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Theme

Splitting methods. Efficient time integration of nonlinear
evolution equations by exponential operator splitting methods

d
dt u(t ) = F

(
u(t )

)= A
(
u(t )

)+B
(
u(t )

)
, 0 ≤ t ≤ T , u(0) given,

SF (t , ·) =
s∏

j=1
eas+1− j tDA ebs+1− j tDB ≈ EF (t , ·) = etDF ,

un =SF (τn−1,un−1) ≈ u(tn) = EF
(
τn−1,u(tn−1)

)
, 1 ≤ n ≤ N .

Applications.

Nonlinear Schrödinger equations (GPS, MCTDHF)

Parabolic equations (with P. CHARTIER, S. DESCOMBES, A. MURUA)

Kinetic equations (with L. PARESCHI)

Wave equations (with B. KALTENBACHER)
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Bose–Einstein condensation
In our laboratories temperatures are measured
in micro- or nanokelvin ... In this ultracold
world ... atoms move at a snail’s pace ... and
behave like matter waves. Interesting and
fascinating new states of quantum matter are
formed and investigated in our experiments.

(GRIMM ET AL., Innsbruck)

Bose–Einstein condensation in dilute gases. In 1925 Einstein
predicted that at low temperatures particles in a gas could all
reside in the same quantum state. This peculiar gaseous state,
a Bose– Einstein condensate, was produced in the laboratory
for the first time in 1995 using the powerful laser-cooling methods
developed in recent years. These condensates exhibit quantum
phenomena on a large scale, and investigating them has become
one of the most active areas of research in contemporary physics.
PETHICK, SMITH (2002).
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Gross–Pitaevskii systems

Physical experiments. Observation of multi-component
Bose–Einstein condensates. Realisation of double species
87Rb 41K BEC at LENS, see G. THALHAMMER ET AL. (2008).

 

Theoretical model. Mathematical description (of certain aspects)
by time-dependent Gross–Pitaevskii systems forΨ :Rd ×[0,∞) →CJ

i ħ ∂tΨj (x, t ) =
(
− ħ2

2mj
∆+Vj (x)+ħ2

J∑
k=1

gjk |Ψk (x, t )|2
)
Ψj (x, t ) ,

Vj (x) =
d∑
`=1

(
mj

2 ω2
j` (x`−ζj`)2 +κj`

(
sin(qj`x`)

)2
)

, ‖Ψj (·,0)‖2
L2 = Nj ,

x ∈Rd , 0 ≤ t ≤ T , 1 ≤ j ≤ J .

Numerical simulations. Favourable behaviour of time-splitting
pseudo-spectral methods confirmed by numerical comparisons.
See e.g. contributions by WEIZHU BAO and collaborators.
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Nonlinear Schrödinger equations – Model problem

Continued study of special problems is still a commendable way towards
greater insight. (EBERHARD HOPF, 1902-1983)

Model problem. Consider nonlinear Schrödinger
equation for ψ :Rd × [0,T ] →C : (x, t ) 7→ψ(x, t ){

i ε∂tψ(x, t ) =
(
− 1

2 ε
2∆+U (x)+ϑ ∣∣ψ(x, t )

∣∣2
)
ψ(x, t ) ,

ψ(x,0) given, x ∈Rd , 0 ≤ t ≤ T ,

subject to asymptotic boundary conditions.
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Illustration. Ground state solution of GPE in 2D (ε= 1 =ω, κ= 25, ϑ= 400, M = 256×256).

Semi-classical regime. Computation of time discrete solution for small

critical parameter values 0 < ε<< 1. Nonlinear Schrödinger equations of

similar form arise in applications from solid state physics. See BAO, JIN,

MARKOWICH (2002, 2003).
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Semi-classical regime

Model problem. Nonlinear Schrödinger equation under classical
Wentzel–Kramers–Brillouin (WKB) initial condition{

i ∂tψ(x, t ) =
(
− ε

2 ∂
2
x + 1

2ε ω
2x2 + ϑ

ε

∣∣ψ(x, t )
∣∣2

)
ψ(x, t ) ,

ψ(x,0) = ρ0(x)e
i
ε
σ0(x) = e−x2

e−
i
ε

ln(ex+e−x ) , x ∈R , 0 ≤ t ≤ T ,

see also BAO, JIN, MARKOWICH (2003).

Numerical solution. Space and time

discretisation of model problem by

Fourier pseudo-spectral method and

embedded 4(3) splitting pair based on

fourth-order time-splitting scheme by

BLANES, MOAN (2002). ℜψ(x, t ) for (ε,ω,ϑ) = (10−2,1,1)

(x, t ) ∈ [−8,8]× [0,3], M = 8192, tol = 10−6
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Illustration

Movie. Space and time discretisation of model problem (d = 1, ε= 10−2, ω= 1, ϑ= 1) by
Fourier pseudo-spectral method and embedded 4(3) time-splitting pair based on 4th-order
scheme by BLANES, MOAN (2002) (x ∈ [−8,8], M = 8192, t ∈ [0,3], tol = 10−6, N = 2178).

Movie 1
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Objectives

Local error representations. Specification and inspection of local
error representations for high-order splitting methods

LF (t , v) =SF (t , v)−EF (t , v) =O
(
t p+1,‖v‖D

)
,

SF (t , v) =
s∏

j=1
eas+1− j tDB ebs+1− j tDA v ≈ EF (t , v) = etDF v .

Convergence analysis. Derivation of convergence result relies on
estimate for local error∥∥uN −u(tN )

∥∥
X ≤C

(∥∥u0 −u(0)
∥∥

X +
N∑

n=1
τ

p+1
n−1

)
.

Adaptive stepsize control. Local error expansion provides
theoretical basis of adaptive time stepsize control

τoptimal = τ ·min
(
αmax,max

(
αmin, p+1

√
α · tol

errlocal

))
.
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Local error analysis of high-order splitting methods

Approach based on quadrature formulas. Splitting methods for nonlinear evolution
equations. Application to MCTDHF equations in electron dynamics (with O. KOCH).

Theorem (Th. 2008, Koch & Neuhauser & Th. 2011)

LF (t , ·) =
p∑

k=1

∑
µ∈Nk

|µ|≤p−k

1
µ! t k+|µ| Ckµ

k∏
`=1

ad
µ`
D A

(DB ) e tD A +Rp+1(t , ·) ,

Ckµ = ∑
λ∈Λk

αλ

k∏
`=1

bλ` c
µ`
λ`

−
k∏
`=1

1
µ`+···+µk+k−`+1 .

Approach based on differential equations. Splitting methods for nonlinear evolution
equations with critical parameters and application to Schrödinger equations in the
semi-classical regime (with S. DESCOMBES).

Theorem (Descombes & Th. 2010b)

LF (t , ·) =
∫ t

0

∫ τ1

0
eτ1DA eτ2DB

[
DA ,DB

]
e(τ1−τ2)DB e(t−τ1)DF dτ2 dτ1 .
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Convergence analysis of high-order splitting methods

Approach based on quadrature formulas. Convergence estimate for full
discretisations based on splitting and pseudo-spectral methods applied to
Gross–Pitaevskii equations.

Theorem ∥∥ψM N −ψ(·, tN )
∥∥

L2 ≤C
( 1

M q +τp)
.

Approach based on differential equations. Convergence estimate for
splitting methods applied to linear and nonlinear Schrödinger equations
in the semi-classical regime (with S. DESCOMBES).

Theorem (Descombes & Th. 2010a)

‖uN −u(tN )‖L2 ≤ ‖u0 −u(0)‖L2 +C
N∑

n=1

τ
p+1
n−1

ε

p∑
j=0

ε j ‖u(0)‖H j .
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Further details

Further details.

Discretisations for nonlinear Schrödinger equations
Exponential operator splitting methods
Fourier and Hermite pseudo-spectral methods
Convergence analysis of splitting methods

Nonlinear Schrödinger equations with critical parameters
Exact local error representations for splitting methods

Adaptivity in space and time
Embedded splitting methods, a posteriori error estimators
Finite elements versus pseudo-spectral methods
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Splitting methods
Pseudo-spectral methods
Convergence analysis
Local error expansion

Time-splitting pseudo-spectral methods
for nonlinear Schrödinger equations
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Calculus of Lie-derivatives

In 1971, I read the beautiful paper of Kato & Fujita on the Navier–Stokes equations
and was delighted to find that, properly viewed, it looked like an ODE , and the
analysis proceeded in ways familiar for ODEs. (DAN HENRY, 1981)
The calculus of Lie-derivatives is a powerful and magic tool – all at once, the world becomes linear. (M.TH., 2011)

Calculus of Lie-derivatives. Formal calculus of Lie-derivatives is suggestive of less involved
linear case, see HAIRER, LUBICH, WANNER (2002), SANZ-SERNA, CALVO (1994).

Problem. Consider nonlinear evolution equation on Banach space X involving unbounded
nonlinear operator F : D(F ) ⊂ X → X and employ formal notation for analytical solution

d
dt u(t ) = F

(
u(t )

)
, u(t ) = EF

(
t ,u(0)

)= e tDF u(0) , 0 ≤ t ≤ T .

Evolution operator, Lie-derivative. For G : D(G) ⊂ X → X (unbounded, nonlinear) set

e tDF G v =G
(
EF (t , v)

)
, 0 ≤ t ≤ T , DF G v =G ′(v)F (v) .

Remark. In accordance with L = d
dt

∣∣∣
t=0

e tL it follows

d
dt

∣∣∣
t=0

e tDF G v = d
dt

∣∣∣
t=0

G
(
EF (t , v)

)=G ′(EF (t , v)
)

F
(
EF (t , v)

)∣∣∣
t=0

=G ′(v)F (v)

= DF G v .
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Exponential operator splitting methods

Aim. For nonlinear evolution equation on Banach space X

d
dt u(t ) = A

(
u(t )

)+B
(
u(t )

)
, 0 ≤ t ≤ T , u(0) given,

determine approximations at time grid points 0 = t0 < ·· · < tN ≤ T
with associated stepsizes τn−1 = tn − tn−1 through recurrence

un =SF (τn−1,un−1) ≈ u(tn) = EF
(
τn−1,u(tn−1)

)
, 1 ≤ n ≤ N .

Approach. Splitting methods rely on suitable decomposition of
right-hand side and presumption that subproblems

d
dt v(t ) = A

(
v(t )

)
, v(t ) = etDA v(0) , 0 ≤ t ≤ T ,

d
dt w(t ) = B

(
w(t )

)
, w(t ) = etDB w(0) , 0 ≤ t ≤ T ,

are solvable in accurate and efficient manner.
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Exponential operator splitting methods

General form. High-order splitting methods are cast into scheme

SF (t , ·) =
s∏

j=1
eas+1− j tDA ebs+1− j tDB ≈ EF (t , ·) = etDF = et (DA+DB )

with (real or complex) method coefficients (a j ,b j )s
j=1.

Low-order methods. First-order Lie–Trotter splitting method

SF (t , ·) = etDB etDA .

Second-order Strang splitting method

SF (t , ·) = e
1
2 tDA etDB e

1
2 tDA .

Higher-order methods. Higher-order schemes proposed by BLANES AND

MOAN, MCLACHLAN, SUZUKI, YOSHIDA, e.g.
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Higher-order splitting methods

Example methods. Symmetric fourth-order splitting method
proposed in BLANES, MOAN (2002) and embedded third-order
splitting method by KOCH, TH.

j aj

1 0
2,7 0.245298957184271
3,6 0.604872665711080
4,5 1/2− (a2 +a3)

j âj

1 a1
2 a2
3 a3
4 a4
5 0.3752162693236828
6 1.4878666594737946
7 −1.3630829287974774

j bj

1,7 0.0829844064174052
2,6 0.3963098014983680
3,5 −0.0390563049223486
4 1−2(b1 +b2 +b3)

j b̂j

1 b1
2 b2
3 b3
4 b4
5 0.4463374354420499
6 −0.0060995324486253
7 0
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Practical realisation (Schrödinger equations)

Spectral decomposition. Numerical solution of first subproblem
d

dt v(t ) = A v(t ) , 0 ≤ t ≤ T , v(0) given,

involving linear differential operator A (related to Laplacian, eigenrelation
A Bm =µm Bm) relies on spectral decomposition

v(t ) = et A v(0) =∑
m

vm et µm Bm , 0 ≤ t ≤ T , v(0) =∑
m

vm Bm .

Invariance. Numerical solution of second subproblem
d

dt w(t ) = B
(
w(t )

)
w(t ) = B(w0) w(t ) , 0 ≤ t ≤ T , w(0) = w0 ,

involving (unbounded) nonlinear multiplication operator B (related to
potential and nonlinearity) relies on pointwise multiplication(

w(t )
)
(x) = (

etB(w0)w0
)
(x) = et (B(w0))(x)w0(x) , 0 ≤ t ≤ T .

Explanation. For analytical solution of ∂tψ(x, t ) =− i
(
V (x)+ϑ |ψ(x, t )|2)

ψ(x, t ) it follows

∂t |ψ(x, t )|2 = ∂t
(
ψ(x, t )ψ(x, t )

)= 2ℜ(
ψ(x, t ) ∂tψ(x, t )

)= 2ℜ(− i
(
V (x)+ϑ |ψ(x, t )|2) |ψ(x, t )|2)= 0.
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Fourier pseudo-spectral method

Spectral decomposition. LetΩ= (−a1, a1)×·· ·× (−ad , ad ) with
a` > 0 (large) for 1 ≤ `≤ d . Fourier basis functions (Fm)m∈Zd form
orthonormal basis of L2(Ω) and satisfy eigenvalue relation

ψ(·, t ) =∑
m
ψm(t )Fm , ψm(t ) = (

ψ(·, t ) |Fm
)

L2 ,

−∆Fm =λm Fm , Fm(x) =
d∏
`=1

e
iπm`

(
x`
a`

+1

)
p

2a`
, λm =

d∑
`=1

π2m2
`

a2
`

.

Numerical approximation. Truncation of infinite sum and
application of trapezoid quadrature formula yields approximation

ψM (·, t ) = ∑
M

m
ψm(t )Fm ,

ψm(t ) =
∫
Ω
ψ(x, t )Fm(x) dx ≈∑

k
ωk ψ(ξk , t )Fm(ξk ) .

Implementation. Realisation by Fast Fourier Techniques.
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Hermite pseudo-spectral method

Spectral decomposition. Hermite basis functions (Hm)m∈Nd form
orthonormal basis of L2(Ω) = L2

(
Rd

)
and satisfy eigenvalue relation

ψ(·, t ) =∑
m
ψm(t )Hm , ψm(t ) = (

ψ(·, t ) |Hm
)

L2 ,(− ∆+Uγ

)
Hm =λm Hm , λm =

d∑
`=1

γ2
`

(
1+2m`

)
.

Numerical approximation. Truncation of infinite sum and
application of Gauss–Hermite quadrature yields approximation

ψM (·, t ) = ∑
M

m
ψm(t )Hm , w(x) =

d∏
`=1

e−
1
2 γ

2
`

x2
` ,

ψm(t ) =
∫
Ω
ψ(x, t )Hm(x) dx ≈∑

k
ωk w(−2ξk )ψ(ξk , t )Hm(ξk ) .

Implementation. Realisation by matrix × matrix multiplications.
Mechthild Thalhammer (Universität Innsbruck, Austria) Discretisations for nonlinear Schrödinger equations
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Illustration (Order of convergence)

Illustration. Space and time discretisation of Gross–Pitaevskii
equation (ε= 1, ω= 1, ϑ= 1, T = 1) by Fourier pseudo-spectral
method (M = 256) and different splitting methods of (classical)
orders p ≤ 4. Numerically observed orders of convergence.
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Numerical comparisons. Numerical comparisons (accuracy, efficiency,

long-term behaviour) of higher-order time-splitting Fourier/Hermite

pseudo-spectral methods (2D), see CALIARI, NEUHAUSER, TH (2009).
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Objective

Mein Verzicht auf das Restglied war leichtsinnig. (W. ROMBERG, 1979)

Situation. Time integration of nonlinear evolution equations by
high-order exponential operator splitting methods

d
dt u(t ) = F

(
u(t )

)= A
(
u(t )

)+B
(
u(t )

)
, 0 ≤ t ≤ T , u(0) given,

SF (t , ·) =
s∏

j=1
eas+1− j tDA ebs+1− j tDB ≈ EF (t , ·) = etDF ,

un =SF (τn−1,un−1) ≈ u(tn) = EF
(
τn−1,u(tn−1)

)
, 1 ≤ n ≤ N .

Objective. Deduce local error representation for high-order splitting
methods that remains suitable for nonlinear evolutions equations
involving unbounded operators and critical parameters

LF (t , v) =SF (t , v)−EF (t , v) =O
(
t p+1,‖v‖D

)
.

Hope. Requirement sup
{‖u(t )‖D : 0 ≤ t ≤ T

}≤C (or ε j
∥∥∂ j

x u(0)
∥∥

X ≤C )

reasonable in connection with nonlinear Schrödinger equations.
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Derivation of local error expansions

Standard approaches.

Expansion of exponential functions

Baker–Campbell–Hausdorff formula

Alternative approaches.

Quadrature formulas. Optimal error bounds regarding
regularity of analytical solution for evolutionary Schrödinger
equations by techniques studied in JAHNKE, LUBICH (2000),
KOCH, NEUHAUSER, TH. (2010), LUBICH (2008), and TH. (2008).

Differential equations. Investigation of exact local error
representation for evolution equations involving critical
parameters exploited in DESCOMBES, DUMONT, LOUVET,
MASSOT (2007), DESCOMBES, SCHATZMAN (2002), and
DESCOMBES, TH. (2010a, 2010b).
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Baker–Campbell–Hausdorff formula

Baker–Campbell–Hausdorff formula. BCH formula implies

et L et K = et S(t ) , S(t ) = K +L− 1
2 t

[
K ,L

]+O
(
t 2) .

Local error expansion. For exponential operator splitting methods
involving two compositions (Lie, Strang)

SF (t , ·) = et S(t ) = ea1tDA eb1tDB ea2tDA eb2tDB ≈ EF (t , ·) = et (DA+DB )

above relation yields expansion (order conditions)

DA +DB ≈ S(t ) = (a1 +a2)DA + (b1 +b2)DB

+ 1
2 t

(
b2(a2 +a1)+b1(a1 −a2)

) [
DA ,DB

]+O
(
t 2) ,

where [DA ,DB ]v = DA DB v −DB DA v = B ′(v) A(v)− A′(v)B(v).

Difficulties. Justify approach for unbounded nonlinear operators?

Capture precise form of remainder to obtain optimal regularity

requirements on analytical solution? Employ alternative approaches ...
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Order conditions (Lie, Strang)

Order conditions. For bounded nonlinear operators requirement
LF (t , ·) =O

(
t p+1

)
for p = 1,2 implies (classical) order conditions

a1 +a2 = 1, b1 +b2 = 1, (p = 1)

(1−a1)b1 = 1
2 . (p = 2)

Examples. Retain first-order Lie–Trotter splitting

s = 1, a1 = 1, b1 = 1,

s = 2, a1 = 0, a2 = 1, b1 = 1, b2 = 0,

and second-order Strang splitting

s = 2, a1 = 1
2 = a2 , b1 = 1, b2 = 0,

s = 2, a1 = 0, a2 = 1, b1 = 1
2 = b2 .

Question. Order reduction of splitting methods when applied to

equations involving unbounded operators and critical parameters?
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Quadrature formulas

Approach. Alternative local error expansion

LF (t , v) =SF (t , v)−EF (t , v) =O
(
t p+1,‖v‖D

)
provides optimal error estimates regarding regularity of analytical
solution for (non)linear evolutionary Schrödinger equations with
(un)bounded potentials.

Linear equations. See also JAHNKE, LUBICH (2000),
NEUHAUSER, TH. (2009), TH. (2008).
Nonlinear equations. See also GAUCKLER (2010), KOCH,
NEUHAUSER, TH. (2011), LUBICH (2008).

Main tools.

Variation-of-constants formula
(Gröbner–Alekseev)

Stepwise expansion of etDB

Quadrature formulas for multiple integrals

Bounds for iterated commutators

Characterise domains of
unbounded operators
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Local error expansion (Linear equations, Strang)

Situation. Time discretisation of linear evolution equation by splitting
method involving two compositions with a1 +a2 = 1

d
dt u(t ) = A u(t )+B u(t ) , 0 ≤ t ≤ T , u(0) given,

SF (t , ·) = eb2tB ea2t A eb1tB ea1t A ≈ EF (t , ·) = et (A+B) .

Derivation of local error expansion. Expansion of exact solution value by
variation-of-constants formula and stepwise expansion of etB yields

LF (t , ·) =Q1 − I1 +Q2 − I2 +O
(
t 3,C 3

B , MA , MB , MA+B
)

,

Q1 = t
(
b1e(1−a1)t AB ea1t A +b2B et A)≈ I1 =

∫ t

0
e(h−τ1)A B eτ1 A dτ1 ,

Q2 = 1
2 t 2 (

b2
1 e(1−a1)t AB 2ea1t A +2b1b2B e(1−a1)t A B ea1t A +b2

2B 2 et A)
≈ I2 =

∫ t

0

∫ τ1

0
e(t−τ1)A B e(τ1−τ2)A B eτ2 A dτ2 dτ1 ,

provided that ‖B‖X←X ≤CB ,
∥∥etC

∥∥
X←X ≤ eMC t , C ∈ {A,B , A+B}. Further

Taylor series expansions of integrands (commutators [A,B ], [A, [A,B ]]).
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Local error expansion (Linear equations, Strang)

Assumptions. Assume a1 +a2 = 1 and furthermore

‖B‖X←X ≤CB ,
∥∥etC ∥∥

X←X ≤ eMC t , C ∈ {A,B , A+B} ,∥∥[
A,B

]
v
∥∥

X +∥∥[
A, [A,B ]

]
v
∥∥

X ≤Cad ‖v‖D .

Local error expansion. Exponential operator splitting method involving
two compositions (Strang) fulfills local error expansion

LF (t , v) =
(
eb2tB ea2t A eb1tB ea1t A −et (A+B)

)
v

= t
(
b1 +b2 −1

)
et AB v

− t 2 et A
((

a1b1 +b2 − 1
2

) [
A,B

]+ 1
2

(
(b1 +b2)2 −1

)
B 2

)
v

+O
(
t 3,C 3

B , MA , MB , MA+B ,Cad,‖v‖D
)

.

Extension and application to linear Schrödinger equations. Suitable
choice X = L2(Ω), D = H p (Ω), MA = MB = 0, see TH. (2008).

Drawback. Numerical illustrations show that approach not optimal with

respect to critical parameter (B =U /ε).
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Local error expansion (Nonlinear equations)

Result. Local error expansion of high-order splitting methods applied to
nonlinear evolution equations.

Theorem (Th. 2008, Koch & Neuhauser & Th. 2011)

The defect operator of an exponential operator splitting method of
(classical) order p admits the (formal) expansion

LF (t , ·) =
p∑

k=1

∑
µ∈Nk

|µ|≤p−k

1
µ! t k+|µ| Ckµ

k∏
`=1

adµ`
D A

(DB ) e tD A +Rp+1(t , ·) ,

Ckµ =
∑
λ∈Λk

αλ

k∏
`=1

bλ` c µ`
λ`

−
k∏
`=1

1
µ`+···+µk+k−`+1 .

Remarks. Application to MCTDHF equations in electron dynamics (with O. KOCH). Local
error expansion suitable for parabolic problems.

Current and future work. Extension to full discretisations for GPS. Study algebraic structure
of expansion (with P. CHARTIER, S. DESCOMBES, A. MURUA).
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Nonlinear Schrödinger equations
with critical parameters
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Differential equations

Approach. Derivation of exact local error representation for
splitting methods applied to linear and nonlinear equations
involving critical parameters, see DESCOMBES, SCHATZMAN (2002)

and DESCOMBES, TH. (2010a, 2010b). Similar approach utilised for
derivation of a posteriori error estimators.

Basic idea. Deduce differential equation for splitting operator

SF (t , ·) =
s∏

j=1
eas+1− j tDA ebs+1− j tDB

closely related to differential equation for evolution operator

d
dt EF (t , ·) = (DA +DB )EF (t , ·) , 0 ≤ t ≤ T , EF (0, ·) = I .

Main tools. Variation-of-constants formula, iterated commutators.
Mechthild Thalhammer (Universität Innsbruck, Austria) Discretisations for nonlinear Schrödinger equations



Introduction
Splitting and spectral methods

Equations with critical parameters
Adaptivity in space and time

Conclusions

Exact local error representation
Applications, Illustrations

Exact local error representation (Linear equations, Lie)

Situation. Time integration of linear evolution equation by
first-order Lie–Trotter splitting SF (t ) = etB et A .

Derivation of exact local error representation. Consider initial
value problem for evolution operator

d
dt EF (t ) = (A+B)EF (t ) , 0 ≤ t ≤ T , EF (0) = I .

Rewrite time derivative of splitting operator as
d

dt SF (t ) = B SF (t )+etB A et A = (A+B)SF (t )+ [
etB , A

]
et A

and obtain initial value problem for splitting operator
d

dt SF (t ) = (A+B)SF (t )+R(t ) , 0 ≤ t ≤ T , SF (0) = I .

By variation-of-constants formula obtain representation

LF (t , ·) =
∫ t

0
EF (t −τ)R(τ)dτ , R(t ) = [

etB , A
]

et A , 0 ≤ t ≤ T .
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Exact local error representation (Linear equations, Lie)

Expansion of remainder. Consider remainder

R(t ) = d
dt SF (t )− (A+B)SF (t ) = [

etB , A
]

et A .

Rewrite time derivative of r (t ) = [
etB , A

]= etB A− A etB as

d
dt r (t ) = B etB A− A B etB = B r (t )+ (

B A− A B
)

etB ,

which yields initial value problem for commutator

d
dt r (t ) = B r (t )+ [

B , A
]

etB , 0 ≤ t ≤ T , r (0) = 0.

By variation-of-constants formula obtain representation

r (t ) = [
etB , A

]= ∫ t

0
eτB [

B , A
]

e(t−τ)B dτ , 0 ≤ t ≤ T .
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Exact local error representation (Linear equations, Lie)

Local error representation. Above considerations imply exact
local error representation

LF
(
τn−1,u(tn−1)

)
=

∫ τn−1

0

∫ σ1

0
EF (τn−1 −σ1) eσ2B [

B , A
]

e−σ2B SF (σ1)u(tn−1) dσ2 dσ1 .

Provided that bound ‖EF (τn−1 −σ1) eσ2B [
B , A

]
e−σ2B SF (σ1)u(tn−1)‖X ≤C ‖u(tn−1)‖D

holds, local error estimate ‖LF (τn−1,u(tn−1))‖X ≤C τ2
n−1 follows.

Generalisation and application. Generalisation of exact local error
representation and application to Schrödinger equations in the
semi-classical regime, see DESCOMBES, TH. (2010a, 2010b).

High-order splitting methods for linear evolution equations.

Lie–Trotter splitting method for nonlinear evolution equations.
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Exact local error representation (Linear equations)
Theorem (Descombes & Th. 2010a)

LF (t ) =
s∏

j=1
ebj tB eaj t A −et (A+B) =

∫ t

0
EF (t −τ)R(τ)dτ , t ≥ 0,

R =
s∏

j=σ+1
ebj tB eaj t A

T
σ∏

j=1
ebj tB eaj t A , σ= 1

2

{
s , s even ,

s +1, s odd ,

T =
σ−1∑
j=0

Cσ− j , j +
s−σ−1∑

j=0
Dσ+1+ j , j , ck =

k∑
j=1

aj , dk =
k∑

j=1
bj ,

I±(L1,L2, t ) =
∫ t

0
e±tL1

[
L1,L2

]
e∓tL1 dτ ,

Ck,0 = ck I+(Bk , A)+dk−1 I+(Ak ,B)+dk−1I+
(
Bk ,I+(Ak ,B)

)
,

Ck, j =Ck, j−1 +I+(Ak+ j ,Ck, j−1)+I+(Bk+ j ,Ck, j−1)

+I+
(
Bk+ j ,I+(Ak+ j ,Ck, j−1)

)
, 1 ≤ k ≤σ , 0 ≤ j ≤σ−1,

Dk,0 = ck I−(Bk , A)− ck I−
(

Ak ,I−(Bk , A)
)+dk−1 I−(Ak ,B) ,

Dk, j = Dk, j−1 −I−(Ak− j ,Dk, j−1)−I−(Bk− j ,Dk, j−1)

+ I−
(

Ak− j ,I−(Bk− j ,Dk, j−1)
)

, σ+1 ≤ k ≤ s , 0 ≤ j ≤ s −σ−1.
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Exact local error representation (Nonlinear equations, Lie)

Theorem (Descombes & Th. 2010b)

The defect operator of the first-order Lie–Trotter splitting method admits
the (formal) integral representation

LF (t , ·) =
∫ t

0

∫ τ1

0
eτ1DA eτ2DB

[
DA ,DB

]
e(τ1−τ2)DB e(t−τ1)DF dτ2 dτ1

=
∫ t

0

∫ τ1

0
∂2EF

(
t −τ1,SF (τ1, ·)) ∂2EB

(
τ1 −τ2,EA(τ1, ·))

× [
B , A

](
EB

(
τ2,EA(τ1, ·))) dτ2 dτ1 , 0 ≤ t ≤ T .

Remark. Formal extension of linear case

LF (t , ·) =
∫ t

0

∫ τ1

0
e(t−τ1)(A+B) e(τ1−τ2)B [

B , A
]

eτ2B eτ1 A dτ2 dτ1 .

Objective. Study exact local error representations for linear and

nonlinear Schrödinger equations with critical parameters.
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Application to Schrödinger equations

Model problem. Time-dependent nonlinear Schrödinger equation{
i ∂tψ(x, t ) =− ε

2 ∂
2
x ψ(x, t )+ 1

2ε ω
2x2ψ(x, t )+ ϑ

ε

∣∣ψ(x, t )
∣∣2
ψ(x, t ) ,

ψ(x,0) = ρ0(x)e
i
ε
σ0(x) , x ∈R , 0 ≤ t ≤ T ,

involving critical parameter 0 < ε<< 1 under WKB initial condition
or regular initial condition (derivatives bounded independent of ε)

ρ0(x) = e−x2
, σ0(x) =− ln

(
ex +e−x)

, x ∈R ,

ρ0(x) = e− (x− 1
10 )2

, σ0(x) = 0, x ∈R ,

see also BAO, JIN, MARKOWICH (2003).

Special cases.

Linear Schrödinger equation (ϑ= 0)

Cubic Schrödinger equation (ω= 0)
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Illustration (Time evolution)

Movie. Space and time discretisation of model problem (d = 1, ε= 1,10−2, ω= 1,2, ϑ= 1)
under WKB initial condition by Fourier pseudo-spectral method and embedded 4(3) splitting
pair based on 4th-order scheme by BLANES, MOAN (2002) (x ∈ [−8,8], M = 8192, t ∈ [0,3],
tol = 10−6, N = 83,121,2178,3560). Solution profile ℜψ(x, t ) for (x, t ) ∈ [0,1.5]× [0,3].

Movie 2
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Illustration (Time evolution)

Illustration. Space and time discretisation of model problem (d = 1, ε= 1,10−2, ω= 1,2,
ϑ= 1) under WKB initial condition by Fourier pseudo-spectral method and embedded 4(3)
splitting pair based on 4th-order scheme by BLANES, MOAN (2002) (x ∈ [−8,8], M = 512,8192,
t ∈ [0,3], tol = 10−6, N = 104,141,2153,3588). Solution profile |ψ(x, t )|2, (x, t ) ∈ [0,1.5]× [0,3].

(ε,ω) = (1,1)

(ε,ω) = (1,2)

(ε,ω) = (10−2,1)

(ε,ω) = (10−2,2)
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Illustration (Local error versus critical parameter)

Illustration. Time discretisation of nonlinear Schrödinger equation (GPE, ω= 1 =ϑ) under
WKB (∂xσ0 6= 0) and regular (σ0 = 0) initial condition by splitting methods of orders p ≤ 4.
Display dependence of local error on critical parameter. Include corresponding results for
linear Schrödinger equation (ϑ= 0).
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Illustration (Local error versus critical parameter)

Illustration. Time discretisation of nonlinear Schrödinger equation (GPE,
ω= 1 =ϑ) under WKB (∂xσ0 6= 0) and regular (σ0 = 0) initial condition by
splitting methods of orders p ≤ 4. Display dependence O (εα) of dominant
local error term on critical parameter ε (within chosen range of h/ε).
Compare with obtained results for linear Schrödinger equation (ϑ= 0).

ω= 1 ϑ= 1 ∂xσ0 6= 0 τ= τ0 α≈−1
ω= 1 ϑ= 1 ∂xσ0 6= 0 τ= ε α≈ p
ω= 1 ϑ= 1 σ0 = 0 τ= τ0 α≈−1
ω= 1 ϑ= 1 σ0 = 0 τ= ε α≈ 2

⌊
(p +1)/2

⌋
ω= 1 ϑ= 0 ∂xσ0 6= 0 τ= τ0 α=−1
ω= 1 ϑ= 0 ∂xσ0 6= 0 τ= ε α= p
ω= 1 ϑ= 0 σ0 = 0 τ= τ0 α=−1
ω= 1 ϑ= 0 σ0 = 0 τ= ε α= 2

⌊
(p +1)/2

⌋
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Global error estimate (Linear equations)

Theorem (Descombes & Th. 2010a)

An exponential operator splitting method of (classical) order p ≥ 1 applied
to a linear Schrödinger equation satisfies the error estimate

‖uN −u(tN )‖L2 ≤ ‖u0 −u(0)‖L2 +C
N∑

n=1

τ
p+1
n−1

ε

p∑
j=0

ε j ‖u(0)‖H j

with constant depending on max
{∥∥∥∂x j U

∥∥∥
L∞ : 0 ≤ j ≤ 2p

}
and tN ≤ T .

Classical WKB initial values. If ε j ‖u(0)‖H j ≤ M j , the estimate

‖uN −u(tN )‖L2 ≤ ‖u0 −u(0)‖L2 +C
τp

ε

follows, where τ= max
{
τn−1 : 1 ≤ n ≤ N

}
.

Remark. Error estimate in accordance with numerical illustrations.
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Local error estimate (Nonlinear equations, Lie)

Linear equations. Lie–Trotter splitting method applied to linear
Schrödinger equation satisfies local error estimate

σ0 = 0 :
∥∥LF

(
τ,u(0)

)∥∥
L2 ≤

(
C0 +C1

τ
ε

)
τ2 .

Theorem (Descombes & Th. 2010b)

The Lie–Trotter splitting method applied to the nonlinear model
equation under a regular initial condition (derivatives bounded
independent of ε) satisfies the local error estimate

σ0 = 0 :
∥∥LF

(
τ,u(0)

)∥∥
L2 ≤ P

(
τ
ε

)
τ2 , P (ξ) =

3∑
j=0

C j ξ
j .

Remark. Error estimate in accordance with numerical illustrations.

Open question. Extension to high-order splitting methods.
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Local error estimate (Nonlinear equations, WKB, Lie)

Linear equations. Lie–Trotter splitting method applied to linear
Schrödinger equation satisfies local error estimate

∂xσ0 6= 0 :
∥∥LF

(
τ,u(0)

)∥∥
L2 ≤

(
C0τ+C1

τ
ε

)
τ .

Surprising result. For nonlinear model equation, straightforward
estimation implies local error bound

∥∥LF
(
τ,u(0)

)∥∥
L2 ≤ P

(
τ
ε

)
contrary to

numerical observations. Heuristic arguments confirm cancelation of
terms involving 1

ε and lead to conjecture in accordance with numerical
illustrations.

Conjecture (Classical WKB initial values). If ε j ‖u(0)‖H j ≤ M j , the
Lie–Trotter splitting method applied to the nonlinear model equation
satisfies the local error estimate

∂xσ0 6= 0 :
∥∥LF

(
τ,u(0)

)∥∥
L2 ≤Q

(
τ
ε

)
τ , Q(ξ) =

∞∑
j=0

C j ξ
j .

Open questions. Rigorous local error analysis and extension to

high-order exponential operator splitting methods.
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Adaptivity in space and time
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Adaptive time stepsize control

A good ODE integrator should exert some adaptive control over its own progress,
making frequent changes in its stepsize. Usually the purpose of this adaptive
stepsize control is to achieve some predetermined accuracy in the solution with
minimum computational effort. Many small steps should tiptoe through
treacherous terrain, while a few great strides should speed through smooth
uninteresting countryside. The resulting gains in efficiency are not mere tens of
percents or factors of two; they can sometimes be factors of ten, a hundred, or
more.
PRESS, FLANNERY, TEUKOLSKY, VETTERLING, Numerical Recipes in C – The Art of
Scientific Computing (1988)

Adaptive time stepsize control. Local error expansion provides
theoretical basis of adaptive time stepsize control. Development
of time-step selection algorithms, see SÖDERLIND (2002, 2003, 2006).

Estimation of local error. With W. AUZINGER, O. KOCH.

Embedded splitting methods

A posteriori error estimators
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Embedded splitting methods

Embedded splitting methods. Construct embedded split-step
pairs p(p̂) with certain compositions coinciding. Use difference

between basic integrator
(
a j ,b j

)s
j=1 and error estimator

(
â j , b̂ j

)ŝ
j=1

as estimate for local error

‖un − ûn‖X ≈ ‖un −u(tn)‖X ,

un =
s∏

j=1
eas+1− jτn−1DA ebs+1− jτn−1DB un−1 ,

ûn =
ŝ∏

j=1
eâ ŝ+1− jτn−1DA eb̂ ŝ+1− jτn−1DB un−1 .

Standard stepsize selection. Optimal time stepsize determined through

τoptimal = τ ·min
(
αmax,max

(
αmin, p+1

√
α · tol

errlocal

))
see HAIRER, NØRSETT, WANNER (2000).
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Construction of embedded splitting methods

Example method. Split-step pair of orders 4(3) based on splitting
method by BLANES AND MOAN with (negative) real coefficients
appropriate for the time integration of Hamiltonian systems.
Approach. Choose Runge–Kutta–Nyström type method (p = 4, s = 7) as basic integrator.
Compute Gröbner basis of order conditions (p̂ = 3, ŝ = 7, b̂7 = 0, â j = a j , b̂ j = b j , 1 ≤ j ≤ 4).
Resolve resulting quadratic equation for b̂6 and linear equations for â j , j = 5,6,7, and b̂5.

j aj

1 0
2,7 0.245298957184271
3,6 0.604872665711080
4,5 1/2− (a2 +a3)

j âj

1 a1
2 a2
3 a3
4 a4
5 0.3752162693236828
6 1.4878666594737946
7 −1.3630829287974774

j bj

1,7 0.0829844064174052
2,6 0.3963098014983680
3,5 −0.0390563049223486
4 1−2(b1 +b2 +b3)

j b̂j

1 b1
2 b2
3 b3
4 b4
5 0.4463374354420499
6 −0.0060995324486253
7 0

Dissipative problems. Complex split-step pair of orders 4(3) based on scheme by YOSHIDA.
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A posteriori error estimators (Linear problems, Lie)

Lie–Trotter splitting method for linear evolution equation

d
dt u(t ) = F

(
u(t )

)= (
A+B

)
u(t ) , SF (t ) = etB et A ≈ EF (t ) = et (A+B) , t ≥ 0,

Differential equation for evolution operator and defect

d
dt EF (t ) = (

A+B
)
EF (t ) , t ≥ 0,

d
dt SF (t ) = (

A+B
)
SF (t )+D(t ) , D(t ) = [

SF (t ), A
]

, t ≥ 0.

Sylvester equation for splitting operator, truncation error, and local error operator

d
dt SF (t ) =SF (t ) A+B SF (t ) , t ≥ 0,

d
dt EF (t ) = EF (t ) A+B EF (t )+T (t ) , T (t ) = [

A,EF (t )
]

, t ≥ 0,

d
dt LF (t ) =LF (t ) A+B LF (t )−T (t ) , t ≥ 0.

Integral representation for local error operator and quadrature approximation yields
a posteriori error estimator

LF (t ) =−
∫ t

0
e(t−τ)B T (τ) e(t−τ)A dτ≈

∫ t

0
e(t−τ)B D(τ) e(t−τ)A dτ

≈P (t ) = 1
2 t D(t ) = 1

2 t
(
etB et A A− A etB et A)

, t ≥ 0.
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A posteriori error estimator (Nonlinear problems, Lie)

Nonlinear problems. Straightforward extension of the a posteriori
error estimator P (t ) = 1

2 t
(
etB et A A− A etB et A

)
for linear problems

to nonlinear evolution equations (calculus of Lie-derivatives)

P (t , v) = 1
2 t

(
DA etDA etDB v −etDA etDB DA v

)
, t ≥ 0.

Application. Specification to nonlinear Schrödinger equation

etDA etDB DA v = A EB
(
t ,EA (t , v)

)
,

DA etDA etDB v =G ′(v) A v = ∂2 EB
(
t ,EA (t , v)

)
∂2 EA (t , v) A v ,

G(v) = etDA etDB v = EB
(
t ,EA (t , v)

)
, G ′(v) = ∂2 EB

(
t ,EA (t , v)

)
∂2 EA (t , v) .

In particular, specification to single Gross–Pitaevskii equation yields

etDA etDB DA v = A e− it (V +ϑ |et A v |2)et A v , G(v) = e− it (V +ϑ |et A v |2)et A v ,

DA etDA etDB v = e− it (V +ϑ |et A v |2)
(

A et A v − iϑt
(

A et A v |et A v |2 + A et A v
(
et A v

)2
))

,

G ′(v) = e− it (V +ϑ |et A v |2)
(
et A (·)− iϑt

(
et A (·)et A v +et A (·)et A v

)
et A v

)
.
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A posteriori error estimator (Nonlinear problems, Lie)

Error estimator. A posteriori error estimator for Lie–Trotter splitting
method applied to nonlinear evolution equation

P (t , ·) = t
2

(
DA etDA etDB −etDA etDB DA

)≈L (t , ·) =S (t , ·)−E (t , ·) .

Error analysis. Theoretical analysis for linear problems and application
to linear Schrödinger equations in AUZINGER, KOCH, TH. (2011).
Derivation of following results for Lie–Trotter and Strang splitting method
under appropriate regularity requirements on analytical solution.

A priori estimate L (t ) =O
(
t p+1

)
.

A posteriori estimator asymptotically correct P (t )−L (t ) =O
(
t p+2

)
.

Improved approximation S (t )−P (t ) = E (t )+O
(
t p+2

)
.

Objective. Extension of theoretical results to nonlinear problems.

Computational effort (GPE). Two additional applications of A (FFT) required

P (t , v) = e− it (V +ϑ |w |2) (
A w − iϑt

(
A w |w |2 + A w w2))− A e− it (V +ϑ |w |2)w , w = et A v .

Computational effort comparable with splitting pair Lie (Strang).
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Illustration (Reliable time integration)

Illustration. Space and time discretisation of model problem (d = 1, ε= 1, ω= 1,2, ϑ= 1) by
Fourier pseudo-spectral method and embedded 4(3) splitting pair based on fourth-order
scheme by BLANES, MOAN (2002) (x ∈ [−8,8], M = 512, t ∈ [0,3]). Solution profile |ψ(x, t )|2 for
(x, t ) ∈ [0,1.5]× [0,3] and generated stepsize sequences for tol = 10−3(left), tol = 10−6(right).
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Illustration (Reliable time integration, Critical parameter)

Integration without preparation is frustration. (REVEREND LEON SULLIVAN)

Movie. Time integration of model problem (d = 1, ε= 10−2, ω= 2, ϑ= 1) under WKB initial
condition by Fourier pseudo-spectral method and embedded 4(3) splitting pair based on
4th-order time-splitting scheme by BLANES, MOAN (2002) (x ∈ [−8,8], M = 8192, t ∈ [0,3]).
Solution profile |ψ(x, t )|2 for tol = 10−1,10−2,10−3,10−6 (N = 951,2342,2452,3560).

Movie 3
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Illustration (Reliable time integration, Critical parameter)

Illustration. Time integration of model problem (d = 1, ε= 10−2, ω= 1,2, ϑ= 1) by Fourier
pseudo-spectral method and embedded 4(3) splitting pair based on fourth-order splitting
scheme by BLANES, MOAN (2002) (x ∈ [−8,8], M = 8192, t ∈ [0,3]). Solution profile |ψ(x, t )|2,
(x, t ) ∈ [0,1.5]× [0,3], and generated stepsize sequences for tol = 10−3(left), tol = 10−6(right).
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Illustration (Fourier pseudo-spectral method)

Illustration. Spatial approximation of WKB-type initial condition

ψ0(x) = ρ0(x)e
i
εσ0(x) = e−x2

e−
i
ε ln(ex+e−x ) , x ∈R , 0 ≤ t ≤ T ,

by Fourier pseudo-spectral method in dependence of critical parameter. Solution profile
ℜψ0 and Fourier spectral coefficients |ψm | > 10−14. Observation #coefficients ∝ 1

ε .
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Theoretical background. See BOYD (2011). Approximation error (d = 1)∣∣∣ ∑
m∈Z

ψm (t )Fm − ∑
−M≤m≤M−1

ψ̃m (t )Fm

∣∣∣≤ 2 |ψM (t )−ψ−M (t )|+4
∑

|m|≥M+1
|ψm (t )|.
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Finite element versus Fourier pseudo-spectral method

Common feature. Approximation of given function by linear
combination of basis functions.

Fourier pseudo-spectral method.

Fourier basis functions supported on entire domain.

Realisation by Fast Fourier Techniques.

Periodic boundary conditions imposed.

Finite element method.

Finite element basis functions locally supported and thus
better designed for local adaptation of space grid.

Numerical solution of (large) linear systems.

Realisation of different boundary conditions.
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Finite element method (Realisation)

Realisation (2D). With JOCHEN ABHAU.

Utilisation of DEAL.II LIBRARY developed by WOLFGANG

BANGERTH and collaborators.

Piecewise polynomial basis functions (quadratic interpolants) on
rectangular grid. Homogeneous Dirichlet boundary conditions.

Formulate nonlinear Schrödinger equation as real-valued system for ψ= v + i w .
Linear subproblem i ∂tψ(x, t ) =−ε∆ψ(x, t ) becomes ∂t v =−ε∆w , ∂t w = ε∆v .
Employ weak formulation (finite dimensional space Vh ⊂ H1(Ω) with basis (ϕj ), use

ansatz v(·, t ) =∑
αj(t )ϕj and w(·, t ) =∑

βk(t )ϕk , test resulting system with χ ∈ H1(Ω))∑
∂tαj(t )

(
ϕj |χ

)
L2 = ε∑

βk(t )
(∇ϕk |∇χ)

L2 ,
∑
∂tβk(t )

(
ϕk |χ)

L2 =−ε∑
αj(t )

(∇ϕj |∇χ
)

L2 ,

to obtain Q ∂tα= εQ̃β, Q ∂tβ=−εQ̃α (χ= ϕ̀ , Qk` = (ϕk |ϕ`)L2 , Q̃k` = (∇ϕk |∇ϕ`)L2 ).

Local mesh adaptation by standard local a posteriori estimator given in KELLY, GAGO,
ZIENKIEWICZ, BABUSKA (1983) on each rectangle K together with Dörfler marking
strategy.

error2
K (u) = diam(K )

∫
∂K

[
∂u

∂~n

]
dσ ,

∑
K∈K ′

errorK (u) > c
∑

K∈K

errorK (u) .
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Finite element versus Fourier pseudo-spectral method

Illustration. Spatial approximation of WKB-type initial condition in 2D by Finite element
and Fourier pseudo-spectral method in dependence of critical parameter. Solution profile
ℜψ0 and spatial approximation error. Computation time of a couple of days.
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Conclusions

Main focus. Local error behaviour of higher-order exponential operator
splitting methods for time integration of nonlinear Schrödinger equations.

Nonlinear Schrödinger equations with non-critical parameters. For time-dependent
Gross–Pitaevskii systems with trapping potentials, moderate coupling constants, and
non-critical parameter values discouver parameter regions where fascinating physical
phenomena arise. Analytical solutions close to ground state remain regular and localised.
Dominant linear part well solvable by spectral decomposition. High order of convergence
retained for splitting methods. Numerical simulations in 3D feasible.

Nonlinear Schrödinger equations with critical parameters. For nonlinear Schrödinger
equations involving critical parameter values fine structures of analytical solution require
high resolution in space and time. Adaptivity in space and time desirable.
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Conclusions

... methods for stiff problems, we are just beginning to explore them ...
(LAWRENCE SHAMPINE, 1985)

Theoretical analysis of discretisations for model problems
provides insight in regard to more complex applications.

Adaptivity in space and time essential for reliable numerical
simulations.
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Open questions and future work

Open questions and future work. With J. Abhau, W. Auzinger, Ph. Chartier, S. Descombes,
O. Koch, A. Murua, L. Pareschi.

Rigorous error analysis of high-order splitting methods for nonlinear Schrödinger
equations with critical parameters.

Algebraic structures of local error expansions (quadrature formulas, differential
equations) for splitting methods applied to evolution equations involving several
parts.

Convergence analysis of full discretisations for nonlinear evolution equations, see also
GAUCKLER (2010).

Spectral methods versus Galerkin methods for nonlinear Schrödinger equations in the
semi-classical regime.

Alternative approaches to obtain efficient local error estimators for adaptive stepsize
control.

Extend approaches to other applications (kinetic equations).
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A good numerical method is . . .

. . . reliable in demanding moments.

Thank you!

Mechthild Thalhammer (Universität Innsbruck, Austria) Discretisations for nonlinear Schrödinger equations


	Introduction
	Splitting and spectral methods
	Splitting methods
	Pseudo-spectral methods
	Convergence analysis
	Local error expansion

	Equations with critical parameters
	Exact local error representation
	Applications, Illustrations

	Adaptivity in space and time
	Adaptive time stepsize control
	Finite element versus Fourier pseudo-spectral method

	Conclusions
	The end


