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Contents and related work

Contents.

Commutator-free quasi-Magnus (CFQM) exponential integrators for
non-autonomous linear evolution equations
Appropriate name thanks to Arieh Iserles

CFQM exponential integrators combined with splitting methods for
non-autonomous nonlinear evolution equations

Focus in this talk.

Joint work with SERGIO BLANES and FERNANDO CASAS.

Related work.

With WINFRIED AUZINGER, KARSTEN HELD, OTHMAR KOCH.

With ERIKA HAUSENBLAS.
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First remarks on
commutator-free quasi-Magnus

exponential integrators
for linear evolution equations
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Areas of application

Situation. Consider non-autonomous linear evolution equation

u′(t ) = A(t )u(t ) , t ∈ (t0,T ) .

Areas of application.

♦ Linear evolution equations of Schrödinger type
Linear Schrödinger equations involving space-time-dependent
potential
Quantum systems
Models for oxide solar cells (with W. AUZINGER, K. HELD, O. KOCH)

♦ Linear evolution equations of parabolic type
Variational equations related to diffusion-advection-reaction
equations
Dissipative quantum systems
Rosen–Zener models with dissipation

Remark. Abstract formulation helps to recognise common structure of
complex processes.
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Commutator-free quasi-Magnus exponential integrators

Issue. Exact solution of non-autonomous linear evolution equation not
available (used only theoretically as ideal case)

u′(t ) = A(t )u(t ) , t ∈ (t0,T ) .

Remark. In autonomous case, solution (formally) given by exponential

w ′(t ) = A0 w(t ) , w(t0 +τ) = eτA0 w(t0) .

Approach. In non-autonomous case, compute numerical approximation
(time stepsize τ> 0, second-order scheme)

S (τ)u(t0) ≈ u(t0 +τ) , S (τ) = eτA(t0+ τ
2 ) .

Desirable to use higher-order approximations (favourable in efficiency).
Study class of commutator-free quasi-Magnus exponential integrators

S (τ) = eτB J (τ) · · · eτB1(τ) , B j (τ) =
K∑

k=1
ajk A(tn + ckτ) .

Secret of success. Smart choice of arising coefficients.
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References

Our background.

Previous work on design of higher-order commutator-free quasi-Magnus
exponential integrators.
S. BLANES, P. C. MOAN. Fourth- and sixth-order commutator-free Magnus integrators for
linear and non-linear dynamical systems. Applied Numerical Mathematics 56 (2006)
1519–1537.

S. BLANES, F. CASAS, J. A. OTEO, J. ROS. The Magnus expansion and some of its
applications. Phys. Rep. 470 (2009) 151–238.

Previous work on stability and error analysis of fourth-order scheme for
parabolic equations. Explanation of order reductions due to imposed
homogeneous Dirichlet boundary conditions.
M. TH. A fourth-order commutator-free exponential integrator for nonautonomous
differential equations. SIAM Journal on Numerical Analysis 44/2 (2006) 851–864.
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Our main inspiration.

Application of commutator-free quasi-Magnus exponential integrators
in quantum dynamics.
A. ALVERMANN, H. FEHSKE. High-order commutator-free exponential time-propagation of
driven quantum systems. Journal of Computational Physics 230 (2011) 5930–5956.

A. ALVERMANN, H. FEHSKE, P. B. LITTLEWOOD. Numerical time propagation of quantum
systems in radiation fields. New Journal of Physics 14 (2012) 105008.
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Complete the big picture ...

Main objectives.

Stability and error analysis of commutator-free quasi-Magnus
exponential integrators and related methods for different classes of
evolution equations

Evolution equations of parabolic type
SERGIO BLANES, FERNANDO CASAS, M. TH. Convergence analysis of high-order
commutator-free quasi-Magnus exponential integrators for non-autonomous
linear evolution equations of parabolic type. IMA J. Numer. Anal. (2017).

Evolution equations of Schrödinger type
Time-dependent Hamiltonian (A(t ) = i∆+ iV (t ), e.g.)

Design of efficient schemes
SERGIO BLANES, FERNANDO CASAS, M. TH. High-order commutator-free
quasi-Magnus exponential integrators and related methods for non-autonomous linear
evolution equations. Computer Physics Communications (2017).
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Further remarks
Magnus versus commutator-free quasi-Magnus exponential integrators

Approach to resolve stability issues
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Magnus expansion

Magnus expansion (Magnus, 1954). Formal representation of solution to
non-autonomous linear evolution equation based on Magnus expansion{

u′(t ) = A(t )u(t ) , t ∈ (t0,T ) ,

u(t0) given,

u(tn +τn) = eΩ(τn ,tn )u(tn) , t0 ≤ tn < tn +τn ≤ T ,

Ω(τn , tn) =
∫ tn+τn

tn

A(σ) dσ

+ 1
2

∫ tn+τn

tn

∫ σ1

tn

[
A(σ1), A(σ2)

]
dσ2dσ1

+ 1
6

∫ tn+τn

tn

∫ σ1

tn

∫ σ2

tn

([
A(σ1),

[
A(σ2), A(σ3)

]]
+ [

A(σ3),
[

A(σ2), A(σ1)
]])

dσ3dσ2dσ1 + . . .
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Magnus integrators

Magnus integrators. Truncation of Magnus expansion and application of
quadrature formulae for approximation of multiple integrals leads to class
of (interpolatory) Magnus integrators.

♦ Second-order Magnus integrator (exponential midpoint rule)

τn A
(
tn + τn

2

) ≈ Ω(τn , tn) .

♦ Fourth-order Magnus integrator, see BLANES, CASAS, ROS (2000)

1
6 τn

(
A(tn)+4 A

(
tn + τn

2

)+ A(tn +τn)
)
− 1

12 τ
2
n

[
A(tn), A(tn +τn)

]
≈ Ω(τn , tn) .

Issue. Presence of iterated commutators.
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Magnus-type integrators

Disadvantages. Presence of iterated commutators causes

loss of structure (issues of well-definedness and stability for PDEs
involving differential operators).

possibly high computational cost (for realisation of action of arising
matrix-exponentials on vectors by Krylov-type methods, e.g.).

Alternative. Commutator-free quasi-Magnus exponential integrators
provide useful alternative to interpolatory Magnus integrators.

A. ALVERMANN, H. FEHSKE, P. B. LITTLEWOOD.
Numerical time propagation of quantum systems in radiation fields.
New Journal of Physics 14 (2012) 105008.

... We explain the use of commutator-free exponential time propagators for the
numerical solution of the associated Schrödinger or master equations with a
time-dependent Hamilton operator. These time propagators are based on the
Magnus series but avoid the computation of commutators, which makes them
suitable for the efficient propagation of systems with a large number of degrees of
freedom. ...
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Commutator-free quasi-Magnus exponential integrators

Situation. Consider non-autonomous linear evolution equation{
u′(t ) = A(t )u(t ) , t ∈ (t0,T ) ,

u(t0) given.

Use time-stepping approach, i.e., determine approximations at certain
time grid points t0 < t1 < ·· · < tN ≤ T by recurrence

un+1 =S (τn , tn)un ≈ u(tn+1) = E (τn , tn)u(tn) ,

τn = tn+1 − tn , n ∈ {0,1, . . . , N −1} .

General format. Cast high-order commutator-free quasi-Magnus
exponential integrators into general form

S (τn , tn) = eτn Bn J · · · eτn Bn1 ,

Bnj =
K∑

k=1
ajk Ank , Ank = A(tn + ckτn) .
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Examples (Nonstiff orders p = 4,6)

Order 4. Fourth-order method based on two Gaussian quadrature nodes
requires evaluation of two exponentials at each time step

p = 4, J = 2 = K , ck = 1
2 ∓

p
3

6 , a1k = 1
4 ±

p
3

6 ,

S (τn , tn) = eτn (a21 An1+a22 An2) eτn (a11 An1+a12 An2) .

Scheme suitable for evolution equations of Schrödinger type and of
parabolic type, since

b1 = a11 +a12 = 1
2 = a21 +a22 = b2 .

Order 6. Sixth-order method obtained from coefficients given in
ALVERMANN, FEHSKE. Scheme suitable for evolution equations of
Schrödinger type, but poor stability behaviour observed for evolution
equations of parabolic type, since

∃ j ∈ {1, . . . , J } : bj =
K∑

k=1
ajk < 0.
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Counter-example

Numerical experiment. Apply commutator-free quasi-Magnus
exponential integrators of nonstiff orders p = 2,4,6 to parabolic test
equation. Display global errors versus time stepsizes for M = 50 (left) and
M = 100 (right) space grid points. Sixth-order scheme shows poor stability
behaviour.
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First conclusions

First conclusions.

♦ Order barrier at order four, i.e. commutator-free quasi-Magnus
exponential integrators of order five or higher necessarily involve
negative coefficients which cause integration backward in time
(ill-posed problem).

♦ Close connexion to class of time-splitting methods gives reasons
for the study of unconventional commutator-free quasi-Magnus
exponential integrators involving complex coefficients under
additional positivity condition.

Mechthild Thalhammer Non-autonomous evolution equations



Commutator-free quasi-Magnus exponential integrators
Extension to non-autonomous nonlinear evolution equations

Conclusions

Class of methods
Convergence result
Design of novel schemes

Convergence result
... omitted due to lack of time ...
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Analytical framework

Analytical framework. Suitable functional analytical framework for evolution equations of
Schrödinger or parabolic type based on

♦ selfadjoint operators and unitary evolution operators on Hilbert spaces or

♦ sectorial operators and analytic semigroups on Banach spaces.

Hypotheses (Parabolic case). Domain of A(t ) : D ⊂ X → X time-independent, dense and
continuously embedded. Linear operator A(t ) : D ⊂ X → X sectorial, uniformly in t ∈ [t0,T ],
i.e., there exist a ∈R, 0 <φ< π

2 , C1 > 0 such that

‖(λI − A(t ))−1‖X←X ≤ C1

|λ−a| , t ∈ [t0,T ] , λ 6∈ Sφ(a) = {a}∪{
µ ∈C : |arg(a −µ)| ≤φ}

.

Graph norm of A(t ) and norm in D equivalent for t ∈ [t0,T ], i.e., there exists C2 > 0 such that

C−1
2 ‖x‖D ≤ ‖x‖X +‖A(t ) x‖X ≤C2‖x‖D , t ∈ [t0,T ] , x ∈ D .

Defining operator family is Hölder-continuous for some exponent ϑ ∈ (0,1], i.e., there exists
C3 > 0 such that

‖A(t )− A(s)‖X←D ≤C3 |t − s|ϑ , s, t ∈ [t0,T ] .

Consequence. Sectorial operator A(t ) generates analytic semigroup
(
eσA(t ))

σ∈[0,∞) on X .
By integral formula of Cauchy, representation follows

eσA(t ) = 1
2πi

∫
Γ

eλ
(
λI −σA(t )

)−1 dλ , σ> 0, eσA(t ) = I , σ= 0.
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Basic assumptions on methods

Commutator-free quasi-Magnus exponential integrators. High-order commutator-free
quasi-Magnus exponential integrators cast into general form

S (τn , tn ) = eτn Bn J · · · eτn Bn1 , Bnj =
K∑

k=1
ajk Ank , Ank = A(tn + ckτn ) .

Employ standard assumption that ratios of subsequent time stepsizes remain bounded

%min ≤ τn+1
τn

≤ %max , n ∈ {0,1, . . . , N −2} .

Nodes and coefficients. Relate nodes to quadrature nodes and suppose

0 ≤ c1 < ·· · < cK ≤ 1.

Assume basic consistency condition to be satisfied (direct consequence of elementary
requirement S (τn , tn ) = eτn A for time-independent operator A)

J∑
j=1

b j = 1, bj =
K∑

k=1
ajk , j ∈ {1, . . . , J } .

In connection with evolution equations of parabolic type employ positivity condition, which
ensures well-definededness of commutator-free quasi-Magnus exponential integrators
within analytical framework of sectorial operators and analytic semigroups

ℜbj > 0, j ∈ {1, . . . , J } .
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Convergence result

Situation.

♦ Employ standard hypotheses on operator family defining non-autonomous linear
evolution equation of parabolic or Schrödinger type.

See BLANES, CASAS, TH. (parabolic case) and draft (Schrödinger case, special structure).

♦ Use that coefficients of considered high-order CFQM exponential integrator fulfill
basic assumptions (positivity condition for parabolic case) and order conditions.

Theorem

Provided that operator family and exact solution are sufficiently regular,
following estimate holds in underlying Banach space with constant C > 0
independent of n ∈ {0,1, . . . , N } and time increments 0 < τn ≤ τmax∥∥un −u(tn)

∥∥
X ≤C

(∥∥u0 −u(t0)
∥∥

X +τp
max

)
.

Crucial point. Specify regularity and compatibility requirements on exact solution.

♦ Test equation: For X =C (Ω,R) obtain regularity requirement u(t ) ∈C 2p (Ω,R).

♦ Schrödinger equation with A(t ) = i∆+ iV (t ): For X = L2(Ω,C) weaker assumption

∂
p−1
x u(t ) ∈ L2(Ω,C) sufficient.
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Design of novel schemes
Numerical comparisons for dissipative quantum system
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Derivation of order conditions

Approach.

♦ Focus on design of efficient schemes of non-stiff orders p = 4,5 involving K = 3
Gaussian quadrature nodes. By time-symmetry of schemes achieve p = 6.

♦ Employ advantageous reformulation (suffices to study first time step, indicate
dependence on time stepsize τ> 0)

J∏
j=1

eτ(aj 1 A1(τ)+aj 2 A2(τ)+aj 3 A3(τ)) =
J∏

j=1
ex j 1α1(τ)+x j 2α2(τ)+x j 3α3(τ) +O

(
τp+1)

, αk (τ) =O
(
τk )

.

♦ Determine set of independent order conditions (obtain q = 10 conditions for p = 5,
use Lyndon multi-index (1,2) and corresponding word α1α2 etc.)

(1) : yJ =
J∑

`=1
x`1 = 1, (2) : zJ =

J∑
`=1

x`2 = 0, (3) :
J∑

j=1
x j 3 = 1

12 ,

(1,2) :
J∑

j=1
x j 2

(
x j 1 +2 y j−1

)=− 1
6 , (1,3) :

J∑
j=1

x j 3
(
x j 1 +2 y j−1

)= 1
12 , (2,3) :

J∑
j=1

x j 3
(
x j 2 +2 z j−1

)= 1
120 ,

(1,1,2) :
J∑

j=1
x j 2

(
x2

j 1 +3 y2
j−1 +3 x j 1 y j−1

)=− 1
4 , (1,1,3) :

J∑
j=1

x j 3
(
x2

j 1 +3 y2
j−1 +3 x j 1 y j−1

)= 1
10 ,

(1,2,2) :
J∑

j=1
x j 1

(
x2

j 2 −3 x j 2 z j +3 z2
j
)= 1

40 , (1,1,1,2) :
J∑

j=1
x j 2

(
x3

j 1 +4 y3
j−1 +6 x j 1 y2

j−1 +4 x2
j 1 y j−1

)= 3
10 .
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Design of novel schemes

Additional practical constraints.

♦ In certain cases, require time-symmetry to further reduce number of order conditions
(for p = 6 obtain q = 7 conditions (1), (3), (1,2), (2,3), (1,1,3), (1,2,2), (1,1,1,2))

Ψ[r ]
J (−τ) = (

Ψ[r ]
J (τ)

)−1 , xJ+1− j ,k = (−1)k+1x j k .

♦ In certain cases, express solutions to order conditions in terms of few coefficients and
minimise amount by which high-order conditions (e.g. at order seven) are not satisfied.

Favourable novel schemes. Illustrate favourable behaviour of resulting novel schemes for
dissipative quantum system (Rosen–Zener model).
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Dissipative quantum system

Rosen–Zener model with dissipation. For Rosen–Zener model with dissipation, associated
Schrödinger equation in normalised form reads

u′(t ) = A(t )u(t ) =− i H(t )u(t ) , t ∈ (t0,T ) ,

H(t ) = f1(t )σ1 ⊗ I + f2(t )σ2 ⊗R +δD ∈Cd×d , d = 2k ,

I = diag
(
1
) ∈Rk×k , R = tridiag

(
1,0,1

) ∈Rk×k , D =− idiag
(
12,22, . . . ,d2) ∈Cd×d .

Notation and special choice. Recall definitions of Pauli matrices and Kronecker product

σ1 =
(
0 1
1 0

)
, σ2 =

(
0 − i
i 0

)
, σ1 ⊗ I =

(
0 I
I 0

)
, σ2 ⊗R =

(
0 − iR

iR 0

)
.

Special choice of arising functions and parameters

d = 10, T0 = 1, t0 =−4T0 , T = 4T0 , V0 = 1
2 , ω= 5, δ= 10−1 ,

f1(t ) =V0 cos(ωt )
(

cosh
( t

T

))−1 , f2(t ) =−V0 sin(ωt )
(

cosh
( t

T

))−1 .

Remark.

♦ Ordinary differential equation of simple form that shows characteristics of
parabolic equations if δ> 0 and d >> 1.

♦ Straightforward realisation of matrix-exponentials by low-order Taylor series
expansions.
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Favourable novel schemes (p = 4)

Favourable fourth-order schemes. Design fourth-order time-symmetric
commutator-free quasi-Magnus exponential integrators with real
coefficients satisfying positivity condition

∀ j ∈ {1, ..., J } : x j 1 > 0.

Use additional degrees of freedom due to inclusion of sixth-order
quadrature nodes and further exponentials to verify certain conditions at
order five and to minimise deviation of the remaining fifth-order
conditions without increasing the overall computational cost

p = 4 : CF[4]
4 , CF[4]

5 .

Compare novel schemes with optimised commutator-free quasi-Magnus
exponential integrator proposed in ALVERMANN, FEHSKE (see eq. (43))

p = 4 : CF[4]
3 .
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Illustration (p = 4)
Numerical results. Time integration of Rosen–Zener model by fourth-order CFQM exponential integrators

p = 4 : CF[4]
3 (A & F), CF[4]

4 ,CF[4]
5 (novel) .

Implementation by Taylor series approximation of order M = 6. Display global errors in fundamental matrix solution at final
time versus number of matrix-vector products. Novel schemes favourable for higher accuracy.
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Favourable novel scheme (p = 6, commutator)

Favourable novel scheme (commutator). Design unconventional
scheme of order six involving single commutator

p = 6, J = 5, K = 3,

CF[6]
5C (τ) =

5∏
j=4

eτa j 1 A1(τ)+τa j 2 A2(τ)+τa j 3 A3(τ) eD(τ)
2∏

j=1
eτa j 1 A1(τ)+τa j 2 A2(τ)+τa j 3 A3(τ) ,

D(τ) = τ2 [
C1(τ),C2(τ)

]
, C1 = e1

(
A1 + A3

)+e2 A2 , C2 = A3 − A1 .

Contrary to classical interpolatory Magnus integrators, where arising
commutators only of first order, additional computational cost low due to

D(τ) ' [
d1α1(τ)+d2α3(τ),α2(τ)

]=O
(
τ3) , αk (τ) =O

(
τk)

.

Compare novel scheme with optimised commutator-free quasi-Magnus
exponential integrator proposed in ALVERMANN, FEHSKE (see Table 3,
stability issues for δ> 0)

p = 6 : CF[6]
6 .
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Illustration (p = 6)
Numerical results. Time integration of Rosen–Zener model by sixth-order CFQM exponential integrators

p = 6 : CF[6]
6 (A & F), CF[6]

5C (novel) .

Implementation by Taylor series approximation of order M = 6. Display global errors in fundamental matrix solution at final
time versus number of matrix-vector products. Novel scheme favourable in all cases.
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Favourable novel schemes (p = 5,6, complex)

Favourable novel schemes (complex coefficients). Design
commutator-free Magnus integrators with complex coefficients satisfying
positivity condition

p = 5 : CF[5]
3 , p = 6 : CF[6]

4 , CF[6]
5 .

♦ Expect schemes to remain stable for δ> 0.

♦ Expect scheme with J = 3 to be most efficient.
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Design of novel schemes

Favourable novel schemes (p = 5,6, complex), Illustration
Numerical results. Time integration of Rosen–Zener model by fifth- and sixth-order CFQM exponential integrators

p = 5 : CF[5]
3 , p = 6 : CF[6]

4 , CF[6]
5 .

Implementation by Taylor series approximation of order M = 6. Display global errors in fundamental matrix solution at final
time versus number of matrix-vector products. Novel schemes remain stable for δ> 0.
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Remarks on extension to
non-autonomous nonlinear

evolution equations
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Extension to nonlinear evolution equations

Approach. Apply commutator-free quasi-Magnus integrators combined
with operator splitting methods to nonlinear evolution equations of form{

u′(t ) = A(t )u(t )+B
(
u(t )

)
, t ∈ (t0,T ) ,

u(t0) given;

that is, solve sequence of related autonomous nonlinear equations

u′(t ) =A jn u(t )+b j B
(
u(t )

)
, t ∈ (tn , tn+1) ,

A jn =
K∑

k=1
ajk A(tn + ckτn) , bj =

K∑
k=1

ajk , j ∈ {1, . . . , J } ,

by means of splitting methods.
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Areas of application

Situation. Consider nonlinear evolution equation of form

u′(t ) = A(t )u(t )+B
(
u(t )

)
, t ∈ (t0,T ) .

Areas of application.

♦ Nonlinear Schrödinger equations
Gross–Pitaevskii equations with opening trap
Gross–Pitaevskii equations with rotation (moving frame)

♦ Diffusion-advection-reaction systems with multiplicative noise
Formation of patterns in deterministic case (see illustrations)
Gray–Scott equations with multiplicative noise (with E. HAUSENBLAS)
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Illustrations (BEC, Pattern formation)

Movies
http://techmath.uibk.ac.at/mecht/MyHomepage/Research.html
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Conclusions and future work

Summary.

♦ Commutator-free quasi-Magnus exponential integrators form
favourable class of time discretisation methods for linear evolution
equations of Schrödinger type and of parabolic type. Theoretical
analysis contributes to deeper understanding (reveals approach to
resolve stability issues, explains order reductions causing signifcant
loss of accuracy).

Current and future work.

♦ Study commutator-free integrators in combination with splitting
methods for nonlinear equations.

♦ Provide implementation for GPE (quantum turbulence).
♦ Improve performance of implementation for deterministic

Gray–Scott equations (GPU).

Thank you!
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