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Commutator-free Magnus integrators

Approach. Analysis and design of commutator-free Magnus integrators
for time integration of non-autonomous linear evolution equations{

u′(t ) = A(t )u(t ) , t ∈ (t0,T ) ,

u(t0) given,

t0 < t1 < ·· · < tn < tn+1 < ·· · < tN = T , τn = tn+1 − tn ,

un+1 =S (τn , tn)un ≈ u(tn+1) = E (τn , tn)u(tn) ,

S (τn , tn) = eτn Bn J (τn ) · · · eτn Bn1(τn ) ,

Bnj (τn) =
K∑

k=1
ajk A(tn + ckτn) .

Example. Second-order (commutator-free) Magnus integrator (first step)

eτA(t0+ τ
2 )u0 ≈ u(t0 +τ) .
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Situation. Consider non-autonomous linear evolution equation

u′(t ) = A(t )u(t ) , t ∈ (t0,T ) .

Areas of application.

♦ Quantum systems
Models for oxide solar cells (with W. AUZINGER, K. HELD, O. KOCH)

Linear evolution equations of Schrödinger type
Linear Schrödinger equations involving time-dependent potential

♦ Dissipative quantum systems
Rosen–Zener models with dissipation

Linear evolution equations of parabolic type
Variational equations related to diffusion-advection-reaction equations
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First illustration (Parabolic equation)

Test equation. Consider nonlinear diffusion-advection-reaction equation

∂t U (x, t ) = f2
(
U (x, t )

)
∂xxU (x, t )+ f1

(
U (x, t )

)
∂xU (x, t )+ f0

(
U (x, t )

)+ g (x, t ) .

Associated variational equation has form of non-autonomous linear evolution equation

∂t u(x, t ) =α2(x, t )∂xx u(x, t )+α1(x, t )∂x u(x, t )+α0(x, t )u(x, t ) .

Impose periodic boundary conditions and regular initial condition.

Special choice. In particular, set

(x, t ) ∈Ω× [0,T ] , Ω= [0,1] , T = 1,

U (x, t ) = e− t sin(2πx) , u(x,0) = (
sin(2πx)

)2 ,

f2(w) = 1
10

(
cos(w)+ 11

10
)

, f1(w) = 1
10 w , f0(w) = w

(
w − 1

2
)

,

α2(x, t ) = f2
(
U (x, t )

)
, α1(x, t ) = f1

(
U (x, t )

)
,

α0(x, t ) = f ′2
(
U (x, t )

)
∂xxU (x, t )+ f ′1

(
U (x, t )

)
∂xU (x, t )+ f ′0

(
U (x, t )

)
.
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First illustration (Parabolic equation)

Test equation. Consider non-autonomous linear evolution equation of parabolic type

∂t u(x, t ) =α2(x, t )∂xx u(x, t )+α1(x, t )∂x u(x, t )+α0(x, t )u(x, t ) .

Impose periodic boundary conditions and regular initial condition.

Time integration. Apply commutator-free Magnus integrators and related method of
non-stiff orders p = 2,4,5,6. Choose spatial grid width sufficiently small such that temporal
error dominates.

♦ Display global errors versus time stepsizes (accuracy).

♦ Display global errors versus number of exponentials (efficiency).
More appropriate indicator for efficiency used for Rosen–Zener model. Improved performance of novel schemes.
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Observations.

¦ Commutator-free Magnus integrators retain nonstiff orders of convergence.

¦ Poor stability behaviour of optimised sixth-order scheme by ALVERMANN, FEHSKE.

Mechthild Thalhammer (Universität Innsbruck, Austria) Commutator-free Magnus integrators



Scope
Commutator-free Magnus integrators

Conclusions

Linear evolution equations
Nonlinear evolution equations

Objectives

Main objectives.

Stability and error analysis of commutator-free Magnus integrators
and related methods for different classes of evolution equations

Evolution equations of parabolic type
SERGIO BLANES, FERNANDO CASAS, M. TH.
Convergence analysis of high-order commutator-free Magnus integrators for
non-autonomous linear evolution equations of parabolic type.
Submitted.

Evolution equations of Schrödinger type
Time-dependent Hamiltonian (A(t ) = i∆+ iV (t ), e.g.)

Design of efficient schemes
SERGIO BLANES, FERNANDO CASAS, M. TH.
High-order commutator-free Magnus integrators and related methods for
non-autonomous linear evolution equations.
In preparation.
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Explanation of order reductions due to imposed boundary conditions.
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SIAM Journal on Numerical Analysis 44/2 (2006) 851–864.

Mechthild Thalhammer (Universität Innsbruck, Austria) Commutator-free Magnus integrators



Scope
Commutator-free Magnus integrators

Conclusions

Linear evolution equations
Nonlinear evolution equations

Remarks on extension to
nonlinear evolution equations

Mechthild Thalhammer (Universität Innsbruck, Austria) Commutator-free Magnus integrators



Scope
Commutator-free Magnus integrators

Conclusions

Linear evolution equations
Nonlinear evolution equations

Extension by operator splitting

Approach. Apply commutator-free Magnus integrators in combination
with operator splitting methods to nonlinear evolution equations of form{

u′(t ) = A(t )u(t )+B
(
u(t )

)
, t ∈ (t0,T ) ,

u(t0) given,

i.e., employ suitable compositions of solutions to associated subproblems

v ′(t ) = A(t ) v(t ) , w ′(t ) = B
(
w(t )

)
.

Example. Second-order splitting method (Strang, special case of
autonomous linear equation, first step){

u′(t ) = A u(t )+B u(t ) , t ∈ (t0,T ) ,

u(t0) given,

e
1
2 τA eτB e

1
2 τAu0 ≈ u(t0 +τ) = eτ(A+B)u0 .
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Areas of application

Situation. Consider nonlinear evolution equation of form

u′(t ) = A(t )u(t )+B
(
u(t )

)
, t ∈ (t0,T ) .

Areas of application.

♦ Nonlinear Schrödinger equations
Gross–Pitaevskii equations with opening trap

Gross–Pitaevskii equations with rotation (moving frame, see illustration)

♦ Diffusion-advection-reaction systems with multiplicative noise
Formation of patterns in deterministic case, see illustrations

Gray–Scott equations with multiplicative noise (with E. HAUSENBLAS)
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Illustration (Gray–Scott equations)

Solution behaviour (deterministic case). Consider diffusion-reaction system with
additional space-time-dependent term (multiplicative form). Observe great variety of
patterns (over long times).

MOVIE_GRAYSCOTT MOVIE_GRAYSCOTT_TIMEDEPENDENCIES

Solution behaviour (stochastic case). Consider additional space-time-dependent noise
term (multiplicative form). Display single path.

MOVIE_GRAYSCOTT_PURENOISE MOVIE_GRAYSCOTT_WITHNOISE

Aim. Study effect of noise on patterns (stability, diversity).

Questions.

♦ Numerical analysis of space and time discretisation over short times (stability,
accuracy, convergence rate in dependence of noise term).

♦ Use of local error control powerful in deterministic case (reliability, efficiency).
Any hope for use of automatic time stepsize control in stochastic case?

♦ Efficient realisation essential for computation of numerous paths over long times.
Challenging task!
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High-order versus low-order methods

Main objectives.

♦ Provide stability and error analysis of considered time integration methods for different
classes of evolution equations (specify regularity and compatibility requirements for
general format of methods, explain order reductions).

♦ Design efficient schemes.

Guide line.

♦ Higher-order methods expected to be beneficial in efficiency for equations of
Schrödinger type (no stability and regularity issues expected).

♦ Poor stability behaviour expected for equations of parabolic type (circumvented by
study of complex coefficients under additional positivity condition).

Significant order reductions expected for equations of parabolic type when Dirichlet
or Neuman boundary conditions are imposed.

♦ Efficiency of high-order methods limited by exactness of measurements in physical
experiments or by low regularity of data (e.g. for SPDEs). Low-order methods expected
to be adequate in such situations.

Remark. Focus on results for commutator-free Magnus integrators. Results on operator
splitting methods are provided by former work.
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Magnus expansion

Magnus expansion (Magnus, 1954). Formal representation of solution to non-autonomous
linear evolution equation based on Magnus expansion

u′(t ) = A(t )u(t ) , t ∈ (t0,T ) , u(t0) given,

u(tn +τn ) = eΩ(τn ,tn )u(tn ) , t0 ≤ tn < tn +τn ≤ T ,

Ω(τn , tn ) =
∫ tn+τn

tn
A(σ) dσ+ 1

2

∫ tn+τn

tn

∫ σ1

tn

[
A(σ1), A(σ2)

]
dσ2dσ1

+ 1
6

∫ tn+τn

tn

∫ σ1

tn

∫ σ2

tn

([
A(σ1),

[
A(σ2), A(σ3)

]]+ [
A(σ3),

[
A(σ2), A(σ1)

]])
dσ3dσ2dσ1 + . . .

Magnus integrators. Truncation of expansion and application of quadrature formulae for
approximation of multiple integrals leads to class of interpolatory Magnus integrators.

♦ Second-order Magnus integrator (exponential midpoint rule)

τn A
(
tn + τn

2

) ≈ Ω(τn , tn ) .

♦ Fourth-order interpolatory Magnus integrator, see BLANES, CASAS, ROS (2000)

1
6

(
A(tn )+4 A

(
tn + τn

2

)+ A(tn +τn )
)
− 1

12 τ
2
n
[

A(tn ), A(tn +τn )
] ≈ Ω(τn , tn ) .

Mechthild Thalhammer (Universität Innsbruck, Austria) Commutator-free Magnus integrators



Scope
Commutator-free Magnus integrators

Conclusions

Basics
Design of novel schemes
Convergence result

Magnus-type integrators

Higher-order interpolatory Magnus integrators.

♦ Fourth-order interpolatory Magnus integrator, see BLANES, CASAS, ROS (2000)

1
6

(
A(tn )+4 A(tn + 1

2 τn )+ A(tn +τn )
)− 1

12 τ
2
n
[

A(tn ), A(tn +τn )
] ≈ Ω(τn , tn ) .

Disadvantages. Presence of commutators causes

large computational cost (for realisation of action of arising
matrix-exponentials on vectors by Krylov-type methods, e.g.),

loss of structure (issues of well-definededness and stability for
evolution equations).

Alternative. Commutator-free Magnus integrators provide useful
alternative to interpolatory Magnus integrators.

A. ALVERMANN, H. FEHSKE, P. B. LITTLEWOOD.
Numerical time propagation of quantum systems in radiation fields.
New Journal of Physics 14 (2012) 105008.

... We explain the use of commutator-free exponential time propagators for the numerical solution of the
associated Schrödinger or master equations with a time-dependent Hamilton operator. These time
propagators are based on the Magnus series but avoid the computation of commutators, which makes them
suitable for the efficient propagation of systems with a large number of degrees of freedom. ...
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Commutator-free Magnus integrators
Situation. Consider non-autonomous linear evolution equation

u′(t ) = A(t )u(t ) , t ∈ (t0,T ) , u(t0) given.

Use time-stepping approach, i.e., determine approximations at certain time grid points t0 < t1 < ·· · < tN ≤ T by recurrence

un+1 =S (τn , tn )un ≈ u(tn+1) = E (τn , tn )u(tn ) , τn = tn+1 − tn , n ∈ {0,1, . . . , N −1} .

Commutator-free Magnus integrators. High-order commutator-free Magnus integrators
cast into general form

S (τn , tn ) =
J∏

j=1
eτn Bnj = eτn Bn J · · · eτn Bn1 , Bnj =

K∑
k=1

ajk Ank , Ank = A(tn + ckτn ) .

Realisation. Action of arising matrix-exponentials on vectors commonly computed by
Krylov-type methods. Computational effort determined by cost for matrix-vector products.

Remark. Commutator-free Magnus integrators generalise time-splitting methods defined

by coefficients (α`,β`)s
`=1 (freeze time by adding differential equation d

dt t = 1)

un+1 = eτnαs Ans · · · eτnα1 An1 un , ck =
k∑
`=1

β` ,

with the merit of a significantly reduced number of exponentials, which enhances efficiency.
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Examples (Nonstiff orders p = 2,4,6)

Order 2 (Exponential midpoint rule). Commutator-free Magnus integrator based on single
Gaussian quadrature node involves single exponential at each time step

p = 2, J = 1 = K , c1 = 1
2 , a11 = 1, An1 = A

(
tn + τn

2

)
,

S (τn , tn ) = eτn A(tn+ 1
2 τn ) .

Order 4. Commutator-free Magnus integrator based on two Gaussian quadrature nodes
requires evaluation of two exponentials at each time step

p = 4, J = 2 = K , ck = 1
2 ∓

p
3

6 , a1k = 1
4 ±

p
3

6 , a21 = a12 , a22 = a11 ,

S (τn , tn ) = eτn (a21 An1+a22 An2) eτn (a11 An1+a12 An2) .

Scheme suitable for evolution equations of Schrödinger and parabolic type, since

b1 = a11 +a12 = 1
2 = a21 +a22 = b2 .

Order 6. Sixth-order commutator-free Magnus integrator obtained from coefficients given
in ALVERMANN, FEHSKE. Scheme suitable for evolution equations of Schrödinger type, but
poor stability behaviour observed for evolution equations of parabolic type, since

∃ j ∈ {1, . . . , J } : bj =
K∑

k=1
ajk < 0.
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Counter-example

Numerical experiment. Apply commutator-free Magnus integrators of nonstiff orders
p = 2,4,6 to test equation of parabolic type (see before). Display global errors versus time
stepsizes for M = 50 (left) and M = 100 (right) space grid points. Sixth-order scheme shows
poor stability behaviour.
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Explanation. Sixth-order scheme involves negative coefficients which cause integration
backward in time (ill-posed problem).

Conclusions. Order barrier at order four conjectured. Connexion to class
of time-splitting methods gives reasons for the study of unconventional
commutator-free Magnus integrators involving complex coefficients
under additional positivity condition.
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Basic assumptions
Commutator-free Magnus integrators. High-order commutator-free Magnus integrators cast into general form

S (τn , tn ) =
J∏

j=1
e
τn Bnj , Bnj =

K∑
k=1

ajk Ank , Ank = A(tn +ck τn ) .

Employ standard assumption that ratios of subsequent time stepsizes remain bounded from below and above

%min ≤ τn+1
τn ≤ %max , n ∈ {0,1, . . . , N −2} .

Nodes and coefficients. Relate nodes to quadrature nodes and suppose

0 ≤ c1 < ·· · < cK ≤ 1.

Assume basic consistency condition to be satisfied (direct consequence of elementary
requirement S (τn , tn ) = eτn A for time-independent operator A)

J∑
j=1

K∑
k=1

ajk = 1.

In connection with evolution equations of parabolic type employ positivity condition, which
ensures well-definededness of commutator-free Magnus integrators within analytical
framework of sectorial operators and analytic semigroups

ℜbj > 0, bj =
K∑

k=1
ajk , j ∈ {1, . . . , J } .
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Design of novel schemes
Numerical comparisons for dissipative quantum system
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Derivation of order conditions

Approach.

♦ Focus on design of efficient schemes of non-stiff orders p = 4,5 involving K = 3
Gaussian quadrature nodes. By time-symmetry of schemes achieve p = 6.

♦ Employ advantageous reformulation (suffices to study first time step, indicate
dependence on time stepsize τ> 0)

J∏
j=1

e
τ(aj 1 A1(τ)+aj 2 A2(τ)+aj 3 A3(τ)) =

J∏
j=1

e
x j 1α1(τ)+x j 2α2(τ)+x j 3α3(τ) +O

(
τp+1)

, αk (τ) =O
(
τk )

.

♦ Determine set of independent order conditions (obtain q = 10 conditions for p = 5,
use Lyndon multi-index (1,2) and corresponding word α1α2 etc.)

(1) : yJ =
J∑

`=1
x`1 = 1, (2) : zJ =

J∑
`=1

x`2 = 0, (3) :
J∑

j=1
x j 3 = 1

12 ,

(1,2) :
J∑

j=1
x j 2

(
x j 1 +2 y j−1

)=− 1
6 , (1,3) :

J∑
j=1

x j 3
(
x j 1 +2 y j−1

)= 1
12 , (2,3) :

J∑
j=1

x j 3
(
x j 2 +2 z j−1

)= 1
120 ,

(1,1,2) :
J∑

j=1
x j 2

(
x2

j 1 +3 y2
j−1 +3 x j 1 y j−1

)=− 1
4 , (1,1,3) :

J∑
j=1

x j 3
(
x2

j 1 +3 y2
j−1 +3 x j 1 y j−1

)= 1
10 ,

(1,2,2) :
J∑

j=1
x j 1

(
x2

j 2 −3 x j 2 z j +3 z2
j
)= 1

40 , (1,1,1,2) :
J∑

j=1
x j 2

(
x3

j 1 +4 y3
j−1 +6 x j 1 y2

j−1 +4 x2
j 1 y j−1

)= 3
10 .
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Derivation of order conditions

Additional practical constraints.

♦ In certain cases, impose requirement of time-symmetry to further reduce number of
order conditions (obtain q = 7 conditions for p = 6)

Ψ[r ]
J (−τ) = (

Ψ[r ]
J (τ)

)−1 , xJ+1− j ,k = (−1)k+1x j k ,

(1), (3), (1,2), (2,3), (1,1,3), (1,2,2), (1,1,1,2) .

♦ In certain cases, express solutions to order conditions in terms of few coefficients and
minimise amount by which higher-order conditions (e.g. related to (1,1,1,1,1,2) at
order seven) are not satisfied.

Numerical comparisons. Illustrate favourable behaviour of resulting novel schemes for
dissipative quantum system.

Remark. For reason of time, focus on schemes of orders p = 5,6 with complex coefficients
and omit results for p = 4.
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Dissipative quantum system

Rosen–Zener model with dissipation. For Rosen–Zener model with dissipation, associated
Schrödinger equation in normalised form reads

u′(t ) = A(t )u(t ) =− i H(t )u(t ) , t ∈ (t0,T ) ,

H(t ) = f1(t )σ1 ⊗ I + f2(t )σ2 ⊗R +δD ∈Cd×d , d = 2k ,

I = diag
(
1
) ∈Rk×k , R = tridiag

(
1,0,1

) ∈Rk×k , D =− idiag
(
12,22, . . . ,d2) ∈Cd×d .

Notation and special choice. Recall definitions of Pauli matrices and Kronecker product

σ1 =
(
0 1
1 0

)
, σ2 =

(
0 − i
i 0

)
, σ1 ⊗ I =

(
0 I
I 0

)
, σ2 ⊗R =

(
0 − iR

iR 0

)
.

Special choice of arising functions and parameters

d = 10, T0 = 1, t0 =−4T0 , T = 4T0 , V0 = 1
2 , ω= 5, δ= 10−1 ,

f1(t ) =V0 cos(ωt )
(

cosh
( t

T
))−1 , f2(t ) =−V0 sin(ωt )

(
cosh

( t
T

))−1 .

Remark.

♦ Ordinary differential equation of simple form that shows characteristics of
parabolic equations if δ> 0 and d >> 1.

♦ Straightforward realisation of matrix-exponentials by low-order Taylor series
expansions.
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Favourable novel schemes (p = 5,6, complex)

Favourable novel schemes (complex coefficients). Design commutator-free Magnus
integrators with complex coefficients satisfying positivity condition

p = 5 : CF[5]
3 , p = 6 : CF[6]

4 , CF[6]
5 .

♦ Expect schemes to remain stable for δ> 0.

♦ Expect scheme with J = 3 to be most efficient.
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Illustration (p = 5,6)
Numerical results. Time integration of Rosen–Zener model by fifth- and sixth-order commutator-free Magnus integrators

p = 5 : CF[5]
3 , p = 6 : CF[6]

4 , CF[6]
5 .

Implementation by Taylor series approximation of order M = 6. Display global errors in fundamental matrix solution at final
time versus number of matrix-vector products. Novel schemes remain stable for δ> 0.
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Convergence result
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Analytical framework

Analytical framework. Suitable functional analytical framework for evolution equations of
Schrödinger or parabolic type based on

♦ selfadjoint operators and unitary evolution operators on Hilbert spaces or

♦ sectorial operators and analytic semigroups on Banach spaces.

Hypotheses (Parabolic case). Domain of A(t ) : D ⊂ X → X time-independent, dense and continuously embedded. Linear
operator A(t ) : D ⊂ X → X sectorial, uniformly in t ∈ [t0,T ], i.e., there exist a ∈R, 0 <φ< π

2 , C1 > 0 such that

∥∥(λI − A(t ))−1∥∥
X←X ≤ C1

|λ−a| , t ∈ [t0,T ] , λ 6∈ Sφ(a) = {a}∪{
µ ∈C : |arg(a −µ)| ≤φ}

.

Graph norm of A(t ) and norm in D equivalent for t ∈ [t0,T ], i.e., there exists C2 > 0 such that

C−1
2 ‖x‖D ≤ ‖x‖X +∥∥A(t ) x

∥∥
X ≤C2‖x‖D , t ∈ [t0,T ] , x ∈ D .

Defining operator family is Hölder-continuous for some exponent ϑ ∈ (0,1], i.e., there exists C3 > 0 such that

∥∥A(t )− A(s)
∥∥

X←D ≤C3 |t − s|ϑ , s, t ∈ [t0,T ] .

Consequence. Sectorial operator A(t ) generates analytic semigroup
(
eσA(t ))

σ∈[0,∞) on X . By integral formula of Cauchy
representation follows

eσA(t ) = 1
2πi

∫
Γ

eλ
(
λI −σA(t )

)−1 dλ , σ> 0, eσA(t ) = I , σ= 0.
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Convergence result

Situation.

♦ Employ standard hypotheses on operator family defining non-autonomous linear
evolution equation of Schrödinger or parabolic type.

See BLANES, CASAS, TH. (parabolic case) and draft (Schrödinger case included).

♦ Assume that coefficients of considered high-order commutator-free Magnus integrator
fulfill basic assumptions and nonstiff order conditions.

♦ Recall assumption on ratios of subsequent time stepsizes.

Theorem

Provided that operator family and exact solution are sufficiently regular, following estimate
holds in underlying Banach space with constant C > 0 independent of n and time increments

‖un −u(tn )‖X ≤C
(
‖u0 −u(0)‖X +τp

max

)
, 0 < τn ≤ τmax , n ∈ {0,1, . . . , N } .

Crucial point. Specify regularity and compatibility requirements on exact solution.

¦ For test equation and X =C (Ω,R), obtain regularity requirement u(t ) ∈C 2p (Ω,R) for t ∈ [t0,T ].

¦ For Schrödinger equation with A(t ) = i∆+ iV (t ) and X = L2(Ω,C), weaker assumption ∂
p
x u(t ) ∈ L2(Ω,C) sufficient.

Error analysis of classical fourth-order scheme completed, but rigorous proof for high-order schemes remains open.
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Main tools of proof

Stability. Relate stability function of commutator-free Magnus integrator to analytic
semigroup (suitable choice of frozen time t )

∆n
n0

=
n∏

i=n0

Si (τi , ti )−e(tn+1−tn0 ) A(t ) , ‖es A(t )‖X←X + s ‖es A(t )‖D←X ≤C .

Employ telescopic identity, bounds for analytic semigroup, Hölder-continuity of defining
operator family, and Gronwall-type inequality to deduce desired stability bound

∥∥∥ n∏
i=n0

Si (τi , ti )
∥∥∥

X←X
≤C .

Local error. Repeated application of variation-of-constants formula yields relation which is
starting point for further expansions

u(tn+1)−S (τn , tn )u(tn ) =
J∑

j=1

K∑
k=1

a j k

( J∏
i= j+1

eτn Bni (τn )
)∫ τn

0
e(τn−σ)Bn j (τn ) gn j k (σ) dσ ,

gn j k (σ) = (
A(tn +d j−1τn +b jσ)− A(tn + ckτn )

)
u(tn +d j−1τn +b jσ) .

Resulting local error representation involved for high-order schemes.
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Further illustrations

Mechthild Thalhammer (Universität Innsbruck, Austria) Commutator-free Magnus integrators



Scope
Commutator-free Magnus integrators

Conclusions

Basics
Design of novel schemes
Convergence result

Illustration (Smooth versus non-smooth potential)

Illustration. Time integration of linear Schrödinger equation with space-time-dependent
Hamiltonian by commutator-free Magnus integrators of orders p = 1,2,3,4,6 combined with
time-splitting methods of same orders and Fourier-spectral method (M = 100×100). Study
non-smooth versus smooth space-time-dependent potential

V (x, t ) = sin(ωt )
(
γ4

1x2
1 +γ4

2x2
2
)

, V (x, t ) =
{

c1 if x2
1 +x2

2 + t 2 < r 2 ,

c2 else.

Observations. Display global errors at time T = 1 versus time stepsizes. For smooth
potential, in accordance with theoretical result, retain full orders of convergence
(superconvergence for p = 3). For non-smooth potential, observe severe order reductions
(only slight improvement in accuracy and efficiency for higher-order schemes).
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Illustration (Non-smooth potential)

Model (non-smooth potential). Inspired by paraxial model for light propagation in
inhomogeneous media (refractive index), see G. THALHAMMER.

♦ Impose (unphysical) periodic boundary conditions to observe formation of beautiful
patterns over longer times, see movie and next slide.

♦ Solution profile remains stable for coarse time stepsizes.

Solution profile at T = 10, computed by coarse time stepsize τ= 1
2 (left) and refined time stepsize τ= 1

100 (right).
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Illustration (Non-smooth potential)
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Summary.

♦ High-order commutator-free Magnus integrators form favourable class of time
integration methods for non-autonomous linear evolution equations of Schrödinger
and parabolic type.

♦ Theoretical analysis of high-order commutator-free Magnus integrators provides
better understanding when order reductions and thus significant loss of accuracy for
higher-order methods have to be expected.

Future work.

♦ Design of time-adaptive schemes for local error control (optimisation of solar cells).

♦ Study of commutator-free Magnus integrators in combination with operator splitting
methods for nonlinear problems of form

u′(t ) = A(t )u(t )+B
(
u(t )

)
.

Relevant applications include Gross–Pitaevskii equations (quantum turbulence).

♦ Improve performance of implementation for deterministic Gray–Scott equations.
Introduce time integrators for stochastic counterpart (multiplicative noise).

Thank you!
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