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Contents and related work

Contents.

Commutator-free quasi-Magnus (CFQM) exponential integrators for
non-autonomous linear evolution equations
Appropriate name thanks to Arieh Iserles

Splitting methods for nonlinear autonomous evolution equations
Possibility of local error control with negligible additional cost

CFQM exponential integrators combined with splitting methods for
non-autonomous nonlinear evolution equations

Focus in this talk.

Joint work with SERGIO BLANES and FERNANDO CASAS.

Related work.

With WINFRIED AUZINGER, KARSTEN HELD, OTHMAR KOCH.

With ERIKA HAUSENBLAS.

Mechthild Thalhammer Non-autonomous evolution equations



Commutator-free quasi-Magnus exponential integrators
Operator splitting methods

Extension to non-autonomous nonlinear evolution equations

Class of methods
Convergence result
Design of novel schemes

First remarks on
commutator-free quasi-Magnus

exponential integrators
for linear evolution equations

Mechthild Thalhammer Non-autonomous evolution equations



Commutator-free quasi-Magnus exponential integrators
Operator splitting methods

Extension to non-autonomous nonlinear evolution equations

Class of methods
Convergence result
Design of novel schemes

Areas of application

Situation. Consider non-autonomous linear evolution equation

u′(t ) = A(t )u(t ) , t ∈ (t0,T ) .

Areas of application.

♦ Linear evolution equations of Schrödinger type
Linear Schrödinger equations involving space-time-dependent
potential
Quantum systems
Models for oxide solar cells (with W. AUZINGER, K. HELD, O. KOCH)

♦ Linear evolution equations of parabolic type
Variational equations related to diffusion-advection-reaction
equations
Dissipative quantum systems
Rosen–Zener models with dissipation

Remark. Abstract formulation helps to recognise common structure of
complex processes.
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Commutator-free quasi-Magnus exponential integrators

Issue. Exact solution of non-autonomous linear evolution equation not
available (used only theoretically as ideal case)

u′(t ) = A(t )u(t ) , t ∈ (t0,T ) .

Remark. In autonomous case, solution (formally) given by exponential

w ′(t ) = A0 w(t ) , w(t0 +τ) = eτA0 w(t0) .

Approach. In non-autonomous case, compute numerical approximation
(time stepsize τ> 0, second-order scheme)

S (τ)u(t0) ≈ u(t0 +τ) , S (τ) = eτA(t0+ τ
2 ) .

Desirable to use higher-order approximations (favourable in efficiency).
Study class of commutator-free quasi-Magnus exponential integrators

S (τ) = eτB J (τ) · · · eτB1(τ) , B j (τ) =
K∑

k=1
ajk A(tn + ckτ) .

Secret of success. Smart choice of arising coefficients.
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Our background.

Previous work on design of higher-order commutator-free quasi-Magnus
exponential integrators.
S. BLANES, P. C. MOAN. Fourth- and sixth-order commutator-free Magnus integrators for
linear and non-linear dynamical systems. Applied Numerical Mathematics 56 (2006)
1519–1537.

S. BLANES, F. CASAS, J. A. OTEO, J. ROS. The Magnus expansion and some of its
applications. Phys. Rep. 470 (2009) 151–238.

Previous work on stability and error analysis of fourth-order scheme for
parabolic equations. Explanation of order reductions due to imposed
homogeneous Dirichlet boundary conditions.
M. TH. A fourth-order commutator-free exponential integrator for nonautonomous
differential equations. SIAM Journal on Numerical Analysis 44/2 (2006) 851–864.
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Our main inspiration.

Application of commutator-free quasi-Magnus exponential integrators
in quantum dynamics.
A. ALVERMANN, H. FEHSKE. High-order commutator-free exponential time-propagation of
driven quantum systems. Journal of Computational Physics 230 (2011) 5930–5956.

A. ALVERMANN, H. FEHSKE, P. B. LITTLEWOOD. Numerical time propagation of quantum
systems in radiation fields. New Journal of Physics 14 (2012) 105008.
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Complete the big picture ...

Main objectives.

Stability and error analysis of commutator-free quasi-Magnus
exponential integrators and related methods for different classes of
evolution equations

Evolution equations of parabolic type
SERGIO BLANES, FERNANDO CASAS, M. TH. Convergence analysis of high-order
commutator-free quasi-Magnus exponential integrators for non-autonomous
linear evolution equations of parabolic type. IMA J. Numer. Anal. (2017).

Evolution equations of Schrödinger type
Time-dependent Hamiltonian (A(t ) = i∆+ iV (t ), e.g.)

Design of efficient schemes
SERGIO BLANES, FERNANDO CASAS, M. TH. High-order commutator-free
quasi-Magnus exponential integrators and related methods for non-autonomous linear
evolution equations. Submitted.
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First illustration (Parabolic equation)

Practice in numerical methods is the only way of learning it.
H. Jeffreys, B. Jeffreys

Test equation. Consider nonlinear diffusion-advection-reaction equation

∂tU (x, t ) = f2
(
U (x, t )

)
∂xxU (x, t )+ f1

(
U (x, t )

)
∂xU (x, t )+ f0

(
U (x, t )

)+g (x, t ) .

Associated variational equation has form of non-autonomous linear
evolution equation

∂t u(x, t ) =α2(x, t )∂xx u(x, t )+α1(x, t )∂x u(x, t )+α0(x, t )u(x, t ) .

Impose periodic boundary conditions and regular initial condition.
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First illustration (Parabolic equation)

Test equation. Consider non-autonomous linear evolution equation

∂t u(x, t ) =α2(x, t )∂xx u(x, t )+α1(x, t )∂x u(x, t )+α0(x, t )u(x, t ) .

Impose periodic boundary conditions and regular initial condition.

Special choice. In particular, set

(x, t ) ∈Ω× [0,T ] , Ω= [0,1] , T = 1,

U (x, t ) = e− t sin(2πx) , u(x,0) = (
sin(2πx)

)2 ,

f2(w) = 1
10

(
cos(w)+ 11

10

)
, f1(w) = 1

10 w ,

f0(w) = w
(
w − 1

2

)
,

α2(x, t ) = f2
(
U (x, t )

)
, α1(x, t ) = f1

(
U (x, t )

)
,

α0(x, t ) = f ′2
(
U (x, t )

)
∂xxU (x, t )

+ f ′1
(
U (x, t )

)
∂xU (x, t )+ f ′0

(
U (x, t )

)
.
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First illustration (Parabolic equation)

One must watch the convergence of a numerical code as carefully as a
father watching his four year old play near a busy road. J. P. Boyd

Time integration. Apply commutator-free quasi-Magnus exponential
integrators and related method of non-stiff orders p = 4,5,6. Choose
spatial grid width sufficiently small such that temporal error dominates.

♦ Determine global errors versus number of exponentials (efficiency).
More appropriate indicator for efficiency used for Rosen–Zener
model. Improved performance of novel schemes.
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First illustration (Parabolic equation)
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p=5 (J=3,K=3,Gauß,novel)
p=6 (J=4,K=3,Gauß,novel)

p=6 (J=5,K=3,Gauß,novel)
p=6 (J=6,K=3,Gauß,A&F)
p=6 (J=5,K=3,Gauß,Comm.,novel)

Observations.

♦ Commutator-free integrators retain nonstiff orders of convergence.

♦ Poor stability of high-order schemes found in literature (e.g. 6th-order
scheme by ALVERMANN, FEHSKE).

Mechthild Thalhammer Non-autonomous evolution equations



Commutator-free quasi-Magnus exponential integrators
Operator splitting methods

Extension to non-autonomous nonlinear evolution equations

Class of methods
Convergence result
Design of novel schemes

Further remarks
Magnus versus commutator-free quasi-Magnus exponential integrators

Approach to resolve stability issues
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Magnus expansion

Magnus expansion (Magnus, 1954). Formal representation of solution to
non-autonomous linear evolution equation based on Magnus expansion{

u′(t ) = A(t )u(t ) , t ∈ (t0,T ) ,

u(t0) given,

u(tn +τn) = eΩ(τn ,tn )u(tn) , t0 ≤ tn < tn +τn ≤ T ,

Ω(τn , tn) =
∫ tn+τn

tn

A(σ) dσ

+ 1
2

∫ tn+τn

tn

∫ σ1

tn

[
A(σ1), A(σ2)

]
dσ2dσ1

+ 1
6

∫ tn+τn

tn

∫ σ1

tn

∫ σ2

tn

([
A(σ1),

[
A(σ2), A(σ3)

]]
+ [

A(σ3),
[

A(σ2), A(σ1)
]])

dσ3dσ2dσ1 + . . .
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Magnus integrators

Magnus integrators. Truncation of Magnus expansion and application of
quadrature formulae for approximation of multiple integrals leads to class
of (interpolatory) Magnus integrators.

♦ Second-order Magnus integrator (exponential midpoint rule)

τn A
(
tn + τn

2

) ≈ Ω(τn , tn) .

♦ Fourth-order Magnus integrator, see BLANES, CASAS, ROS (2000)

1
6 τn

(
A(tn)+4 A

(
tn + τn

2

)+ A(tn +τn)
)
− 1

12 τ
2
n

[
A(tn), A(tn +τn)

]
≈ Ω(τn , tn) .

Issue. Presence of iterated commutators.
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Magnus-type integrators

Disadvantages. Presence of iterated commutators causes

loss of structure (issues of well-definedness and stability for PDEs
involving differential operators).

possibly high computational cost (for realisation of action of arising
matrix-exponentials on vectors by Krylov-type methods, e.g.).

Alternative. Commutator-free quasi-Magnus exponential integrators
provide useful alternative to interpolatory Magnus integrators.

A. ALVERMANN, H. FEHSKE, P. B. LITTLEWOOD.
Numerical time propagation of quantum systems in radiation fields.
New Journal of Physics 14 (2012) 105008.

... We explain the use of commutator-free exponential time propagators for the
numerical solution of the associated Schrödinger or master equations with a
time-dependent Hamilton operator. These time propagators are based on the
Magnus series but avoid the computation of commutators, which makes them
suitable for the efficient propagation of systems with a large number of degrees of
freedom. ...
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Commutator-free quasi-Magnus exponential integrators

Situation. Consider non-autonomous linear evolution equation{
u′(t ) = A(t )u(t ) , t ∈ (t0,T ) ,

u(t0) given.

Use time-stepping approach, i.e., determine approximations at certain
time grid points t0 < t1 < ·· · < tN ≤ T by recurrence

un+1 =S (τn , tn)un ≈ u(tn+1) = E (τn , tn)u(tn) ,

τn = tn+1 − tn , n ∈ {0,1, . . . , N −1} .

General format. Cast high-order commutator-free quasi-Magnus
exponential integrators into general form

S (τn , tn) = eτn Bn J · · · eτn Bn1 ,

Bnj =
K∑

k=1
ajk Ank , Ank = A(tn + ckτn) .
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Commutator-free quasi-Magnus exponential integrators

General format. Recall general format

S (τn , tn) = eτn Bn J · · · eτn Bn1 ,

Bnj =
K∑

k=1
ajk Ank , Ank = A(tn + ckτn) .

Remark. Commutator-free quasi-Magnus exponential integrators
generalise time-splitting methods defined by coefficients (α`,β`)s

`=1

(freeze time by adding differential equation d
dt t = 1)

un+1 = eτnαs Ans · · · eτnα1 An1 un , ck =
k∑
`=1

β` ,

with the merit of a significantly reduced number of exponentials, which
enhances efficiency.
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Examples (Nonstiff orders p = 4,6)

Order 4. Fourth-order method based on two Gaussian quadrature nodes
requires evaluation of two exponentials at each time step

p = 4, J = 2 = K , ck = 1
2 ∓

p
3

6 , a1k = 1
4 ±

p
3

6 ,

S (τn , tn) = eτn (a21 An1+a22 An2) eτn (a11 An1+a12 An2) .

Scheme suitable for evolution equations of Schrödinger type and of
parabolic type, since

b1 = a11 +a12 = 1
2 = a21 +a22 = b2 .

Order 6. Sixth-order method obtained from coefficients given in
ALVERMANN, FEHSKE. Scheme suitable for evolution equations of
Schrödinger type, but poor stability behaviour observed for evolution
equations of parabolic type, since

∃ j ∈ {1, . . . , J } : bj =
K∑

k=1
ajk < 0.
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Counter-example

Numerical experiment. Apply commutator-free quasi-Magnus
exponential integrators of nonstiff orders p = 2,4,6 to parabolic test
equation (see before). Display global errors versus time stepsizes for
M = 50 (left) and M = 100 (right) space grid points. Sixth-order scheme
shows poor stability behaviour.
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First conclusions

First conclusions.

♦ Order barrier at order four, i.e. commutator-free quasi-Magnus
exponential integrators of order five or higher necessarily involve
negative coefficients which cause integration backward in time
(ill-posed problem).

♦ Close connexion to class of time-splitting methods gives reasons
for the study of unconventional commutator-free quasi-Magnus
exponential integrators involving complex coefficients under
additional positivity condition.
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Convergence result
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Analytical framework

Analytical framework. Suitable functional analytical framework for evolution equations of
Schrödinger or parabolic type based on

♦ selfadjoint operators and unitary evolution operators on Hilbert spaces or

♦ sectorial operators and analytic semigroups on Banach spaces.

Hypotheses (Parabolic case). Domain of A(t ) : D ⊂ X → X time-independent, dense and
continuously embedded. Linear operator A(t ) : D ⊂ X → X sectorial, uniformly in t ∈ [t0,T ],
i.e., there exist a ∈R, 0 <φ< π

2 , C1 > 0 such that

‖(λI − A(t ))−1‖X←X ≤ C1

|λ−a| , t ∈ [t0,T ] , λ 6∈ Sφ(a) = {a}∪{
µ ∈C : |arg(a −µ)| ≤φ}

.

Graph norm of A(t ) and norm in D equivalent for t ∈ [t0,T ], i.e., there exists C2 > 0 such that

C−1
2 ‖x‖D ≤ ‖x‖X +‖A(t ) x‖X ≤C2‖x‖D , t ∈ [t0,T ] , x ∈ D .

Defining operator family is Hölder-continuous for some exponent ϑ ∈ (0,1], i.e., there exists
C3 > 0 such that

‖A(t )− A(s)‖X←D ≤C3 |t − s|ϑ , s, t ∈ [t0,T ] .

Consequence. Sectorial operator A(t ) generates analytic semigroup
(
eσA(t ))

σ∈[0,∞) on X .
By integral formula of Cauchy, representation follows

eσA(t ) = 1
2πi

∫
Γ

eλ
(
λI −σA(t )

)−1 dλ , σ> 0, eσA(t ) = I , σ= 0.

Mechthild Thalhammer Non-autonomous evolution equations



Commutator-free quasi-Magnus exponential integrators
Operator splitting methods

Extension to non-autonomous nonlinear evolution equations

Class of methods
Convergence result
Design of novel schemes

Basic assumptions on methods

Commutator-free quasi-Magnus exponential integrators. High-order commutator-free
quasi-Magnus exponential integrators cast into general form

S (τn , tn ) = eτn Bn J · · · eτn Bn1 , Bnj =
K∑

k=1
ajk Ank , Ank = A(tn + ckτn ) .

Employ standard assumption that ratios of subsequent time stepsizes remain bounded

%min ≤ τn+1
τn

≤ %max , n ∈ {0,1, . . . , N −2} .

Nodes and coefficients. Relate nodes to quadrature nodes and suppose

0 ≤ c1 < ·· · < cK ≤ 1.

Assume basic consistency condition to be satisfied (direct consequence of elementary
requirement S (τn , tn ) = eτn A for time-independent operator A)

J∑
j=1

b j = 1, bj =
K∑

k=1
ajk , j ∈ {1, . . . , J } .

In connection with evolution equations of parabolic type employ positivity condition, which
ensures well-definededness of commutator-free quasi-Magnus exponential integrators
within analytical framework of sectorial operators and analytic semigroups

ℜbj > 0, j ∈ {1, . . . , J } .
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Convergence result

Situation.

♦ Employ standard hypotheses on operator family defining non-autonomous linear
evolution equation of parabolic or Schrödinger type.

See BLANES, CASAS, TH. (parabolic case) and draft (Schrödinger case, special structure).

♦ Use that coefficients of considered high-order CFQM exponential integrator fulfill
basic assumptions (positivity condition for parabolic case) and order conditions.

Theorem

Provided that operator family and exact solution are sufficiently regular,
following estimate holds in underlying Banach space with constant C > 0
independent of n ∈ {0,1, . . . , N } and time increments 0 < τn ≤ τmax∥∥un −u(tn)

∥∥
X ≤C

(∥∥u0 −u(t0)
∥∥

X +τp
max

)
.

Crucial point. Specify regularity and compatibility requirements on exact solution.

♦ Test equation: For X =C (Ω,R) obtain regularity requirement u(t ) ∈C 2p (Ω,R).

♦ Schrödinger equation with A(t ) = i∆+ iV (t ): For X = L2(Ω,C) weaker assumption

∂
p−1
x u(t ) ∈ L2(Ω,C) sufficient.
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Main tools of proof

Stability. Relate stability function of commutator-free quasi-Magnus exponential integrator
to analytic semigroup (suitable choice of frozen time t )

∆n
n0

=
n∏

i=n0

Si (τi , ti )−e(tn+1−tn0 ) A(t ) , ‖es A(t )‖X←X + s ‖es A(t )‖D←X ≤C .

Employ telescopic identity, bounds for analytic semigroup, Hölder-continuity of defining
operator family, and Gronwall-type inequality to deduce desired stability bound

∥∥∥ n∏
i=n0

Si (τi , ti )
∥∥∥

X←X
≤C .

Local error. Repeated application of variation-of-constants formula yields suitable
representation which is starting point for further expansions

u(tn+1)−S (τn , tn )u(tn ) =
J∑

j=1

K∑
k=1

a j k

( J∏
i= j+1

eτn Bni (τn )
)∫ τn

0
e(τn−σ)Bn j (τn ) gn j k (σ) dσ ,

gn j k (σ) = (
A(tn +d j−1τn +b jσ)− A(tn + ckτn )

)
u(tn +d j−1τn +b jσ) .

Resulting local error representation involved for high-order schemes. ¦
Mechthild Thalhammer Non-autonomous evolution equations



Commutator-free quasi-Magnus exponential integrators
Operator splitting methods

Extension to non-autonomous nonlinear evolution equations

Class of methods
Convergence result
Design of novel schemes

Design of novel schemes
Numerical comparisons for dissipative quantum system

Mechthild Thalhammer Non-autonomous evolution equations



Commutator-free quasi-Magnus exponential integrators
Operator splitting methods

Extension to non-autonomous nonlinear evolution equations

Class of methods
Convergence result
Design of novel schemes

Derivation of order conditions

Approach.

♦ Focus on design of efficient schemes of non-stiff orders p = 4,5 involving K = 3
Gaussian quadrature nodes. By time-symmetry of schemes achieve p = 6.

♦ Employ advantageous reformulation (suffices to study first time step, indicate
dependence on time stepsize τ> 0)

J∏
j=1

eτ(aj 1 A1(τ)+aj 2 A2(τ)+aj 3 A3(τ)) =
J∏

j=1
ex j 1α1(τ)+x j 2α2(τ)+x j 3α3(τ) +O

(
τp+1)

, αk (τ) =O
(
τk )

.

♦ Determine set of independent order conditions (obtain q = 10 conditions for p = 5,
use Lyndon multi-index (1,2) and corresponding word α1α2 etc.)

(1) : yJ =
J∑

`=1
x`1 = 1, (2) : zJ =

J∑
`=1

x`2 = 0, (3) :
J∑

j=1
x j 3 = 1

12 ,

(1,2) :
J∑

j=1
x j 2

(
x j 1 +2 y j−1

)=− 1
6 , (1,3) :

J∑
j=1

x j 3
(
x j 1 +2 y j−1

)= 1
12 , (2,3) :

J∑
j=1

x j 3
(
x j 2 +2 z j−1

)= 1
120 ,

(1,1,2) :
J∑

j=1
x j 2

(
x2

j 1 +3 y2
j−1 +3 x j 1 y j−1

)=− 1
4 , (1,1,3) :

J∑
j=1

x j 3
(
x2

j 1 +3 y2
j−1 +3 x j 1 y j−1

)= 1
10 ,

(1,2,2) :
J∑

j=1
x j 1

(
x2

j 2 −3 x j 2 z j +3 z2
j
)= 1

40 , (1,1,1,2) :
J∑

j=1
x j 2

(
x3

j 1 +4 y3
j−1 +6 x j 1 y2

j−1 +4 x2
j 1 y j−1

)= 3
10 .
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Class of methods
Convergence result
Design of novel schemes

Design of novel schemes

Additional practical constraints.

♦ In certain cases, require time-symmetry to further reduce number of order conditions
(for p = 6 obtain q = 7 conditions (1), (3), (1,2), (2,3), (1,1,3), (1,2,2), (1,1,1,2))

Ψ[r ]
J (−τ) = (

Ψ[r ]
J (τ)

)−1 , xJ+1− j ,k = (−1)k+1x j k .

♦ In certain cases, express solutions to order conditions in terms of few coefficients and
minimise amount by which high-order conditions (e.g. at order seven) are not satisfied.

Favourable novel schemes. Illustrate favourable behaviour of resulting novel schemes for
dissipative quantum system (Rosen–Zener model). Display results for schemes of order
p = 5,6 with complex coefficients satisfying positivity condition.
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Observations. Schemes remain stable for δ> 0. Scheme with J = 3 favourable in efficiency.
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Extension to non-autonomous nonlinear evolution equations

Remarks on operator splitting methods
for nonlinear evolution equations

Possibility of local error control with negligible additional cost
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Extension to non-autonomous nonlinear evolution equations

Splitting methods

Situation. Consider autonomous linear evolution equation of form{
u′(t ) = A u(t )+B u(t ) , t ∈ (0,T ) ,

u(0) = u0 .

Approach. Apply pth-order splitting method involving s compositions

un+1 = ebsτn B easτn A · · · eb1τn B ea1τn A un ≈ u(tn+1) = eτn (A+B) u(tn) .

Realisation straightforward

u = un

for j = 1 : s

u = ea j τn A u

u = eb j τn B u

end

un+1 = u
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Extension to non-autonomous nonlinear evolution equations

Basic approach for local error estimation

Approach for local error estimation. For instance, consider splitting
method by BLANES, MOAN or splitting method by YOSHIDA (complex
coefficients, melt two subsequent time steps), where

p = 4, s = 7.

Auxiliary third-order approximation obtained by suitable linear
combination of intermediate values used for local error estimation

u = un , uEstimator =α0 u

for j = 1 : s

u = ea j τn A u , uEstimator = uEstimator +α2 j−1 u

u = eb j τn B u , uEstimator = uEstimator +α2 j u

end

un+1 = u , Local error estimator = u −uEstimator

Remark. Extension to nonlinear evolution equations straightforward.
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Illustration (Semi-classical nonlinear Schrödinger equ.)

Situation. Consider nonlinear Schrödinger equation in semi-classical
regime (decisive parameter ε> 0). Time integration by fourth-order
splitting method with constant time stepsize ∆t = ε fails.
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Blanes & Moan (novel, p = 4)
Solution at time t = 3, Tolerance tol = 0, Number of time steps N = 300

Semi−classical parameter eps = 0.01, M = 4096
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Illustration (Semi-classical nonlinear Schrödinger equ.)

Approach. Use novel approach for local error control. Obtain reliable
result for initial time stepsize ∆t = ε and different tolerances.
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Blanes & Moan (novel, p = 4)
Solution at time t = 3, Tolerance tol = 0.9, Number of time steps N = 2254

Semi−classical parameter eps = 0.01, M = 4096
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Blanes & Moan (novel, p = 4)
Solution at time t = 3, Tolerance tol = 0.5, Number of time steps N = 4073

Semi−classical parameter eps = 0.01, M = 4096
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Illustration (Semi-classical nonlinear Schrödinger equ.)
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Final time T = 3, Tolerance tol = 0.9, Total number of time steps N = 2254

Nonlinear Schrödinger equation (eps = 0.01, M = 4096)
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Nonlinear Schrödinger equation (eps = 0.01, M = 4096)
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Extension to non-autonomous nonlinear evolution equations

Illustration (Gray–Scott equations)
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Extension to non-autonomous nonlinear evolution equations

Illustration (Gray–Scott equations)
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Extension to non-autonomous nonlinear evolution equations

Illustration (Gray–Scott equations)
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Yoshida (complex, novel, p = 4)
Final time T = 3000, Tolerance tol = 0.9, Total number of time steps N = 2481

Gray−Scott equations (M = 10000)
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Gray−Scott equations (M = 10000)
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Remarks on extension to
non-autonomous nonlinear

evolution equations
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Extension to nonlinear evolution equations

Approach. Apply commutator-free quasi-Magnus integrators combined
with operator splitting methods to nonlinear evolution equations of form{

u′(t ) = A(t )u(t )+B
(
u(t )

)
, t ∈ (t0,T ) ,

u(t0) given;

that is, solve sequence of related autonomous nonlinear equations

u′(t ) =A jn u(t )+b j B
(
u(t )

)
, t ∈ (tn , tn+1) ,

A jn =
K∑

k=1
ajk A(tn + ckτn) , bj =

K∑
k=1

ajk , j ∈ {1, . . . , J } ,

by means of splitting methods.
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Areas of application

Situation. Consider nonlinear evolution equation of form

u′(t ) = A(t )u(t )+B
(
u(t )

)
, t ∈ (t0,T ) .

Areas of application.

♦ Nonlinear Schrödinger equations
Gross–Pitaevskii equations with opening trap
Gross–Pitaevskii equations with rotation (moving frame)

♦ Diffusion-advection-reaction systems with multiplicative noise
Formation of patterns in deterministic case (see illustrations)
Gray–Scott equations with multiplicative noise (with E. HAUSENBLAS)
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Illustrations (BEC, Pattern formation)

Movies
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Conclusions and future work
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Conclusions and future work

Summary.

♦ Commutator-free quasi-Magnus exponential integrators form
favourable class of time discretisation methods for linear evolution
equations of Schrödinger type and of parabolic type. Theoretical
analysis contributes to deeper understanding (reveals approach to
resolve stability issues, explains order reductions causing signifcant
loss of accuracy).

Current and future work.

♦ Study approach used for local error estimation of splitting methods.

♦ Study commutator-free integrators in combination with splitting
methods for nonlinear equations.

♦ Provide implementation for GPE (quantum turbulence).
♦ Improve performance of implementation for deterministic

Gray–Scott equations (GPU).
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Thank you!
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