 5000 ——N =5000
——N = 10000 ——N = 10000
——N = 50000 ——N = 50000
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Long-term evolution. Reversible system. Long-term evolution. Reversible system.
C1=-0.5,C2=0.5,C3=0,C4=0. C1=-0.5,C2=0.5,C3=0,C4=0.
J=1.T=100. M =512. J=1.T=100. M =512.
Modified splitting (p = 4). Error in energy. Modified splitting (p = 4). Error in energy.
——N = 1541 ——N=521
100 F|——N=3314 1 100 F|——N=822 1
—N=7136 ——N=1298
——N=15376 ——N = 2060
——N=33120 ——N=3258
10° 7 105} ]
10-10 L 4 10-10 L 4
10715 . . . . 10715 . . . .
0 20 40 60 80 100 0 20 40 60 80 100

Fig. 6. Energy preservation in a long-term integration of a linear Schrodinger equa-
tion. Application of standard splitting methods for prescribed numbers of time steps
N € {5-10%,103,5-10%,10% 5 - 10*} and resulting errors in the total energy (first
row). Application of an adaptive modified splitting method for prescribed tolerances
Tol € {107*,1075,107%,1077,10~8} with corresponding numbers of time stepsizes
and resulting errors in the total energy. On the one hand, the optimal time stepsize
is determined by means of an estimate for the local error Errpoca based on the dif-
ference Wniodified — ¥strang, Which corresponds to local order three (second row, left
column). On the other hand, the optimal time stepsize is determined by means of the
local error estimate 72 Erryocal, which corresponds to local order five and reduces the
numbers of time steps (second row, right column). The quotients of subsequent tol-
erances Q1 = 10 and the quotients of subsequent numbers of time steps, Q2 = 2.15
or (Q2 = 1.58, respectively, indeed confirm the local orders of convergence through

In(Q1)/ In(Q2) = p+ 1.
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Long-term evolution. Reversible system.

C1=-0.5,C2=0.5,C3=0,C4=0.

J=1.T=100. M=512. N = 1541.
Error in energy.

p = 2 (Standard)
r|——p = 4 (Standard) 1
—— p = 4 (Standard)
0 20 40 60 80 100
Long-term evolution. Reversible system.
C1=-0.5,C2=0.5,C3=0,C4=0.
J=1.T=100. M =512. N = 7136.
Error in energy.
p = 2 (Standard)
——p = 4 (Standard) 1
— p = 4 (Standard)
0 20 40 60 80 100

Long-term evolution. Reversible system.
C1=-0.5,C2=0.5,C3=0,C4=0.
J=1.T=100.M=512. N = 33120.

Error in energy.

p = 2 (Standard)
——p = 4 (Standard)
—— p = 4 (Standard)

R

0 20 40 60 80

100

Long-term evolution. Reversible system.
C1=-0.5,C2=0.5,C3=0,C4=0.
J=1.T=100. M =512. N = 521.
Error in energy.

p = 2 (Standard)
100 F|——p = 4 (Standard)
—— p = 4 (Standard)

10
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10718
0 20 40 60 80 100
Long-term evolution. Reversible system.
C1=-0.5,C2=0.5,C3=0,C4=0.
J=1.T=100.M=512. N = 1298.
Error in energy.
p = 2 (Standard)
10° [|——p = 4 (Standard) ]
——p = 4 (Standard)

1051 1
10-10 L 4
10715 . . . .

0 20 40 60 80 100
Long-term evolution. Reversible system.
C1=-0.5,C2=0.5,C3=0,C4=0.
J=1.T=100. M =512. N = 3258.
Error in energy.
p = 2 (Standard)
10° F|——p = 4 (Standard) 1

— p = 4 (Standard)

1081 ]
jo10 J
10715 ////

0 20 40 60 80 100

Fig. 7. Energy preservation in a long-term integration of a linear Schrodinger equa-
tion. For prescribed tolerances, the time integration is performed by an adaptive
fourth-order modified operator splitting method (local error estimate Errp e based
on Wyiodified — WStrang for left column, local error estimate 72 Errrca for right
column). Subsequently, for the resulting numbers of time steps and corresonding
equidistant time increments, standard operator splitting methods of orders two and
four are applied. The results confirm the favourable performance of adaptive modi-
fied splitting methods, in particular when high accuracy is desirable.
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Long-term evolution. Reversible system.
C1=-0.5,C2=0.5,C3=0,C4=1.
J=1.T=100.M=512.
Standard splitting (p = 2). Error in energy.

Long-term evolution. Reversible system.
C1=-0.5,C2=0.5,C3=0,C4=1.
J=1.T=100. M =512.
Standard splitting (p = 4). Error in energy.
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Long-term evolution. Reversible system. Long-term evolution. Reversible system.
C1=-0.5,C2=0.5,C3=0,C4=1. C1=-0.5,C2=0.5,C3=0,C4=1.
J=1.T=100. M =512, J=1.T=100. M =512.
Modified splitting (p = 4). Error in energy. Modified splitting (p = 4). Error in energy.
——N=1643 ——N=539
100 | ——N=3537 ] 100 F|—N=852 ]
——N=7619 ——N=1348
——N=16416 —N=2140
——N = 35361 ——N = 3386
108} ] 10° ]

10710

10718 . . . .
0 100

10718
0

20 40 60 80 100

Fig. 8. Corresponding results concerning the energy preservation in a long-term
integration of a one-dimensional Gross—Pitaevskii equation, see Figure 6.
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Long-term evolution. Reversible system.

C1=-0.5,C2=0.5,C3=0,C4=1.

J=1.T=100. M =512. N = 1643.
Error in energy.

——p = 2 (Standard)
100 r|——p = 4 (Standard) 1
—— p = 4 (Standard)
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Long-term evolution. Reversible system.
C1=-0.5,C2=0.5,C3=0,C4=1.
J=1.T=100. M=512. N = 7619.
Error in energy.
~———p =2 (Standard)
100 F{—p = 4 (Standard) 1
—— p = 4 (Standard)
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Long-term evolution. Reversible system.
C1=-0.5,C2=0.5,C3=0,C4=1.
J=1.T=100. M =512. N = 35361.
Error in energy.
——p = 2 (Standard)
10° | ——p = 4 (Standard) ]

—— p = 4 (Standard)
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Long-term evolution. Reversible system.
C1=-0.5,C2=0.5,C3=0,C4=1.
J=1.T=100.M=512. N = 539.
Error in energy.

—p =2 (Standard)
10° F|——p = 4 (Standard) 1
—— p = 4 (Standard)
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Long-term evolution. Reversible system.
C1=-0.5,C2=0.5,C3=0,C4=1.
J=1.T=100.M=512. N = 1348.
Error in energy.
~———p =2 (Standard)
100 F|——p = 4 (Standard) 1
——p = 4 (Standard)
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Long-term evolution. Reversible system.
C1=-0.5,C2=0.5,C3=0,C4=1.
J=1.T=100. M =512. N = 3386.
Error in energy.
—p = 2 (Standard)
100 [-|[—p = 4 (Standard) 1
——p =4 (Standard)
10°
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Fig. 9. Corresponding results concerning the energy preservation in a long-term
evolution of a one-dimensional Gross—Pitaevskii equation, see Figure 7. For low
tolerances, the conservative strategy with local error estimate Errpoca based on
UModified — ¥Strang (left column) leads to highly accurate results. For the adapted
strategy with local error estimate 72 Errpoca and a reduced number of time steps
(right column), which enhances efficiency, a connection between the errors in energy
and the prescribed tolerances is observed.
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Long-term evolution. Reversible system.
C1 = (-0.5,-0.6), C2 = (0.5,0.6), C3 = (0,0), C4 = 1.
J=1.T=100. M = 262144.
Modified splitting (p = 4). Error in energy.

Long-term evolution. Reversible system.
C1 =(-0.5,-0.6), C2 = (0.5,0.6), C3 = (0,0), C4 = 1.
J=1.T=100. M = 262144.
Modified splitting (p = 4). Error in energy.
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Long-term evolution. Reversible system.

C1 = (-0.5,-0.6), C2 = (0.5,0.6), C3 = (0,0), C4 = (1,0.1,0.1,1.1).
J=2.T=100.M=512.

Modified splitting (p = 4). Error in energy.
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Long-term evolution. Reversible system.

C1 = (-0.5,-0.6), C2 = (0.5,0.6), C3 = (0,0), C4 = (1,0.1,0.1,1.1).
J=2.T=100. M =512,

Modified splitting (p = 4). Error in energy.

—N=628
100 F|[——N =994 q
—N=1574
—— N =2499
—— N = 3956
105} 4
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Fig. 10. Corresponding results concerning the energy preservation in a long-term
integration of a two-dimensional Gross—Pitaevskii equation (first row) and a one-di-
mensional two-component Gross—Pitaevskii system (second row), see Figure 8.

35



Imaginary time propagation.
C1=05,62=-0.5,C3=0,C4=0.
Modified splitting (Strang, p = 4(2)).
Time = 0. N = 0. M = 512.
Energy = -16.667.

Imaginary time propagation.
C1=05,C2=-0.5C3=0,C4=-5.
Modified splitting (Strang, p = 4(2)).

Time =0.N=0.M=512.
Energy = -1.6593.

Imaginary time propagation.
C1=0.5,C2=-0.5, C3 = -25, C4 = -400.
Modified splitting (Strang, p = 4(2)).
Time =0.N=0.M=512.
Energy = -34.043.
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Imaginary time propagation. Imaginary time propagation. Imaginary time propagation.
C1=05,€2=-0.5C3=0,C4=0. C1=05,C2=-05,C3=0,C4=-5. ©1=05, C2=-0.5, C3 = -25, C4 = -400.
Modified splitting (Strang, p = 4(2)). Modified splitting (Strang, p = 4(2)). Modified splitting (Strang, p = 4(2)).
Time = 8.1129. N = 348. M = 512. Time = 10.548. N = 987. M = 512. Time = 1.3374. N = 3000, M = 512.
o8 Energy = -0.5. 07 Energy =-1.3161. 035 Energy = -32.353.
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Time evolution from computed ground state. Time evolution from computed ground state. Time evolution from computed ground state.
C1=-0.5,C2=0.5,C3=0,C4=0. C1=-0.5,C2=05,C3=0,C4=5. C1=-0.5,C2 = 0.5, C3 = 25, C4 = 400,
Modified splitting (Strang, p = 4(2)). Modified splitting (Strang, p = 4(2)). Modified splitting (Strang, p = 4(2)).
Time =1. N =35. M =512. Time =1.N =39. M =512. Time = 1. N = 269. M = 512.
Energy = 0.5. Error in energy = 1.5543e-15. Energy = 1.3161. Error in energy = 4.5488e-12. Energy = 32.353. Error in energy = 5.7975-06.
0.8 0.7 035 gy = 32.393. gy =5. -
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Time evolution from computed ground state. Time evolution from computed ground state. Time evolution from computed ground state.
C1=-0.5,C2=0.5,C3=0,C4=0. C1=-05,C2=05,C3=0,C4=5. C1=-05, C2 = 0.5, C3 = 25, C4 = 400.
Modified splitting (Strang, p = 4(2)). Modified splitting (Strang, p = 4(2)). Modified splitting (Strang, p = 4(2)).
Time = 10. N = 333. M= 512. Time = 10. N = 369. M = 512. Time = 10. N = 13727. M = 512.
08 Energy = 0.5. Error in energy = 8.6597e-15. 07 Energy = 1.3161. Error in energy = 4.6241e-12. Energy = 32.353. Error in energy = 0.0001003.
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Fig. 11. Imaginary time propagation and subsequent time evolution of a one-di-
mensional linear Schrédinger equation (first column), a one-dimensional Gross—Pi-
taevskii equation with moderate nonlinearity (second column), and a one-dimen-
sional Gross—Pitaevskii equation with additional multiple lattice potential and large
constant in the nonlinearity (third column). Profiles of the prescribed initial states
for the imaginary time propagation (first row). The time-dependent solutions at a
short intermediate time (third row) and a larger final time (fourth row) coincide
with the resulting ground state solutions at the imaginary time 7' (second row)
in modulus. The numbers of iterations, the values of the total energies, and the
corresponding errors are included in the headlines of the figures.

36



Imaginary time  propagation.
.5,0.6), C2 0.6), C3 = (0,0), C4
Mndlﬁed spllnlng (Slrang p 4(2))

Imaginary time propagation.
C1=(0.50.6), C2 5,-0.6), C3 = (0,0), C4 = 0.
Modified splitting (Slrang [ 4(2))

621

Time evolution from computed ground state.
c1 .6), .5,0.6), C3 = (0,0), C4
Momﬁed spllnlng (Slrang P 4(2))

Time evolution from computed ground state.
c1 ~0.6), C2 = (0.5,0.6), C3 = (0,0), C4
Momﬁed spnmng (s«vang p 4(2))
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Imaginary time propagation.
.5,0.6), C2 = (-0.5,-0.6), C3 = (0,0), C4
Modified spllmng (Slrang 3 4(2))

Time =

Imaginary time propagation.
=(0.5,0.6), C2 = (-0.5,-0.6), C3 = (0,0), C4 =
Modified splitting (Strang, p 4(2))

Time evolution from computed ground state.
c1 .6), C2 = (0.5,0.6), C3 = (0,0), C4
Modified spllmng (s«vang P 4(2))

ime = 1.

Energy = 1.4375. Error in anorqy =

Time evolution from computed ground state.
c1 .6), G2 = (0.5,0.6), C3 = (0,0), C4
Modlﬁed spllnlng (Strang L5 4(2))
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Fig. 12. Corresponding results for two
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Imaginary time propagation.
C1=(0.5,0.6), C2 = (-0.5,-0.6), C3 = (-25,-25), C¢
Modified spllmnq (Strang, p = 4(2)).
Time = 0.N = 0. M = 262144,
Energy = -34.186.

Imaginary time propagation.
€1=(05,0.6), C2 = (-0.5,-0.6), C3 = (-25,-2
Modified splitting (Strang, p = 4(2)).
Time = 2.3556. N = 3000. M = 262144

Time evolution from computed ground state.
.6), C2 = (0. ) C3 = (25,25), C¢
Modified spllnlng (Stvang P~ 4(2))
Time=1.N=
Energy = 23.809. Error in snorg

Time evolution from computed ground state.
-0.6), C2 = (0.5,0.6), C3 = (25,25), C4
Modified spllnlng (Strang 1 4(2))
Time = 10.N = =
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Fig. 13. Corresponding results for three space dimensions. The solution profiles along
x3 = 0 resemble the results obtained in the two-dimensional case, see Figure 12.
Differences are in particular encountered in the number of iterations and the values
of the total energies.
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