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Summary. In this paper, we consider exponential integrators that are based on
linear multistep methods and study their positivity properties for abstract evolution
equations. We prove that the order of a positive exponential multistep method is
two at most and further show that there exist second-order methods preserving
positivity.

1 Introduction

Integration schemes that involve the evaluation of the exponential were first
proposed in the 1960s for the numerical approximation of stiff ordinary differ-
ential equations. Nowadays, due to advances in the computation of the product
of a matrix exponential with a vector, such methods are considered as practi-
cable also for high-dimensional systems of differential equations. The renewed
interest in exponential integrators is further enhanced by recent investigations
which showed that they have excellent stability and convergence properties.
In particular, they perform well for differential equations that result from a
spatial discretisation of nonlinear parabolic and hyperbolic initial-boundary
value problems, see [4, 9] and references therein.

However, aside from a favourable convergence behaviour, the usability of
a numerical method for practical applications is substantially affected by its
qualitative behaviour, and, in many cases, it is inevitable to ensure that cer-
tain geometric properties of the underlying problem are well preserved by
the discretisation. In particular, it is desirable that the positivity of the true
solution is retained by the numerical approximation. More precisely, if the
solution of a linear abstract evolution equation

u′(t) = Au(t) + f(t), 0 < t ≤ T, u(0) given, (1)

remains positive, the numerical solution should retain this property. Unfor-
tunately, as proven by Bolley and Crouzeix [3], the order of positive rational
one-step and linear multistep methods, respectively, is restricted by one.
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The objective of the present paper is to investigate exponential multistep
methods where the coefficients are combinations of the exponential and closely
related functions. The general form of the considered schemes is introduced
below in Section 3. Examples include Adams-type methods that were studied
recently in [4, 9] for parabolic problems, see also the earlier works [8, 12].

The main result, which we deduce in Section 4, states that positive expo-
nential multistep methods are of order two at most. Further, we show that
there exist second-order methods which preserve positivity. Thus, the order
barrier of [3] is raised by one. For exponential Runge–Kutta methods, a similar
result has been obtained recently in [10].

Our analysis of exponential multistep methods for abstract evolution equa-
tions is based on an operator calculus which allows to define the Laplace-
Stieltjes transform involving the generator of a positive C0-semigroup. We re-
fer to the subsequent Section 2, where the basic hypotheses on the differential
equation and some fundamental tools of the employed analytical framework
are recapitulated.

2 Analytical framework

In this section, we state the basic assumptions on the abstract initial value
problem (1).

Throughout, we let
(

V, ‖·‖) denote the underlying Banach space. Further,
we suppose A : D ⊂ V → V to be a densely defined and closed linear operator
on V that generates a strongly continuous semigroup

(

etA
)

t≥0
of type (M,ω),

that is, there exist constants M ≥ 1 and ω ∈ R such that the bound

∥

∥etA
∥

∥ ≤Metω, t ≥ 0, (2)

is valid. For a detailed treatment of C0-semigroups, we refer to the mono-
graphs [6, 11].

The notion of positivity requires the Banach space V to be endowed with
an additional order structure. In the present paper, to keep the analytical
framework simple, we restrict ourselves to the consideration of the Lebesgue
spaces and subspaces thereof, respectively, as it is then straightforward to de-
fine the positivity of an element pointwise.1 In general, an appropriate setting
is provided by the theory of Banach lattices treated in Yosida [13, Chap.XII].
Our results remain valid within this framework.

We recall that a bounded linear operator B : V → V is said to be positive
if for any element v ∈ V satisfying v ≥ 0 it follows Bv ≥ 0.

1 A function v : Ω ⊂ R
d → R in Lp(Ω), 1 ≤ p ≤ ∞, is said to be positive if it

is pointwise positive, i.e., v(x) ≥ 0 for almost all x ∈ Ω. In that case, we write
v ≥ 0 for short. We employ here the standard terminology, although the term
non-negative would be more appropriate.
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Example 1. We consider the differential operator ∂xx subject to a mixed
boundary condition on the Banach space of continuous functions, that is,
for some c1, c2 ∈ R we set A : D → V : v 7→ ∂xxv where V = C([0, 1]) and
D =

{

v ∈ C2([0, 1]) : v′(0) + c1v(0) = 0 = v′(1) + c2v(1)
}

. It is shown in

Arendt et al. [1, p. 134] that the associated semigroup
(

etA
)

t≥0
is positive.

Henceforth, we assume that the linear operator A : D → V is the genera-
tor of a positive semigroup

(

etA
)

t≥0
of type (M,ω), see (2). Then, from the

formulation of the linear evolution equation (1) as a Volterra integral equation

u(t) = etA u(0) +

∫ t

0

e(t−τ)Af(τ) dτ, 0 ≤ t ≤ T, (3)

it is seen that the solution u remains positive, provided that the initial
value u(0) and the function f are positive.

Let a ∈ BV denote a function of bounded variation that is normalised
at its discontinuities and satisfies a(0) = 0. The associated Laplace-Stieltjes

transform is defined through

G(z) =

∫ ∞

0

etz da(t), (4)

see Hille and Phillips [6, Sect. 6.2]. We recall that a real-valued function G is
said to be absolutely monotonic on an interval I ⊂ R if

G(j)(x) ≥ 0, x ∈ I, j ≥ 0.

The following result by Bernstein [2], which characterises absolutely monotonic
functions of the form (4), is the basis of our analysis in Section 4.

Theorem 1 (Bernstein). A function G is absolutely monotonic on the half

line (−∞, ω] iff it is the Laplace-Stieltjes transform of a non-decreasing func-

tion a ∈ BV such that
∫ ∞

0

etω |da(t)| <∞.

A well-known operational calculus described in Hille and Phillips [6, Chap.XV]
allows to extend (4) to unbounded linear operators. More precisely, for A being
the generator of a strongly continuous semigroup

(

etA
)

t≥0
on V , it holds

G(hA) v =

∫ ∞

0

ethA v da(t), h ≥ 0, v ∈ V, (5)

where the integral is defined in the sense of Bochner. It is thus straightforward
to deduce the following corollary from Theorem 1, see also Kovács [7].

Corollary 1. Suppose that the linear operator A generates a positive and

strongly continuous semigroup of type (M,ω). Assume further that the func-
tion G is absolutely monotonic on (−∞, hω] for some h ≥ 0. Then, the linear
operator G(hA) defined by (5) is positive.
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Remark 1. We note that the converse of the above corollary is true as well.
Namely, if G(hA) is positive for any generator A of a positive and strongly
continuous semigroup, then the function G is absolutely monotonic. The proof
of this statement is in the lines of Bolley and Crouzeix [3, Proof of Lemma 1].

The construction of exponential integrators often relies on the variation-of-
constants formula (3) and a replacement of the integrand f by an interpolation
polynomial. As a consequence, the linear operators ϕj(hA) defined through

ϕj(z) =

∫ 1

0

etz
(1− t)j−1

(j − 1)!
dt, j ≥ 1, z ∈ C, (6)

naturally arise in the numerical schemes. By the above Theorem 1, these
functions are absolutely monotonic, and thus the positivity of the associated
operators ϕj(hA) follows from Corollary 1.

3 Exponential multistep methods

In this section, we introduce the considered exponential multistep methods
for the time integration of the linear evolution equation (1) and state the
order conditions. The positivity properties of the numerical schemes are then
studied in Section 4.

We let tj = jh denote the grid points associated with a constant stepsize
h > 0. Besides, we suppose that the starting values u0, u1, . . . , uk−1 ∈ V are
approximations the exact solution values of (1). Then, for integers j ≥ k, the
numerical solution values uj ≈ u(tj) are given by the k-step recursion

k
∑

`=0

α`(hA)un+` = h

k
∑

`=0

β`(hA) f(tn+`), n ≥ 0. (7a)

Throughout, we choose αk = 1. Furthermore, we assume that the coefficient
functions α` and β` are given as Laplace-Stieltjes transforms of certain func-
tions a` and b`. Thus, it holds

α`(z) =

∫ ∞

0

etz da`(t), β`(z) =

∫ ∞

0

etz db`(t), z ∈ (−∞, ω]. (7b)

For simplicity, we require b` to be piecewise differentiable such that the left-
sided limit of b′`(t) exist at t = j for all integers j ≥ 0. In particular, these
assumptions are satisfied if the coefficients functions are (linear) combinations
of the exponential and the related ϕ-functions (6). We therefore refer to (7)
as an exponential linear k-step method. Due to (7b), the operators α`(hA)
and β`(hA) are bounded on V .

Examples that have recently been studied in literature for the time inte-
gration of semilinear evolution equations are exponential Adams-type meth-
ods. For the choice α1 = . . . = αk−1 = 0 and βk = 0, the resulting meth-
ods are discussed in Calvo and Palencia [4]. On the other hand, the case
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α0 = . . . = αk−2 = 0 and βk = 0 generalising the classical Adams–Bashforth
methods is covered by the analysis given in [9].

In the following, we derive the order conditions for the exponential k-
step method. We note that the arguments given below extend to semilinear
problems u′(t) = Au(t) + F

(

t, u(t)
)

by setting f(t) = F
(

t, u(t)
)

. As usual,
the numerical method (7) is said to be consistent of order p, if the local error

d(t, h) =

k
∑

`=0

α`(hA)u(t+ `h)− h

k
∑

i=0

β`(hA) f(t+ `h) (8)

is of the form d(t, h) = O
(

hp+1
)

for h → 0, provided that the function f is
sufficiently smooth, see Hairer, Nørsett, and Wanner [5, Chap. III.2].

In order to determine the leading h-term in d(t, h), we make use of the
variation-of-constants formula

u(t+ `h) = e`hA u(t) +

∫ `h

0

e(`h−τ)A f(t+ τ) dτ,

see also (3). We expand all occurrences of f in Taylor series at t and apply the
definition of the ϕ-functions (6). A comparison in powers of h finally yields
the following result.

Lemma 1. The order conditions for exponential multistep methods (7) are

k
∑

`=0

α`(hA) e
`hA = 0, (9a)

k
∑

`=1

α`(hA) `
q ϕq(`hA) =

k
∑

`=0

β`(hA)
`q−1

(q − 1)!
, 1 ≤ q ≤ p, (9b)

where by definition `0 = 1 for ` = 0.

The first condition corresponds to the requirement that the exponential mul-
tistep method (7) is exact for the homogeneous equation u′(t) = Au(t). By
setting A = 0 in (9), the usual order conditions

k
∑

`=0

α`(0) = 0,
k
∑

`=1

α`(0) `
q = q

k
∑

`=0

β`(0) `
q−1, 1 ≤ q ≤ p

for a linear multistep method with coefficients α`(0) and β`(0) follow, see
also [5, Chap. III.2].

4 Positivity and order barrier

In this section, we derive an order barrier for positive exponential multistep
methods. According to Bolley and Crouzeix [3], the numerical method (7) is
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said to be positive, if the numerical solution values un remain positive for all
n ≥ k, provided that the semigroup

(

etA
)

t≥0
, the function f , and further the

starting values u0, u1, . . . , uk−1 are positive. We note that the requirement of
positivity implies that the coefficients operators α`(hA) satisfy

−α`(hA) ≥ 0, 0 ≤ ` ≤ k − 1. (10)

We next give the main result of the paper.

Theorem 2. The order of a positive exponential k-step method is two at most.

Proof. Our main tools for the proof of Theorem 2 are the representation (7b)
of the coefficient functions as Laplace-Stieltjes transforms and further the
characterisation of positivity given in Section 2. For the following, we set
a`(t) = 0 = b`(t) for t ≤ 0. We note that due to Corollary 1, it is justified
to work with the complex variable z instead of the linear operator hA. For
the characteristic function of the interval [r, s), we henceforth employ the
abbreviation

Y[r,s)(t) =

{

1 if r ≤ t < s,

0 else.

(i) We first show that the validity of the first order condition (9a) together
with the requirement (10) imply that the coefficient functions α` are of the
form

α`(z) = −µk−` e
(k−`)z, µk−` ≥ 0, 0 ≤ ` ≤ k − 1, (11)

or, equivalently, that the associated functions a` are given by

a`(t) = −µk−` Y[k−`,∞)(t), µk−` ≥ 0, 0 ≤ ` ≤ k − 1. (12)

Inserting (7b) into (9a) and applying αk(z) = 1, we get

ekz = −

k−1
∑

`=0

α`(z) e
`z = −

k−1
∑

`=0

∫ ∞

0

etz Y[`,∞)(t) da`(t− `)

and furthermore conclude

Y[k,∞)(t) = −
k−1
∑

`=0

a`(t− `)Y[`,∞)(t). (13)

From (10) and Remark 1 we deduce that the function −α` is absolutely
monotonic and thus Theorem 1 shows that − a` is non-decreasing. Due to the
fact that a`(0) = 0, we finally obtain (12). For the following considerations,
accordingly to our choice αk(z) = 1, it is useful to define µ0 = − 1. As a
consequence, inserting (11) into (9a) we have

k
∑

`=1

µ` = −µ0 = 1. (14)
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(ii) We next reformulate the order conditions in terms of the functions a`
and b` given by (7b). Inserting (11) into (9b), we have

−
k
∑

`=1

µk−` `
q e(k−`)z ϕq(`z) =

k
∑

`=0

β`(z)
`q−1

(q − 1)!
, 1 ≤ q ≤ p.

For the following considerations, it is convenient to employ the abbreviation

χq;k−`,k(t) =
`q − (k − t)q

q
Y[k−`,k)(t) +

`q

q
Y[k,∞)(t), (15)

Obviously, χq;k−`,k is a continuous function such that the support of its deriv-
ative is contained in the interval [k − `, k). Therefore, making use of the fact
that

e(k−`)z ϕq(`z) =
1

`q

∫ ∞

0

etz
(k − t)q−1

(q − 1)!
Y[k−`,k)(t) dt,

see (6) for the definition of ϕq , we obtain

−
k
∑

`=1

µk−` χq;k−`,k(t) =
k
∑

`=0

`q−1b`(t), 1 ≤ q ≤ p. (16)

(iii) Exploiting the relations given above, we now show that the assumption
p ≥ 3 and the requirement of positivity, that is, the assumptions µ` ≥ 0 for
1 ≤ ` ≤ k and b`(t) a non-decreasing function for any t ∈ R and 0 ≤ ` ≤ k,
lead to a contradiction. We recall that by definition µ0 = − 1. Regarding the
order conditions (16), restricting t to the first interval [0, 1), we obtain the
following relations for the derivatives2

k
∑

`=0

b′`(t) = 1,

k
∑

`=0

` b′`(t) = k − t,

k
∑

`=0

`2 b′`(t) = (k − t)2.

(17)

Taking a suitable linear combination of (17), it follows

k
∑

`=0

(t− k + `)2 b′`(t) = 0.

Using that the functions b′` are non-negative, we conclude that they vanish
on [0, 1). This contradicts the first relation in (17). ut

2 As the function b` is non-decreasing, its derivative exists almost everywhere and
is non-negative. Assertions involving b′` are thus valid for almost all t.
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Remark 2. The order two barrier of Theorem 2 is sharp in the sense that
there exist positive second-order schemes. A simple example is given by the
exponential trapezoidal rule where k = 1, α0(z) = − ez, α1 = 1, β0 = ϕ1−ϕ2,
and β1 = ϕ2.

For analytic semigroups it is well-known that the order conditions (9b)
can be weakened, see e.g. [9]. Following the lines of [10] it can be shown that
an order two barrier holds in this case, too. For instance, the exponential
midpoint rule with k = 2, α0(z) = − e2z, α1 = 0, α2 = 1, β1(z) = 2ϕ1(2z),
and β0 = β2 = 0 has weak order two and preserves positivity.
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