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Theme

Exponential integrators. Efficient time integration of non-autonomous
linear evolution equations by commutator-free exponential integrators{

d
dt u(t ) = A(t )u(t ) , t ∈ (t0,T ) ,

u(t0) given,

un+1 =S (τn , tn)un ≈ u(tn+1) = E (τn , tn)u(tn) ,

Ank = A(tn + ckτn) , Bnj =
K∑

k=1
ajk Ank , ( j ,k) ∈ {1, . . . , J }× {1, . . . ,K } ,

S (τn , tn) =
J∏

j=1
eτn Bnj = eτn Bn J · · · eτn Bn1 , n ∈ {0,1, . . . , N −1} .

Applications.

Linear evolution equations of Schrödinger type (time-dependent Hamilton operators)

Linear evolution equations of parabolic type (dissipative systems)
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Outline

Theme. Theoretical analysis of commutator-free exponential integrators
for time integration of non-autonomous linear evolution equations.

Outline.

Commutator-free exponential integrators

Stability and error analysis

Evolution equations of Schrödinger type
Evolution equations of parabolic type

Numerical illustrations
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Magnus expansion

Magnus expansion (Magnus, 1954). Formal representation of solution to non-autonomous
linear evolution equation based on Magnus expansion

d
dt u(t ) = A(t )u(t ) , t ∈ (t0,T ) , u(t0) given,

u(tn +τn ) = eΩ(τn ,tn )u(tn ) , tn , tn +τn ∈ (t0,T ) ,

Ω(τn , tn ) =
∫ tn+τn

tn
A(σ) dσ+ 1

2

∫ tn+τn

tn

∫ σ1

tn

[
A(σ1), A(σ2)

]
dσ2dσ1

+ 1
6

∫ tn+τn

tn

∫ σ1

tn

∫ σ2

tn

([[
A(σ1), A(σ2)

]
, A(σ3)

]+ [
A(σ1),

[
A(σ2), A(σ3)

]])
dσ3dσ2dσ1 + . . .

Magnus integrators. Truncation of Magnus expansion and application of suitable
quadrature formulae for approximations of integrals leads to Magnus integrators.

Second-order Magnus integrator (exponential midpoint rule)

τn A
(
tn + τn

2

) ≈ Ω(τn , tn ) .

Fourth-order Magnus integrator, see BLANES, CASAS, ROS (2000)

1
6

(
A(tn )+4 A

(
tn + τn

2

)+ A(tn +τn )
)
− 1

12 τ
2
n
[

A(tn ), A(tn +τn )
] ≈ Ω(τn , tn ) .
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Magnus integrators and related exponential methods

Higher-order Magnus integrators.

Fourth-order Magnus integrator, see BLANES, CASAS, ROS (2000)

1
6

(
A(tn )+4 A(tn + 1

2 τn )+ A(tn +τn )
)− 1

12 τ
2
n
[

A(tn ), A(tn +τn )
] ≈ Ω(τn , tn ) .

Disadvantages. Presence of commutators causes

larger computational costs for realisation of exponentials,

loss of structure (decisive factor for evolution equations of parabolic type).

Alternative. Commutator-free exponential integrators provide useful
alternative to integrators based on Magnus expansion.

A. ALVERMANN, H. FEHSKE, P. B. LITTLEWOOD.
Numerical time propagation of quantum systems in radiation fields.
New Journal of Physics 14 (2012) 105008.

... We explain the use of commutator-free exponential time propagators for the
numerical solution of the associated Schrödinger or master equations with a
time-dependent Hamilton operator. These time propagators are based on the
Magnus series but avoid the computation of commutators, which makes them
suitable for the efficient propagation of systems with a large number of degrees of
freedom. ...
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Commutator-free exponential integrators

Time-stepping approach. Time integration of non-autonomous linear evolution equation
on Banach space (X ,‖ ·‖X )

d
dt u(t ) = A(t )u(t ) , t ∈ (t0,T ) , u(t0) given.

Approximations at time grid points t0 < t1 < ·· · < tN ≤ T with increments τn = tn+1 − tn
given by recurrence

un+1 =S (τn , tn )un ≈ u(tn+1) = E (τn , tn )u(tn ) , n ∈ {0,1, . . . , N −1} .

Commutator-free methods. Commutator-free exponential integrators rely on presumption
that exponential of Ank = A(tn + ckτn ) and linear combinations computable in accurate and
efficient manner.

General form. High-order commutator-free exponential integrators cast
into general form with real nodes ck ∈R and real or complex coefficients
ajk ∈K for ( j ,k) ∈ {1, . . . , J }× {1, . . . ,K }

Ank = A(tn + ckτn) , Bnj =
K∑

k=1
ajk Ank , S (τn , tn) =

J∏
j=1

eτn Bnj .

Mechthild Thalhammer (Universität Innsbruck, Austria) Commutator-free exponential integrators



Commutator-free methods
Convergence analysis

Conclusions

Basic assumptions

Time stepsizes. Employ standard assumption that ratios of subsequent time stepsizes
remain bounded from below and above

%min ≤ τn+1
τn

≤ %max , n ∈ {0,1, . . . , N −2} .

Nodes and coefficients.

Relate nodes to quadrature nodes and suppose

0 ≤ c1 < ·· · < cK ≤ 1.

Assume basic consistency condition to be satisfied (direct consequence of elementary
requirement S (τn , tn ) = eτn A for time-independent operator A)

J∑
j=1

K∑
k=1

ajk = 1.

In connection with evolution equations of parabolic type require

ℜbj ≥ 0, bj =
K∑

k=1
ajk , j ∈ {1, . . . , J } ,

to ensure well-definededness of commutator-free methods within analytical
framework of sectorial operators and analytic semigroups.
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Examples (Nonstiff orders p = 2,3,4)

Order 2. Commutator-free method based on single Gaussian node involves single
exponential at each time step

p = 2, J = 1 = K , c1 = 1
2 , a11 = 1, An1 = A

(
tn + τn

2

)
,

S (τn , tn ) = eτn A(tn+ 1
2 τn ) .

Method coincides with exponential midpoint rule (Magnus integrator).
Order 3. Commutator-free method based on two Gaussian nodes requires evaluation of two exponentials at each time step

p = 3, J = 2 = K , ck = 1
2 ∓

p
3

6 , β= 1
4 −

p
3

4 ,

a11 =
p

3
3 , a12 = 0, a21 = (

1−
p

3
3

)
β , a22 = (

1−
p

3
3

)
(1−β) , b1 =

p
3

3 , b2 = 1−
p

3
3 ,

S (τn , tn ) = eτn (a21 An1+a22 An2) eτn (a11 An1+a12 An2) .

Order 4. Commutator-free method based on two Gaussian nodes requires evaluation

of two exponentials at each time step

p = 4, J = 2 = K , ck = 1
2 ∓

p
3

6 , a1k = 1
4 ±

p
3

6 , k = 1,2, a21 = a12 , a22 = a11 ,

S (τn , tn ) = eτn (a21 An1+a22 An2) eτn (a11 An1+a12 An2) .

Method suitable for evolution equations of parabolic type, since

b1 = a11 +a12 = 1
2 = a21 +a22 = b2 .
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Example (Nonstiff order p = 6)
Order 6. Example of (non-optimised) commutator-free method obtained from coefficients given in ALVERMANN, FEHSKE

combined with sixth-order quadrature approximation based on three Gaussian nodes and corresponding weights

c1 = 1
2

(
1−

√
3
5

)
, c2 = 1

2 , c3 = 1
2

(
1+

√
3
5

)
, w1 = 5

18 = w3 , w2 = 4
9 ,

f =
 0.160000000000000 0.151015389377465 0.133046168132396
−0.227381647426963 −0.087654259755115 0.069919836812657

0.567381647426963 0.210351545122098 −0.202966004945053

 ,

F =



f11 − f12 f13
f21 − f22 f23
f31 − f32 f33
f31 f32 f33
f21 f22 f23
f11 f12 f13

 , G =


1 0 0

0 6 0

− 5
2 0 30

 , Q =


w1 w2 w3

w1
(
c1 − 1

2
)

w2
(
c2 − 1

2
)

w3
(
c3 − 1

2
)

w1
(
c1 − 1

2
)2 w2

(
c2 − 1

2
)2 w3

(
c3 − 1

2
)2

 ,

a = FGQ =



0.215838996975768 −0.076717964591551 0.020878967615784
−0.080897796320853 −0.178747217537158 0.032263366431047

0.180628460055830 0.477687404350931 −0.090934216979798
−0.090934216979798 0.477687404350931 0.180628460055830

0.032263366431047 −0.178747217537158 −0.080897796320853
0.020878967615784 −0.076717964591551 0.215838996975768

 ,

S (τn , tn ) =
6∏

j=1
e
τn (aj 1 An1+aj 2 An2+aj 3 An3)

.

Method suitable for evolution equations of Schrödinger type. Poor stability behaviour for evolution equations of parabolic
type, since

bj =
K∑

k=1
ajk = fj 1 , j ∈ {1, . . . , J } .
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Analytical framework
Convergence result, Illustrations
Local error analysis

Analytical framework
Evolution equations of Schrödinger type

Evolution equations of parabolic type
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Analytical framework
Convergence result, Illustrations
Local error analysis

Model problem

Model problem. For purpose of illustration study academic initial-boundary value problem
for U :Ω× [t0,T ] →K{

∂t U (x, t ) = (
α(x, t )∂xx +β(x, t )∂x +γ(x, t ) I

)
U (x, t ) , (x, t ) ∈Ω× (t0,T ) ,

U (x, t0) given.

Abstract formulation. In regard to introduction and error analysis of
commutator-free exponential integrators rewrite model problem as
abstract initial value problem for u : [t0,T ] → X{

d
dt u(t ) = A(t )u(t ) , t ∈ (t0,T ) ,

u(t0) given.

Analytical framework. Suitable functional analytical framework for evolution equations of
Schrödinger or parabolic type based on

selfadjoint operators and unitary evolution operators on Hilbert spaces or

sectorial operators and analytic semigroups on Banach spaces.

Basic assumption. Assume that domain of defining linear operator A(t ) : D ⊂ X → X
time-independent, dense and continuously embedded.
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Analytical framework
Convergence result, Illustrations
Local error analysis

Evolution equation of Schrödinger type

Schrödinger equation. Consider time-dependent linear Schrödinger equation for
U :Ω× [t0,T ] →C

∂t U (x, t ) = (
α(x, t )∂xx +β(x, t )∂x +γ(x, t ) I

)
U (x, t ) , (x, t ) ∈Ω× (t0,T ) .

Impose periodic boundary conditions and regular initial condition.

Analytical framework. Employ abstract formulation

d
dt u(t ) = A(t )u(t ) , t ∈ (t0,T ) .

Utilise basic assumption that defining linear operator A(t ) : D ⊂ X → X
generates unitary group (eσA(t ))σ∈R on underlying Hilbert space X .

Stability. Note that basic assumption satisfied, whenever i A(t ) defines selfadjoint operator
on Hilbert space (Stone’s Theorem). As basic property of selfadjointness preserved by linear
combinations involving real coefficients, unitarity of discrete evolution operator follows

∥∥∥ N1∏
n=N0

S (τn , tn )
∥∥∥

X←X
= 1, ajk ∈R , ( j ,k) ∈ {1, . . . , J }× {1, . . . ,K } .
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Analytical framework
Convergence result, Illustrations
Local error analysis

Evolution equation of Schrödinger type

Schrödinger equation. Consider time-dependent linear Schrödinger equation

∂t U (x, t ) = (
α(x, t )∂xx +β(x, t )∂x +γ(x, t ) I

)
U (x, t ) , (x, t ) ∈Ω× (t0,T ) .

Special case. Relevant applications justify study of simplest case, where defining operator
comprises Laplacian and regular real-valued time-space-dependent multiplication operator

α= i , β= 0, γ(x, t ) = iV (x, t ) ∈ iR , d
dt u(t ) = A(t )u(t ) = i

(
∂xx +V (t )

)
u(t ) , t ∈ (t0,T ) .

Straightforward argument proves preservation of L2-norm which implies unitarity of evolution operator on Hilbert space

X = L2(Ω) and in particular ensures well-definededness of evolution operator on X

d
dt

∥∥u(t )
∥∥

L2 = 2ℜ(
A(t )u(t )

∣∣u(t )
)
L2 = 2 ℜ

(
i
(
∂xx u(t )

∣∣u(t )
)
L2︸ ︷︷ ︸

∈R

+i
(
V (t )u(t )

∣∣u(t )
)
L2︸ ︷︷ ︸

∈R

)
= 0,

∥∥u(t )
∥∥

L2 = ∥∥u(t0)
∥∥

L2 , u(t ) = eΩ(t−t0,t0)u(t0) ∈ L2(Ω) , u(t0) ∈ L2(Ω) , t ∈ (t0,T ) .

Remarks.

Note that spatial derivative v = ∂x u satisfies evolution equation d
dt v(t ) = A(t ) v(t )+∂x V (t )u(t ).

Variation-of-constants formula implies v(t ) ∈ X if v(0) ∈ X and ∂x V regular.

Involved task to justify eΩ(t−t0,t0) : X → X for parabolic equations!
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Evolution equation of parabolic type

Parabolic equation. Consider linear diffusion-advection-reaction equation for
U :Ω× [t0,T ] →R

∂t U (x, t ) = (
α(x, t )∂xx +β(x, t )∂x +γ(x, t ) I

)
U (x, t ) , (x, t ) ∈Ω× (t0,T ) .

Impose certain boundary conditions and regular initial condition.

Analytical framework. Employ abstract formulation

d
dt u(t ) = A(t )u(t ) , t ∈ (t0,T ) .

Utilise basic assumption that defining linear operator A(t ) : D ⊂ X → X
sectorial and generates analytic semigroup (eσA(t ))σ∈[0,∞) on underlying
Banach space X .

Stability. As basic property of sectoriality is preserved by suitable linear combinations,
boundedness of discrete evolution operator follows (details given below)

∥∥∥ N1∏
n=N0

S (τn , tn )
∥∥∥

X←X
≤C , ℜbj ≥ 0, bj =

K∑
k=1

ajk , j ∈ {1, . . . , J } .
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Evolution equation of parabolic type

Hypothesis

Linear operator A(t ) : D ⊂ X → X sectorial, uniformly in t ∈ [t0,T ], i.e., there exist a ∈R,
0 <φ< π

2 , C1 > 0 such that

‖(λI − A(t ))−1‖X←X ≤ C1

|λ−a| , t ∈ [t0,T ] , λ 6∈ Sφ(a) = {a}∪{
µ ∈C : |arg(a −µ)| ≤φ}

.

Graph norm of A(t ) and norm in D equivalent for t ∈ [t0,T ], i.e., there exists C2 > 0 such that

C−1
2 ‖x‖D ≤ ‖x‖X +‖A(t ) x‖X ≤C2‖x‖D , t ∈ [t0,T ] , x ∈ D .

Defining operator satisfies A ∈C ϑ
(
[t0,T ],L(D, X )

)
for some 0 <ϑ≤ 1, i.e., there exists C3 > 0

such that
‖A(t )− A(s)‖X←D ≤C3 |t − s|ϑ , s, t ∈ [t0,T ] .

Consequence. Sectorial operator A(t ) generates analytic semigroup(
eσA(t )

)
σ∈[0,∞) on X . By integral formula of Cauchy representation follows

eσA(t ) = 1
2πi

∫
Γ

eλ
(
λI −σA(t )

)−1 dλ , σ> 0, eσA(t ) = I , σ= 0.
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Evolution equation of parabolic type

Well-definedness. Employ analytical framework of sectorial operators and analytic
semigroups. Basic assumption on coefficients

ℜbj ≥ 0, bj =
K∑

k=1
ajk , 1 ≤ j ≤ J ,

ensures that high-order commutator-free methods remain well-defined on underlying
Banach space. Indeed, sum of sectorial operator bj A(tn ) : D → X and bounded remainder
(Hölder continuity assumption) defines sectorial operator

Bnj =
K∑

k=1
ajk A(tn + ckτn ) = bj A(tn )+

K∑
k=1

ajk
(

A(tn + ckτn )− A(tn )
)

: D → X .

Theorem (Stability)

Under basic hypotheses on operator family, sequence of time stepsizes, and coefficients, discrete
evolution operator associated with high-order commutator-free method satisfies bound

∥∥∥ N1∏
n=N0

S (τn , tn )
∥∥∥

X←X
≤C , S (τn , tn ) =

J∏
j=1

eτn Bnj ,

with constant C > 0 independent of stepsize sequence.
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Convergence result
Numerical illustrations
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Analytical framework
Convergence result, Illustrations
Local error analysis

Convergence result

Convergence result. Employ fundamental hypotheses on operator family defining
non-autonomous linear evolution equations of Schrödinger or parabolic type. Assume that
coefficients of commutator-free methods fulfill basic assumptions and conditions for
nonstiff order p. Recall assumption on ratios of subsequent time stepsizes.

Theorem

Provided that operator family and exact solution sufficiently regular such
that remainder arising in local error expansion bounded in underlying
Banach space, convergence estimate holds with constant C > 0 independent
of n and time increments 0 < τn ≤ τmax∥∥un −u(tn)

∥∥
X ≤C

(∥∥u0 −u(0)
∥∥

X +τp
max

)
, n ∈ {0,1, . . . , N } .

Crucial point. Specify regularity and compatibility requirements on initial state.

Special case. Details included below for special case A(t ) = i∆+ iV (t ) with regular potential
and exponential midpoint rule (p = 2). Straightforward approach based on step-wise Taylor
series expansions yields restrictive regularity requirement ∂6

x u(0) ∈ X , whereas favourable
approach based on variable-of-constants formula leads to condition ∂x u(0) ∈ X .
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Illustration (Evolution equation of Schrödinger type)

Schrödinger equation. Consider time-dependent linear Schrödinger equation for
U :Ω× [t0,T ] →C

∂t U (x, t ) = (
α(x, t )∂xx +β(x, t )∂x +γ(x, t ) I

)
U (x, t ) , (x, t ) ∈Ω× (t0,T ) .

Impose periodic boundary conditions and regular initial condition.

Special choice. For numerical example set

Ω= (0,2π) , t0 = 0,

α(x, t ) = ie−cos x (sin t )2 , β(x, t ) = 0, γ(x, t ) = iesin x (
1+e−t ) ,

U (x,0) = sin(2x) .

Space and time discretisation. Spatial discretisation by standard symmetric finite
differences (M = 100). Time integration by commutator-free methods of nonstiff orders
p = 2,4,6 with time increments 2−1, . . . ,2−9. Numerical approximation for finest
time stepsize serves as reference solution.
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Illustration (Evolution equation of Schrödinger type)

Illustration. Numerical example for initial-boundary value problem of Schrödinger type
confirms convergence result for commutator-free methods of nonstiff orders p = 2,4,6.

10−2 10−1

10−10

10−5

100

105

Time stepsize

G
lo

ba
l e

rro
r

 

 

p = 2
p = 4
p = 6

101 102 103

10−10

10−5

100

105

Cost

G
lo

ba
l e

rro
r

 

 

p = 2
p = 4
p = 6

Global errors at time T = 1 versus chosen time stepsizes or cost (number of matrix exponentials J ×N ).
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Illustration (Evolution equation of parabolic type)

Diffusion-advection-reaction equation. Consider linear diffusion-advection-reaction
equation for U :Ω× [t0,T ] →R

∂t U (x, t ) = (
α(x, t )∂xx +β(x, t )∂x +γ(x, t ) I

)
U (x, t ) , (x, t ) ∈Ω× (t0,T ) .

Impose periodic boundary conditions and regular initial condition.

Special choice. For numerical example set

Ω= (0,2π) , t0 = 0,

α(x, t ) = e−cos x (sin t )2 , β(x, t ) = ∂xα(x, t ) , γ(x, t ) = esin x (
1+e−t ) ,

U (x,0) = sin(2x) .
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Illustration (Evolution equation of parabolic type)

Illustration. Numerical example for initial-boundary value problem of parabolic type
confirms convergence result for commutator-free methods of nonstiff orders p = 2,4,6
(periodic boundary conditions, full order of convergence). Note that sixth-order
commutator-free method involving negative coefficients shows poor stability behaviour.
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Global errors at T = 1 versus chosen time stepsizes or cost.
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Illustration (Evolution equation of parabolic type)

Additional illustration. Numerical example for initial-boundary value problem of parabolic
type illustrates expected (rather mild) order reductions for commutator-free methods of
nonstiff orders p = 4,6 (homogeneous Dirichlet boundary conditions, higher convergence
rates obtained in interior of spatial domain).
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Global errors at T = 1, measured on entire spatial domain and in interior, respectively, versus chosen time stepsizes or cost.
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Further illustration

Schrödinger equation with time-dependent Hamiltonian. Inspired by paraxial model for
light propagation in inhomogeneous media (refractive index), see G. THALHAMMER. Time
integration of linear Schrödinger equation with time-dependent Hamiltonian (non-smooth
time-space dependent potential, 2D) by commutator-free methods combined with
time-splitting Fourier spectral methods.
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Further illustration

Comparison of obtained results for N = 1000 (τ= 1
100 , first row) and reduced number of time

steps N = 100 (τ= 1
10 , second row).
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Further illustration

Schrödinger equation with time-dependent Hamiltonian. Time integration of linear
Schrödinger equation in 2D with time-dependent Hamiltonian (time-space dependent
potential) by commutator-free methods combined with time-splitting Fourier spectral
methods. Global errors for non-smooth (order reductions) versus smooth potential (full
order of convergence).
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Local error analysis
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Local error analysis

Aim. Deduce local error expansion suitable for evolution equations
involving unbounded operators

δn+1 =S (τn , tn)u(tn)−u(tn+1) =
J∏

j=1
eτn Bnj u(tn)−u(tn+1) .

Main tool. Representation of exact solution value obtained by suitable
linearisation and application of variation-of-constants formula.

Favourable approach utilised e.g. in LUNARDI (1995) for construction of evolution
operator associated with non-autonomous evolution equation of parabolic type
(involved task to justify eΩ(t−t0 ,t0) : X → X ).

Approach turns out to be favourable in connection with evolution equations of
Schrödinger type. Allows to simplify considerations given in HOCHBRUCK,
LUBICH (2003) for exponential midpoint rule (A(t ) = i∆+ iV (t ), see below).

Further tools. Taylor series expansions for differences of form A(t )− A(s) appropriate.
Differentiation of terms of form e(t−τ)A(t ) A′(σ)eτA(t ) yields iterated commutators.

Mechthild Thalhammer (Universität Innsbruck, Austria) Commutator-free exponential integrators



Commutator-free methods
Convergence analysis

Conclusions

Analytical framework
Convergence result, Illustrations
Local error analysis

Special case

Aim. Study local error behaviour of exponential midpoint rule for approximation of solution
to non-autonomous linear evolution equation

d
dt u(t ) = A(t )u(t ) , t ∈ (t0,T ) , u(t0) given.

Focus on simplest case, where defining operator comprises Laplacian and real-valued
multiplication operator

A(t ) = i∂xx + iV (t ) : D → X .

Recall that associated evolution operator unitary on Hilbert space X = L2(Ω)

u(t ) = eΩ(t−t0 ,t0)u(0) , ‖u(t )‖L2 = ‖u(t0)‖L2 , u(t0) ∈ X , t ∈ (t0,T ) .

Consider first time step and employ simplifiying assumptions t0 = 0 and u0 = u(0)

u1 = eτA
(
τ
2

)
u(0) ≈ u(τ) .

Aim at derivation of local error expansion reflecting nonstiff order of convergence, avoiding
restrictive regularity requirements

u1 −u(τ) = eτA
(
τ
2

)
u(0)−u(τ) =O

(
τ3)

.
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Approaches

Approaches.

Infinite series. Expansions based on infinite series useful for construction of novel
schemes, but not suitable for local error analysis of commutator-free methods applied
to evolution equations involving unbounded operators, since arguments persist at
formal level.

Step-wise Taylor series expansions. Straightforward step-wise expansions of exact
solution and evolution operator yield well-defined local error representations, but
imply unnatural restrictions.
In present situation expansion of exact solution

u(τ) = u(0)+τA(0)u(0)+ 1
2 τ

2 (
A′(0)+ A(0)A(0)

)
u(0)

+ 1
2

∫ 1

0
(1−ζ)2 τ3 (

A′′(ζτ)+2A′(ζτ)A(ζτ)+ A(ζτ)A′(ζτ)+ A(ζτ)A(ζτ)A(ζτ)
)
u(ζτ) dζ

well-defined, provided that A3u ∈ X , i.e. ∂6
x u(0) ∈ X .

Linearisation and variation-of-constants-formula. Employ favourable approach
based on suitable linearisation

d
dt u(t ) = A(tfrozen)u(t )+ (

A(t )− A(tfrozen)
)

u(t )

and application of variation-of-constants formula, see A. LUNARDI.
In present situation regularity requirement [A, A′]u = [A,V ′]u ∈ X , i.e. ∂x u(0) ∈ X results.

Challenge to extend approach to high-order commutator-free methods.
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Local error expansion (Exponential midpoint rule)

Initial local error representation. Favourable approach based on suitable linearisation of
evolution equation and application of variation-of-constants formula yields

d
dt u(t ) = A(t )u(t ) = A

( τ
2

)
u(t )+ (

A(t )− A
( τ

2

))
u(t ) ,

u(τ) = eτA
(
τ
2

)
u(0)+ I0 , I0 =

∫ τ

0
e(τ−σ)A

(
τ
2

)(
A(σ)− A

( τ
2

))
u(σ) dσ , u1 = eτA

(
τ
2

)
u(0) ,

u(τ)−u1 = I0 =
∫ τ

0
e(τ−σ)A

(
τ
2

)(
A

( τ
2

)− A(σ)
)

u(σ) dσ .

Remark. For special case A(t ) = i (∂xx +V (t )) evident that representation well-defined in underlying space

u(τ)−u1 =
∫ τ

0
e

(τ−σ)A
( τ

2
)

︸ ︷︷ ︸
X←X

i
(
V

( τ
2

)−V (σ)
)

u(σ)︸ ︷︷ ︸
∈X

dσ ∈ X if u(0) ∈ X .

First expansion step. Employ auxiliary expansion to obtain first local error expansion

A
( τ

2

)− A(σ) = ( τ
2 −σ)

A′(σ)+
∫ 1

0
(1−ζ)

( τ
2 −σ)2 A′′(σ+ζ( τ2 −σ))

dζ ,

u(τ)−u1 = I1 +R1 , I1 =
∫ τ

0

( τ
2 −σ)

e(τ−σ)A
(
τ
2

)
A′(σ)u(σ) dσ ,

R1 =
∫ τ

0

∫ 1

0
(1−ζ)

( τ
2 −σ)2 e(τ−σ)A

(
τ
2

)
A′′(σ+ζ( τ2 −σ))

u(σ) dζdσ=O
(
τ3,eτA A′′u

)
.
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Local error expansion (Exponential midpoint rule)

Second expansion step. Further application of variation-of-constants formula yields

u(σ) = eσA
(
τ
2

)
u(0)+

∫ σ

0
e(σ−ζ)A

(
τ
2

)(
A(ζ)− A

( τ
2

))
u(ζ) dζ ,

u(τ)−u1 = I2 +R1 +R2 , I2 =
∫ τ

0

( τ
2 −σ)

e(τ−σ)A
(
τ
2

)
A′(σ)eσA

(
τ
2

)
u(0) dσ ,

R2 =
∫ τ

0

∫ σ

0

( τ
2 −σ)

e(τ−σ)A
(
τ
2

)
A′(σ)e(σ−ζ)A

(
τ
2

)(
A(ζ)− A

( τ
2

))
u(ζ) dζdσ=O

(
τ3,eτA A′eτA (A1 − A2)u

)
.

Third expansion step. Rewrite dominant contribution and employ symmetry

f (σ) = e(τ−σ)A
(
τ
2

)
A′(σ)eσA

(
τ
2

)
u(0) = f (0)+

∫ 1

0
σ f ′(ζσ) dζ ,

f ′(σ) = e(τ−σ)A
(
τ
2

)[
A′(σ), A

( τ
2

)]
eσA

(
τ
2

)
u(0)+e(τ−σ)A

(
τ
2

)
A′′(σ)eσA

(
τ
2

)
u(0) ,

I2 =
∫ τ

0

( τ
2 −σ)

f (σ) dσ=
∫ τ

0

( τ
2 −σ)

f (0) dσ︸ ︷︷ ︸
=0

+R3 ,

R3 =
∫ τ

0

∫ 1

0
σ

( τ
2 −σ)

f ′(ζσ) dζdσ=O
(
τ3,eτA[

A′, A
]

eτA u,eτA A′′eτA u
)

.
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Local error expansion (Exponential midpoint rule)

Local error expansion. Altogether, this leads to local error expansion

u1 −u(τ) =O
(
τ3,eτA A′′u,eτA A′eτA (A1 − A2)u,eτA[

A′, A
]

eτA u,eτA A′′eτA u
)

.

Special case. For special case A(t ) = i (∂xx +V (t )) desired dependence u1 −u(τ) =O
(
τ3)

obtained, provided that conditions satisfied

eτAV ′′u ∈ X , eτAV ′eτA (V1 −V2)u ∈ X , eτA[
V ′, A

]
eτA u ∈ X , eτAV ′′eτA u ∈ X .

Reduces to regularity requirement[
V ′, A

]
u(0) = [

∂xx ,V ′]u(0) = 2∂x V ′∂x u(0)+∂xx V ′u(0) ∈ X .

Conclusion. Straightforward approach based on step-wise Taylor series expansions yields
restrictive regularity requirement

∂6
x u(0) ∈ X ,

whereas favourable approach based on variable-of-constants formula leads to

∂x u(0) ∈ X .
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Conclusions and future work

Summary.

High-order commutator-free exponential integrators form favourable class of time
integration methods for non-autonomous linear evolution equations of Schrödinger
and parabolic type.

Theoretical analysis of high-order commutator-free exponential integrators provides
better understanding when order reductions and thus significant loss of accuracy for
higher-order methods have to be expected.

Open questions.

Construction of higher-order commutator-free exponential integrators suitable for
time integration of parabolic initial-boundary value problems.

Thank you!

Mechthild Thalhammer (Universität Innsbruck, Austria) Commutator-free exponential integrators


	Commutator-free methods
	Convergence analysis
	Analytical framework
	Convergence result, Illustrations
	Local error analysis

	Conclusions

