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Scope

Scope (Deterministic and stochastic partial differential equations).

Mathematical models based on reaction-diffusion systems provide
fundamental tools for description and investigation of processes in
biology, biochemistry, and chemistry.

In specific situations, spatial-temporal patterns are formed.

Gray–Scott equations constitute elementary two-component system
describing autocatalytic reaction processes.

Choice of decisive parameters determines form of complex patterns.

Derivation of macroscopic models from physical principles neglects
certain aspects of microscopic dynamics. Suitable approach that
accounts for significant microscopic effects relies on incorporation
of stochastic processes and consideration of SPDEs.
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Objectives and questions

Objectives and questions.

Modelling.

Study stochastic Gray–Scott equations driven by independent
spatially time-homogeneous Wiener processes.

Additive versus multiplicative noise?

Itô versus Stratonovich integral?

Theoretical study.

Deduce existence and uniqueness result.

Appropriate regularity assumptions on prescribed initial states and
Wiener processes?

Numerical simulation.

Apply high-order time-adaptive operator splitting method combined
with fast Fourier transform for deterministic Gray–Scott equations.

Suitable low-order modification for stochastic Gray–Scott equations?
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Chemical reactions

Chemical reactions. Consider elementary model for reaction of chemical substances.

Activator U stimulates own production and production of inhibitor V .

Inhibitor V represses production of activator U and converts to third substance.{
U +2V → 3V

V → P

Reaction equations. Study system of reaction equations for associated time-dependent
concentrations u, v : [0,T ] →R (reaction rates αv >αu > 0){

u′(t ) =αu −αu u(t )−u(t )
(
v(t )

)2 ,

v ′(t ) =−αv v(t )+u(t )
(
v(t )

)2 .

Reaction-diffusion equations. Incorporation of additional diffusion
terms leads to reaction-diffusion system, which serves as elementary
model for isothermal autocatalytic reaction processes.
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Gray–Scott equations

Gray–Scott equations. Gray–Scott equations constitute elementary
two-component reaction-diffusion system for space-time-dependent
functions u, v : I × [0,T ] →R (diffusion coefficients Du ,Dv > 0){

∂t u(x, t ) = Du∆u(x, t )+αu −αu u(x, t )−u(x, t )
(
v(x, t )

)2 ,

∂t v(x, t ) = Dv ∆v(x, t )− αv v(x, t )+u(x, t )
(
v(x, t )

)2 .

Reference. GRAY, SCOTT. Chemical oscillations and instabilities (1994).

Patterns. Numerical simulation of Gray–Scott equations in different
parameter regimes reveals rich variety of spatio-temporal patterns not
observed in other reaction-diffusions systems.
Reference. PEARSON. Complex patterns in a simple system (1993).
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Pattern formation – A glance at history ...

Pattern formation. In 1950s, BORIS BELOUSOV succeeded in stimulating reactions
of chemical substances that led to periodic changes of their concentrations, visible as
oscillations in colour. Belousov–Zhabotinsky reaction is (most) famous example of
non-equilibrium thermodynamics.

I performed this reaction as an assignment after it was referenced in Ilya Prigogine’s book "The End of
Certainty" as an example of a chemical reaction that gained new properties when far from equilibrium. I
used various recipes from Wolfgang Jahnke and Arthur T. Winfree’s 1991 paper in the Journal of Chemical
Education, "Recipes for Belousov–Zhabotinsky Reagents." The later half of the video is a time-lapse of a 34
min. reaction, showing it in about 3 min.

See https://www.youtube.com/watch?v=IBa4kgXI4Cg (time 0:50)

Turing patterns. ALAN TURING suggested that main mechanisms of morphogenesis are
captured by mathematical models for systems of chemical substances, which react together
and diffuse through tissue. In TURING (1952), he studies reaction-diffusion systems and
explains development of patterns.

Reaction-diffusion systems. Brusselator corresponds to system of reaction-diffusion
equations and serves as elementary model for nonlinear chemical oscillators{

∂t u(x, t ) = Du ∆u(x, t )+ fu
(
u(x, t ), v(x, t )

)
,

∂t v(x, t ) = Dv ∆v(x, t )+ fv
(
u(x, t ), v(x, t )

)
,

see PRIGOGINE, LEFEVER (1968).
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Deterministic models

Deterministic models. Consider systems of coupled reaction-diffusion
equations for space-time-dependent functions u, v : I × [0,T ] ⊂Rd ×R→R{

∂t u(x, t ) = Du∆u(x, t )+ fu
(
u(x, t ), v(x, t )

)
,

∂t v(x, t ) = Dv ∆v(x, t )+ fv
(
u(x, t ), v(x, t )

)
.

For suitable choices of constants Du ,Dv > 0 (diffusion coefficients) and
nonlinear functions fu , fv :R2 →R (reactions), observe formation of
spatio-temporal patterns.

Gray–Scott equations. Focus on study of Gray–Scott equations involving
cubic reaction terms (αv >αu > 0)

fu(u, v) =αu (1−u)− g (u, v) , fv (u, v) =−αv v + g (u, v) ,

g (u, v) = u v2 .

Illustration. Choice of decisive parameters determine shape of patterns (stripes, spots)

Du = 0.16, Dv = 0.08, αu = 0.029, αv = 0.086,

Du = 0.16, Dv = 0.06, αu = 0.012, αv = 0.062.
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Illustration (Initial states)

Prescribed initial states for deterministic Gray–Scott equations.
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Illustration (Patterns in Gray–Scott equations)

Deterministic Gray–Scott equations with different choices of parameters (Du ,Dv ,αu ,αv ).
Components of numerical solution at certain time. Movies available at

http://techmath.uibk.ac.at/mecht/MyHomepage/Research/StochasticGrayScottEquations/MovieMyCase1.mov
http://techmath.uibk.ac.at/mecht/MyHomepage/Research/StochasticGrayScottEquations/MovieMyCase2.mov
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Evolution equation

Evolution equation. Introduce convenient abbreviations

Au = Du∆−αu I , Av = Dv ∆−αv I , g (u, v) = u v2 .

Rewrite Gray–Scott equations as system of evolution equations{
u′(t ) = Au u(t )+αu − g

(
u(t ), v(t )

)
,

v ′(t ) = Av v(t )+ g
(
u(t ), v(t )

)
.

Remark. With regard to specification and analysis of time-adaptive high-order operator
splitting methods, employ compact reformulation

U ′(t ) = F
(
U (t )

)= AU U (t )+G
(
U (t )

)
,

U (t ) =
(
u(t )
v(t )

)
, AU =

(
Au 0
0 Av

)
, G

(
U (t )

)= (
αu − g

(
u(t ), v(t )

)
g
(
u(t ), v(t )

) )
.
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Stochastic Gray–Scott equations

Stochastic Gray–Scott equations. Focus on study of initial value problem
for stochastic Gray–Scott equations driven by independent spatially
time-homogeneous Wiener processes (multiplicative noise, Itô integral)

du(t ) =
(

Au u(t )+αu − g
(
u(t ), v(t )

))
dt +σu u(t ) dWu(t ) ,

dv(t ) =
(

Av v(t )+ g
(
u(t ), v(t )

))
dt +σv v(t ) dWv (t ) ,

u(0) = u0 , v(0) = v0 , t ∈ (0,T ) .

Remark. With regard to specification of Lie–Trotter splitting method, consider compact
reformulation{

dU (t ) =
(

AU U (t )+G
(
U (t )

))
dt +Σ(

U (t )
)

dWU (t ) , t ∈ (0,T ) ,

U (0) =U0 .
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Objective

Objective. Provide theoretical study of stochastic Gray–Scott equations,
that is, under suitable regularity requirements on independent spatially
time-homogeneous Wiener processes (Wu ,Wv ) and certain regularity as
well as positivity assumptions on initial states (u0, v0), prove existence,
uniqueness, regularity as well as positivity of solution processes (u, v).
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Space domains

Space domains. With regard to modelling of pattern formation, natural
to study simple geometries and to impose homogeneous Neumann or
periodic boundary conditions. Use that focus on space domains of form

I = [−a1, a1]×·· ·× [−ad , ad ] ⊂Rd , d ∈ {1,2,3} ,

permits explicit characterisations and calculations.

Representation of space-dependent functions by Fourier series.

Eigenvalue decomposition associated with Laplace operator
(diffusion terms, fractional Gaussian fields).

Numerical simulation. Numerical simulation based on operator splitting methods benefits
from straightforward implementation of components.
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Wiener processes – Approach

Approach. Study class of Wiener processes with values in space of
tempered distributions (on unbounded space domain)

W :Ω× [0,T ] −→S ′(Rd ,R
)

.

Employ construction that permits interpretation as Wiener processes with
values in certain Hilbert spaces

W :Ω× [0,T ] −→H .

Reference. PESZAT, ZABCZYK. Stochastic evolution equations with a spatially homogeneous
Wiener process (1997).

Specification. Focus on fractional Gaussian fields, use characterisation
by fractional Laplacian as well as fractional Sobolev spaces, and restrict
Euclidean space to cartesian product of bounded intervals

W :Ω× [0,T ] −→ Hγ(I ,R) , I = [−a1, a1]×·· ·× [−ad , ad ] ⊂Rd .
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Wiener processes – Underlying spaces

Underlying probability space. Consider complete probability space with associated
filtration satisfying standard assumptions(

Ω,A ,
(
A (t )

)
t∈[0,T ],µΩ

)
.

Schwartz functions. Employ standard notation for space of Schwartz functions (Euclidean
domain, complex-valued functions)

S
(
Rd ,C

)= {
φ ∈C∞(

Rd ,C
)

: sup
x∈Rd

|xα ∂βxφ(x)| <∞ for all α,β ∈Nd
≥0

}
.

Convolution of Schwartz functions yields Schwartz function

∗ : S
(
Rd ,C

)×S
(
Rd ,C

)−→S
(
Rd ,C

)
: (φ1,φ2) 7−→

[
x 7→ (

φ1∗φ2
)
(x) =

∫
Rd

φ1(x−ξ)φ2(ξ) dξ
]

.

Fourier transform restricted to space of Schwartz functions defines bijection

F : S
(
Rd ,C

)−→S
(
Rd ,C

)
:φ 7−→

[
x 7→ (2π)−

d
2

∫
Rd

φ(ξ)e− iξ·x dξ
]

,

F−1 : S
(
Rd ,C

)−→S
(
Rd ,C

)
:φ 7−→

[
x 7→ (2π)−

d
2

∫
Rd

φ(ξ)eiξ·x dξ
]

,(
F−1 ◦F

)
(φ) =φ= (

F ◦F−1)
(φ) , φ ∈S

(
Rd ,C

)
.
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Wiener processes – Underlying spaces

Tempered distributions. Consider space of tempered distributions (dual pairing)

〈Φ|φ〉 =Φ(φ) , Φ ∈S ′(Rd ,C
)

, φ ∈S
(
Rd ,C

)
.

As usual, extend convolution and Fourier transform from space of Schwartz functions to
space of tempered distributions

∗ : S ′(Rd ,C
)×S

(
Rd ,C

)−→S ′(Rd ,C
)

,

F : S ′(Rd ,C
)−→S ′(Rd ,C

)
, F−1 : S ′(Rd ,C

)−→S ′(Rd ,C
)

,

through application of adjoint operators

〈Φ∗φ1|φ2〉 = 〈Φ|(φ1 ◦R)∗φ2〉 , R :Rd −→Rd : x 7−→−x ,

〈F (Φ)|φ〉 = 〈Φ|F (φ)〉 , 〈F−1(Φ)|φ〉 = 〈Φ|F−1(φ)〉 ,

Φ ∈S ′(Rd ,C
)

, φ,φ1,φ2 ∈S
(
Rd ,C

)
.
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Wiener processes – Characterisations

Characterisations. Study class of Wiener processes over underlying probablility space with
values in space of tempered distributions

W :Ω× [0,T ] −→S ′(Rd ,R
)

,

that is, dual pairing with Schwartz functions defines one-dimensional Wiener processes

wφ :Ω× [0,T ] −→R : (ω, t ) 7−→ 〈W (ω, t )|φ〉 , φ ∈S
(
Rd ,R

)
.

Make use of fact that spectral densities with associated spectral measures, kernels, and
covariance operators characterise considered spatially time-homogeneous Wiener processes

%Γ :Rd −→R , µΓ : B
(
Rd )−→R : B 7−→

∫
B
%Γ(x) dx ,

Γ=F (%Γ) ∈S ′(Rd ,R
)

, Q : S
(
Rd ,R

)×S
(
Rd ,R

)−→R ,

E〈W (t1)|φ1〉〈W (t2)|φ2〉 = t1 〈Γ∗φ1|φ2〉 = t1 Q(φ1,φ2) , 0 ≤ t1 ≤ t2 ≤ T .

Construction. Determine completion of space of Schwartz functions with respect to norm
defined by covariance operator, and consider associated dual space. Interpret stochastic
process as cylindrical Wiener process on Hilbert space

W :Ω× [0,T ] −→H =S ′
Q ,

and apply classical stochastic integration.
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Wiener processes – Stochastic integration

Stochastic integration. Use that for stochastic processes (Y (t ))t∈[0,T ] defining
Hilbert–Schmidt operators between Hilbert spaces

Y :Ω× [0,T ] −→ LHS(H ,K ) , E‖Y ‖2
L2([0,T ],LHS(H ,K )) <∞ ,

stochastic integrals given as limits of infinite series in L2(Ω,K )

J :Ω× [0,T ] −→K : (ω, t ) 7−→
∫ t

0
Y (ω, s) dW (ω, s) ,

ONS (hm )m∈Nd ,
∑

m∈Nd

∫ t

0
Y (ω, s)hm d

(
W (ω, s)|hm

)
H ,

lead to well-defined continuous square-integrable martingales.

Fundamental results. Employ Itô formula and Burkholder–Davis–Gundy inequality

E sup
t∈[0,T ]

‖J (t )‖p
K

≤Cp E‖Y ‖p
L2([0,T ],LHS(H ,K )) , p ∈ [1,∞) .
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Wiener processes – Specifications

Specifications. Focus on fractional Gaussian fields with covariance operators related to
inner product of fractional Sobolev spaces and hence to fractional Laplace operators
(exponent γ≥ 0, weights α,D > 0)

Q : S
(
Rd ,R

)×S
(
Rd ,R

)−→R ,

Q(φ1,φ2) = (
φ1|φ2

)
H−γ(Rd ,R) =

(
(α−D∆)−γφ1|φ2

)
L2(Rd ,R) ,

φ1,φ2 ∈S
(
Rd ,R

)⊂ H−γ(Rd ,R) .

Use that completion of space of Schwartz functions with respect to norm defined by
covariance operator coincides with fractional Sobolev space

√
Q(φ,φ) = ‖φ‖H−γ(Rd ,R) = ‖(α−D∆)−

γ
2 φ‖L2(Rd ,R) ,

SQ = H−γ(
Rd ,R

)
,

and that fundamental space employed in construction of Wiener processes with values in
Hilbert spaces given by dual space

W :Ω× [0,T ] −→H =S ′
Q = Hγ(

Rd ,R
)

.
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Wiener processes – Explicit representations

Explicit representations. Use that focus on bounded space domains of simple structure

I = [−a1, a1]×·· ·× [−ad , ad ] ⊂Rd , d ∈ {1,2,3} ,

permits explicit representations.

Complex-valued Fourier functions form complete orthonormal system in Lebesgue
space L2(I ,R) and satisfy eigenvalue relation

d = 1, I = [−a, a] , ψ(C)
m : I −→C : x −→ 1p

2a
e iπ m

a (x+a) ,

∂xx ψ
(C)
m =λm ψ(C)

m , λm =− π2

a2 m2 , m ∈Z .

Scaled real-valued Fourier functions yield complete orthonormal systems of
underlying fractional Sobolev spaces

Hγ(I ,R) = R

〈
ψ

(R,γ)
m ,m ∈Nd

〉
,

d = 1, ψ
(R,γ)
m = (α−Dλm )−

γ
2 ψ(R)

m , m ∈Z .
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Regularity requirements

Regularity requirements.

Presence of cubic nonlinearity in Gray–Scott equations explains
desired Sobolev regularity of solution processes and imposed
regularity requirement on initial states

(u0, v0) ∈W 1
4 (I ,R) .

Elementary integral criterium for infinite series explains regularity
requirement on Wiener processes

S(γ) = ∑
m∈Zd

(α−Dλm)−γ <∞ if γ> d
2 .

Space-dependent constraint on exponent ensures for instance that embedding
defines Hilbert–Schmidt operator

‖I‖2
LHS(Hγ(I ,R),L2(I ,R)) =

∑
m∈Zd

∥∥∥ψ(R,γ)
m

∥∥∥2

L2(I ,R)

= ∑
m∈Zd

∥∥∥(α−D∆)−
γ
2 ψ

(R,γ)
m

∥∥∥2

Hγ(I ,R)
= S(γ) <∞ .
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Main result

Main result (in essence). Assume that the prescribed initial states are
positive and satisfy the regularity requirement

u0, v0 ∈W 1
4 (I ,R) , u0, v0 ≥ 0.

Suppose further that the stochastic processes defining the Gray–Scott
equations are cylindrical Wiener processes on a Hilbert space that is
continuously embedded in the fractional Sobolev space

Hγ(I ,R) , γ> d
2 .

Then, there exists a uniquely determined pair of positive solution
processes to the stochastic Gray–Scott equations (a.s.)

u(t ), v(t ) ∈W 1
4 (I ,R) , u(t ), v(t ) ≥ 0, t ∈ [0,T ] .

Proof. Consequent use of standard means. ¦
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Sketch of proof

Existence. Fix positive integer number K >> 1. Construct twice continuously differentiable
and bounded modification of identity map

IK :R−→R : x 7−→


x if |x| < K ,

sign(x) (K +1) if |x| > K +1,

interpolant else.

Replace cubic nonlinearity g (u, v) = u v2 by Lipschitz-continous function

gK : L2(I ,R)×L2(I ,R) −→ L2(I ,R) : (u, v) 7−→
[

x 7→ IK
(
u(x)

)(
IK

(
v(x)

))2]
.

Use that existence of a uniquely determined pair of progressively measurable stochastic
processes satisfying resulting modification of stochastic Gray–Scott equations ensured
by DA PRATO, ZABCZYK (2014)

uK , vK :Ω−→C
(
[0,T ],L2(I ,R)

)∩L2
(
[0,T ], H1(I ,R)

)
,

duK (t ) =
(

Au uK (t )+αu − gK
(
uK (t ), vK (t )

))
dt +σu uK (t ) dWu (t ) ,

dvK (t ) =
(

Av vK (t )+ gK
(
uK (t ), vK (t )

))
dt +σv vK (t ) dWv (t ) ,

uK (0) given, vK (0) given, t ∈ (0,T ) .
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Sketch of proof

Positivity. Combine (more involved) arguments provided by TESSITORE, ZABCZYK (1998)
and in particular by KOTELENEZ (1992) to prove positivity of solution processes

µΩ

({
ω ∈Ω : |M(ω)| = 0

})= 1,

M(ω) = {
(x, t ) ∈ I × [0,∞) : uK (ω, x, t ) < 0 or vK (ω, x, t ) < 0

}
, ω ∈Ω .

Regularity. Derive a priori estimates in certain Sobolev spaces by means of basic results
such as Itô-formula, Burkholder–Davis–Gundy inequality, integration-by-parts, Hölder
inequality, Young inequality, Sobolev embeddings, and Gronwall inequality. In particular,
prove bound of form

E sup
t∈[0,T ]

‖uK (t )‖4
W 1

4 (I ,R)
+E sup

t∈[0,T ]
‖vK (t )‖4

W 1
4 (I ,R)

≤C .
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Numerical simulation
Operator splitting methods for deterministic equations

Suitable modification for stochastic equations
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Analysis and numerics go hand in hand

Analysis and numerics go hand in hand.

Theoretical analysis of stochastic Gray–Scott equations suggests use
of Fourier spectral method in numerical simulation.

Space discretisation based on suitable approximation in
underlying Sobolev space (truncation of infinite sum,
quadrature approximation by trapezoidal rule)

f = ∑
m∈M

fm Fm .

Realisation of fractional Gaussian fields by generation of
normally distributed numbers and application of inverse
Laplacian (eigenvalue decomposition)

(I −∆)−γ f = ∑
m∈Zd

fm (1−λm)−γFm .
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Considerations before implementation

Our considerations before we started with the implementation.

Reliable and efficient implementation of deterministic Gray–Scott
equations desirable as basis for stochastic case.

Implementation of Fourier spectral method based on fast Fourier
transform (FFT) in general outperforms other approaches.

Numerical comparison of FFT versus FEM space discretisations for nonlinear
Schrödinger equations in semi-classical regime, see THALHAMMER, ABHAU

(2012).

Special form of components suggests use of Fourier spectral method
and realisation by FFT.

Geometry (space domain given by cartesian product of intervals).

Boundary condition (periodic or homogeneous Neumann bc).

Diffusions term (space-time independent coefficients).

Stochastic noise (fractional Gaussian fields).

Choice of compatible time discretisation?
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Considerations before implementation

Our considerations before we started with the implementation.

Time discretisation by operator splitting methods complements
space discretisation based on Fourier spectral method (FFT).

Various works on deterministic nonlinear Schrödinger equations confirm
reliable and efficient behaviour of time-adaptive high-order splitting methods
combined with spectral space discretisations, see THALHAMMER (2012),
THALHAMMER, ABHAU (2012).

Superior performance of Fourier spectral method even though constrained to
uniform meshes compared to locally adaptive finite element method. Spectral
convergence rate and efficiency of FFT predominates.

Similar conclusions expected to hold for deterministic reaction-diffusion
equations with pattern formation (high resolution in space and time required).
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Deterministic versus stochastic case

Deterministic versus stochastic case.

Common approach

Operator splitting in combination with FFT

Fine uniform space grid to ensure high resolution (inital choice)

Deterministic case (regularity of problem data)

Enhance reliability and efficiency

Apply high-order splitting methods

Employ local error control in time

Stochastic case (low regularity of problem data)

Reduce computational effort and enhance reliability

Apply first-order splitting method

Prevent failure due to large realisations of Wiener processes by incoporating
possibility to decrease time stepsize accordingly.
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Operator splitting methods
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Operator splitting methods

Operator splitting methods. Consider nonlinear evolution equation and employ
decomposition of defining operator into two parts{

U ′(t ) = F
(
U (t )

)= F1
(
U (t )

)+F2
(
U (t )

)
, t ∈ (0,T ) ,

U (0) =U0 .

For each subinterval, defined by suitably chosen time stepsize τn > 0, apply specific
numerical solvers for solution of associated subproblems

V ′
1(t ) = F1

(
V1(t )

)
, V ′

2(t ) = F2
(
V2(t )

)
, t ∈ (tn , tn +τn ) .

Lie–Trotter splitting method. Specifically, for Lie–Trotter splitting
method, compose solutions to two subproblems to obtain first-order
approximation to exact solution value{

V ′
1(t ) = F1

(
V1(t )

)
, t ∈ (tn , tn +τn) ,

V1(tn) =Un ≈U (tn) ,

{
V ′

2(t ) = F2
(
V2(t )

)
, t ∈ (tn , tn +τn) ,

V2(tn) =V1(tn +τn) ,

Un+1 =V2(tn +τn) ≈U (tn +τn) .

Higher-order splitting methods and adaptivity. See TH. (2012), TH., ABHAU (2012), and
recent work with SERGIO BLANES, FERNANDO CASAS.
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Application

Application. Recall compact formulation of stochastic Gray–Scott
systems as abstract evolution equation.

dU (t ) =
(

AU U (t )+G
(
U (t )

))
dt +Σ(

U (t )
)

dWU (t ) , t ∈ (0,T ) .

In deterministic case, split into diffusion and reaction terms, and apply
time-adaptive high-order splitting methods

U ′(t ) = AU U (t ) , U ′(t ) =G
(
U (t )

)
, t ∈ (0,T ) .

In stochastic case, employ modification based on Lie–Trotter splitting and
variation-of-constants formula

dU (t ) = AU U (t ) dt +Σ(
U (t )

)
dWU (t ) , dU (t ) =G

(
U (t )

)
dt , t ∈ (0,T ) .
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Illustrations

Mechthild Thalhammer (Universität Innsbruck, Austria) Deterministic and stochastic Gray–Scott equations



Reaction-diffusion systems
Theoretical study

Numerical simulation

Operator splitting
Illustrations

Objective

Objective. Illustrate formation of patterns in deterministic case and
variation under influence of stochastic noise.
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Initial states

Prescribed initial states for deterministic and stochastic Gray–Scott equations.
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Deterministic Gray–Scott equations (First case)

Deterministic Gray–Scott equations with first choice of parameters (Du ,Dv ,αu ,αv ).
Components of numerical solution at different times. Movie available at

http://techmath.uibk.ac.at/mecht/MyHomepage/Research/StochasticGrayScottEquations/MovieMyCase1.mov
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Deterministic Gray–Scott equations (Second case)

Deterministic Gray–Scott equations with second choice of parameters (Du ,Dv ,αu ,αv ).
Components of numerical solution at different times. Movie available at

http://techmath.uibk.ac.at/mecht/MyHomepage/Research/StochasticGrayScottEquations/MovieMyCase2.mov
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Stochastic noise

Two realisations of stochastic noise and regularisations by powers of inverse Laplacian

(1−∆)−γ , γ ∈ { 1
2 ,2

}
.
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Stochastic Gray–Scott equations (First case)

Stochastic Gray–Scott equations with first choice of (Du ,Dv ,αu ,αv ) and different choices of
(σu ,σv ,γ). First component of numerical solution at different times. Movies available at

http://techmath.uibk.ac.at/mecht/MyHomepage/Research/StochasticGrayScottEquations/MovieMyCase11.mov
http://techmath.uibk.ac.at/mecht/MyHomepage/Research/StochasticGrayScottEquations/MovieMyCase111.mov
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Stochastic Gray–Scott equations (Second case)

Stochastic Gray–Scott equations with second choice of (Du ,Dv ,αu ,αv ) and different choices
of (σu ,σv ,γ). First component of numerical solution at different times. Movies available at

http://techmath.uibk.ac.at/mecht/MyHomepage/Research/StochasticGrayScottEquations/MovieMyCase21.mov
http://techmath.uibk.ac.at/mecht/MyHomepage/Research/StochasticGrayScottEquations/MovieMyCase211.mov
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Stochastic Gray–Scott equations (Third case)

Stochastic Gray–Scott equations with second choice of (Du ,Dv ,αu ,αv ) and different choices
of (σu ,σv ,γ). First component of numerical solution at different times. Movies available at

http://techmath.uibk.ac.at/mecht/MyHomepage/Research/StochasticGrayScottEquations/MovieMyCase22.mov
http://techmath.uibk.ac.at/mecht/MyHomepage/Research/StochasticGrayScottEquations/MovieMyCase221.mov
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Conclusions and future work

Summary.

Existence, uniqueness, and regularity result for stochastic Gray–Scott equations.

Efficient and reliable time integration of deterministic and stochastic Gray–Scott
equations by adaptive operator splitting methods and Fast Fourier techniques.

Relevant open questions.

Investigation of long-term dynamics.

Study of more involved models.

Numerical analysis.

Thank you!
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