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Focus in this talk

Splitting methods. Efficient time integration of nonlinear evolution
equations by operator splitting methods{

d
dt u(t ) = F

(
u(t )

)= A
(
u(t )

)+B
(
u(t )

)
, t ∈ (0,T ) ,

u(0) given,

un =SF (τn−1,un−1) =
s∏

j=1
eas+1− j τn−1DA ebs+1− j τn−1DB un−1

≈ u(tn) = EF
(
τn−1,u(tn−1)

)= eτn−1DF u(tn−1) , n ∈ {1, . . . , N } .

Applications.

Nonlinear parabolic equations

Nonlinear Schrödinger equations (GPS, MCTDHF)

Nonlinear wave equations with damping (Westervelt equation)
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Simulation of models from nonlinear acoustics

Nonlinear acoustics. Investigation of mathematical models for propagation of high
intensity ultrasound waves. Applications include

medical treatment like lithotripsy or thermotherapy and

industrial applications like ultrasound cleaning or welding and sonochemistry.

Simulations. Numerical simulations provide valuable tools for design and improvement of
high intensity ultrasound devices.

Challenges.

Mathematical models arising in nonlinear acoustics involve time-dependent
nonlinear partial differential equations.

Use of transient simulations within mathematical optimisation of high intensity
ultrasound devices still beyond scope of existing approaches.

Approach.

Operator splitting methods known to be efficient time integration
methods for other classes of nonlinear partial differential equations.

Motivates introduction and investigation of splitting methods for
classical model from nonlinear acoustics (Westervelt equation).
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Westervelt equation

Westervelt equation. Consider nonlinear wave equation with damping
for ψ :Ω× [0,T ] ⊂R3 ×R≥0 →R : (x, t ) 7→ψ(x, t ){

∂ttψ(x, t )−α∆∂tψ(x, t )−β∆ψ(x, t )

= γ∂t
(
∂tψ(x, t )

)2 = δ∂tψ(x, t )∂ttψ(x, t ) , (x, t ) ∈Ω× (0,T ) ,

involving constants α,β> 0 and δ= 2γ 6= 0.

Remarks.

In view of time integration by first- and second-order splitting methods, assume
that solution is sufficiently regular. In particular, suppose that spatial domain and
prescribed initial data are sufficiently regular.

Focus on relevant case of homogeneous Dirichlet boundary conditions.

First step. In regard to introduction and error analysis of operator splitting methods, rewrite
Westervelt equation as nonlinear evolution equation and define associated subproblems.
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Reformulation as first-order system

Westervelt equation. Recall Westervelt equation for ψ :Ω× [0,T ] →R

∂ttψ(x, t )−α∆∂tψ(x, t )−β∆ψ(x, t ) = δ∂tψ(x, t )∂ttψ(x, t ) .

Non-degeneracy. Regularity result ensures non-degeneracy of Westervelt equation for
initial state of sufficiently small norm

0 < 1−δ∂tψ(x, t ) <∞ .

Obtain equivalent formulation of non-degenerate Westervelt equation

∂ttψ(x, t ) =α(
1−δ∂tψ(x, t )

)−1
∆∂tψ(x, t )+β(

1−δ∂tψ(x, t )
)−1

∆ψ(x, t ) .

Reformulation as first-order system. Employ reformulation as
first-order system forΨ= (Ψ1,Ψ2) = (ψ,∂tψ) :Ω× [0,T ] →R2

{
∂tΨ1(x, t ) =Ψ2(x, t ) ,

∂tΨ2(x, t ) =α(
1−δΨ2(x, t )

)−1
∆Ψ2(x, t )+β(

1−δΨ2(x, t )
)−1
∆Ψ1(x, t ) .
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Reformulation as abstract evolution equation

Reformulation as first-order system. Employ reformulation of non-degenerate Westervelt
equation as first-order system forΨ= (Ψ1,Ψ2) = (ψ,∂tψ) :Ω× [0,T ] →R2

{
∂tΨ1(x, t ) =Ψ2(x, t ) ,

∂tΨ2(x, t ) =α(
1−δΨ2(x, t )

)−1
∆Ψ2(x, t )+β(

1−δΨ2(x, t )
)−1
∆Ψ1(x, t ) .

Reformulation as evolution equation. In regard to introduction and
error analysis of operator splitting methods rewrite non-degenerate
Westervelt equation as nonlinear evolution equation on Banach space
for u : [0,T ] → X : t 7→ u(t ) =Ψ(·, t )

d
dt u(t ) = F

(
u(t )

)
, t ∈ (0,T ) ,

F (v) =
(

v2

α
(
1−δv2

)−1
∆v2 +β

(
1−δv2

)−1
∆v1

)
, v = (v1, v2) ∈ D(F ) .

Remark. Domain of nonlinear operator F : D(F ) ⊂ X → X reflects regularity requirements
on solution and imposed boundary conditions.
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Associated subproblems (Decomposition I)

Abstract formulation. Employ compact formulation of Westervelt equation as nonlinear
evolution equation and define nonlinear operators A,B

d
dt u(t ) = F

(
u(t )

)= A
(
u(t )

)+B
(
u(t )

)
, t ∈ (0,T ) ,

A(v) =
(

v2

α
(
1−δv2

)−1
∆v2

)
, B(v) =

(
0

β
(
1−δv2

)−1
∆v1

)
.

Subproblem (Nonlinear diffusion equation). Resolution of subproblem associated with A{
∂tΨ1(x, t ) =Ψ2(x, t ) ,

∂tΨ2(x, t ) =α(
1−δΨ2(x, t )

)−1
∆Ψ2(x, t ) ,

amounts to solution of nonlinear diffusion equation for second componentΨ2 = ∂tψ

∂tΨ2(x, t ) =α(
1−δΨ2(x, t )

)−1
∆Ψ2(x, t ) .

First componentΨ1 =ψ then retained by (pointwise) integration

Ψ1(x, t ) =Ψ1(x,0)+
∫ t

0
Ψ2(x,τ) dτ .
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Associated subproblems (Decomposition I)

Abstract formulation. Employ compact formulation of Westervelt equation as nonlinear
evolution equation and define nonlinear operators A,B

d
dt u(t ) = F

(
u(t )

)= A
(
u(t )

)+B
(
u(t )

)
, t ∈ (0,T ) ,

A(v) =
(

v2

α
(
1−δv2

)−1
∆v2

)
, B(v) =

(
0

β
(
1−δv2

)−1
∆v1

)
.

Subproblem (Explicit representation). For subproblem associated with B{
∂tΨ1(x, t ) = 0,

∂tΨ2(x, t ) =β(
1−δΨ2(x, t )

)−1
∆Ψ1(x, t ) ,

first component remains constant on considered time interval

Ψ1(x, t ) =Ψ1(x,0) .

Consequently, second component is (pointwise) solution to ODE with explicit representation

∂tΨ2(x, t ) =β(
1−δΨ2(x, t )

)−1
∆Ψ1(x,0) ,

Ψ2(x, t ) = 1
δ

(
1−

√(
1−δΨ2(x,0)

)2 −2βδ t∆Ψ1(x,0)
)

.

Suitable choice of time increment t > 0 ensures (1−δΨ2(x,0))2 −2βδ t∆Ψ1(x,0) > 0 and
henceΨ2(x, t ) ∈R.
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Operator splitting methods for Westervelt equation
Stability and error analysis for Lie–Trotter splitting method
Illustrations (Global error)

Operator splitting methods for
Westervelt equation
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Operator splitting methods for Westervelt equation
Stability and error analysis for Lie–Trotter splitting method
Illustrations (Global error)

Exponential operator splitting methods

Time-stepping approach. Time integration of nonlinear evolution equation on Banach
space (X ,‖ ·‖X )

d
dt u(t ) = F

(
u(t )

)= A
(
u(t )

)+B
(
u(t )

)
, t ∈ (0,T ) , u(0) given.

Approximations at time grid points 0 = t0 < ·· · < tN ≤ T with increments τn−1 = tn − tn−1
are given by recurrence

un =SF (τn−1,un−1) ≈ u(tn ) = EF
(
τn−1,u(tn−1)

)= eτn−1DF u(tn−1) , n ∈ {1, . . . , N } .

Splitting methods. Operator splitting methods rely on suitable decomposition of
right-hand side and presumption that associated subproblems solvable in accurate and
efficient manner

d
dt v(t ) = A

(
v(t )

)
, v(t ) = etDA v(0) , t ∈ (0,T ) ,

d
dt w(t ) = B

(
w(t )

)
, w(t ) = etDB w(0) , t ∈ (0,T ) .
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Operator splitting methods for Westervelt equation
Stability and error analysis for Lie–Trotter splitting method
Illustrations (Global error)

Splitting methods for Westervelt equation

Splitting methods for Westervelt equation. Recall abstract formulation for Westervelt
equation (Decomposition I)

d
dt u(t ) = F

(
u(t )

)= A
(
u(t )

)+B
(
u(t )

)
, t ∈ (0,T ) ,

A(v) =
(

v2

α
(
1−δv2

)−1
∆v2

)
, B(v) =

(
0

β
(
1−δv2

)−1
∆v1

)
.

Solution of subproblem associated with A requires resolution of nonlinear diffusion
equation and (pointwise) integration. Explicit (pointwise) representation available for
solution to subproblem associated with B .

Lower-order splitting methods. First-order Lie–Trotter splitting method

SF (t , ·) = etDB etDA .

Second-order Strang splitting method

SF (t , ·) = e
1
2 tDA etDB e

1
2 tDA .
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Operator splitting methods for Westervelt equation
Stability and error analysis for Lie–Trotter splitting method
Illustrations (Global error)

Stability and error analysis
of Lie–Trotter splitting method
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Operator splitting methods for Westervelt equation
Stability and error analysis for Lie–Trotter splitting method
Illustrations (Global error)

Main result (Lie–Trotter splitting)

Convergence result. Employ basic regularity assumption on initial state and additional
compatibility conditions

u(0) = (
ψ(·,0),∂tψ(·,0)

) ∈ H6(Ω)×H5(Ω) ,

‖u(0)‖H6×H5 = ‖ψ(·,0)‖H6 +‖∂tψ(·,0)‖H5 ≤C0 .

Apply auxiliary result that ensures regularity and boundedness of solution

u(t ) ∈ H6(Ω)×H5(Ω) , ‖u(t )‖H6×H5 ≤C , t ∈ [0,T ] .

Obtain global error estimate for Lie–Trotter splitting method applied to Westervelt equation.

Theorem (Lie–Trotter splitting method, Decomposition I)

Assume that initial state fulfills above requirements and that intial approximation u0 remains
bounded in H5(Ω)×H3(Ω). Then, Lie–Trotter splitting method applied to Westervelt equation
satisfies global error estimate

‖uN −u(tN )‖H3×H1 ≤C
(
‖u0 −u(0)‖H3×H1 +τ

)
, tN = Nτ ∈ [0,T ] ,

with constant depending on bounds for ‖u‖C ([0,tN ],H6×H5), ‖u0‖H5×H3 , and final time tN .

Remark. Straightforward extension to variable time stepsizes.
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Operator splitting methods for Westervelt equation
Stability and error analysis for Lie–Trotter splitting method
Illustrations (Global error)

Illustration (Global error)

Situation.

Consider Westervelt equation in single space dimension (facilitates computations)

a = 8, α= 1, β= 1, γ= 1
2 , δ= 2γ= 1,

∂ttψ(x, t )−α∂xxtψ(x, t )−β∂xxψ(x, t ) = δ∂tψ(x, t )∂ttψ(x, t ) ,

ψ(x,0) = e−x2
, ∂tψ(x,0) =−x e−x2

, (x, t ) ∈ [−a, a]× [0,T ] ,

and impose homogeneous Dirichlet boundary conditions. Note that for chosen data
solution to Westervelt equation is regular.

Chose spatial grid width sufficiently fine such that global error dominated by time
discretisation error (M = 100).

Compare accuracy of Lie–Trotter and Strang splitting methods. For numerical
solution of parabolic subproblem apply explicit and implicit time integrators of same
order as underlying splitting method, i.e. combine Lie–Trotter splitting method with
explicit and implicit Euler methods and Strang splitting method with second-order
explicit Runge–Kutta method and Crank–Nicolson scheme. Note that use of explicit
solvers requires sufficiently small time increments to avoid instabilities.

Display local and global errors at time T = 1.
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Operator splitting methods for Westervelt equation
Stability and error analysis for Lie–Trotter splitting method
Illustrations (Global error)

Illustration (Local and global errors)

Numerical results (H3 ×H1-norm). Time integration of Westervelt equation by Lie–Trotter
and Strang splitting methods (Decomposition I). Comparison of different methods for
numerical solution of subproblems. Computation of local (left) and global (right) errors with
respect to H3 ×H1-norm. Nonstiff orders retained in accordance with convergence result.

Remark. Consider different ranges of time stepsizes for local error (include larger time
stepsizes to study stability behaviour) and global error (include smaller time stepsizes to
study attainable accuracy).
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Conclusions and future work

Summary.

Efficient time integration of Westervelt equation by operator splitting methods.

Rigorous stability and error analysis for Lie–Trotter splitting method.

Relevant questions.

Study of more involved models arising in nonlinear acoustics.

Convergence of general model to reduced models such as Kuznetsov and Westervelt
equations.

Application of higher-order splitting methods (complex coefficients).

Reliable and efficient time integration based on adaptive time stepsize control.

Thank you!
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