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Guide line

Aim. Study exponential time integration methods of Magnus-type for
different classes of evolution equations with explicit time-dependency.

♦ Identify benefits or possible limitations.

♦ Provide rigorous stability and error analysis.

♦ Improve existing methods and design novel methods.

Approach. From less involved case of linear evolution equations to more
complex case of nonlinear evolution equations.

♦ Commutator-free quasi-Magnus (CFQM) exponential integrators for
non-autonomous linear evolution equations of Schrödinger and
parabolic type
Appropriate name thanks to Arieh Iserles

♦ CFQM exponential integrators combined with operator splitting
methods for non-autonomous nonlinear evolution equations of
Schrödinger type
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Focus

Focus in this talk. Joint work with SERGIO BLANES and FERNANDO CASAS.

SERGIO BLANES, FERNANDO CASAS, M. TH.
Convergence analysis of high-order commutator-free quasi-Magnus exponential integrators
for non-autonomous linear evolution equations of parabolic type.
IMA J. Numer. Anal. (2017).

SERGIO BLANES, FERNANDO CASAS, M. TH.
High-order commutator-free quasi-Magnus exponential integrators and related methods for
non-autonomous linear evolution equations.
Comp. Physics Commun. (2017).

SERGIO BLANES, FERNANDO CASAS, CESÁREO GONZÁLEZ, M. TH.
Convergence analysis of high-order commutator-free quasi-Magnus exponential integrators
for non-autonomous linear Schrödinger equations.
Submitted (2018).

PHILIPP BADER, SERGIO BLANES, FERNANDO CASAS, M. TH.
Efficient time integration methods for Gross–Pitaevskii equations with rotation term.
Submitted (2019).

Related work. Design and analysis of local error estimators for adaptive
time stepsize control. With W. AUZINGER, H. HOFSTÄTTER, O. KOCH.
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CFQM exponential integrators
for non-autonomous

linear evolution equations
Magnus-type exponential integrators

Convergence analysis
Design of novel schemes

Schrödinger versus parabolic equations
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Areas of application

Areas of application.

♦ Quantum systems
Models for oxide solar cells (with W. AUZINGER, K. HELD, H. HOFSTÄTTER, O. KOCH)

Linear evolution equations of Schrödinger type
Linear Schrödinger equations involving space-time-dependent potentials

♦ Dissipative quantum systems
Rosen–Zener models with dissipation

Linear evolution equations of parabolic type
Variational equations related to diffusion-advection-reaction equations

Common structure. Abstract formulation as non-autonomous linear
evolution equation helps to recognise common structure of complex
processes.
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Non-autonomous linear evolution equations

Non-autonomous evolution equations. Consider initial value problem
for non-autonomous linear evolution equation{

u′(t ) = A(t )u(t ) , t ∈ (t0,T ) ,

u(t0) given.

Exact solution not available (used only theoretically as ideal case).

Favourable numerical approximation
on the basis of less involved autonomous case?

Mechthild Thalhammer Exponential time integration methods of Magnus-type



CFQM exponential integrators for linear evolution equations
Extension to nonlinear evolution equations

Magnus-type exponential integrators
Convergence analysis
Design of novel schemes

Autonomous linear evolution equations

Autonomous evolution equations. Consider initial value problem for
autonomous linear evolution equation{

w ′(t ) = A w(t ) , t ∈ (t0,T ) ,

w(t0) given.

Exact solution (formally) given by exponential

w(t ) = e(t−t0)A w(t0) , t ∈ [t0,T ] .

Numerical realisation. Efficient numerical approximation of exponential
possibly difficult task!
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Numerical realisation of exponential

Matrix exponential. Recall straightforward definition of matrix
exponential by infinite series

A ∈Rd×d , et A =
∞∑

k=0

1
k ! t k Ak , t ∈R .

But! Considered systems of ordinary differential equations, e.g. obtained
by spatial semi-discretisations of partial differential equations, involve
matrix of high dimension d >> 1. Numerical realisation of exponential
possibly demanding task. Standard approaches rely on series expansions
and Krylov-type methods.

C. MOLER, C. VAN LOAN. Nineteen dubious ways to compute the exponential of
a matrix, twenty-five years later. SIAM review 1/45 (2003) 3–49.

Alternative approach. For Schrödinger equations with principal part
given by Laplacian, use splitting methods and fast Fourier transform.
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Magnus-type exponential integrators
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Magnus expansion

Commutator. Recall short notation for commutator of linear operators[
A,B

]= A B −B A .

Magnus expansion (Magnus, 1954). Consider non-autonomous linear
evolution equation on subinterval

u′(t ) = A(t )u(t ) , t ∈ (tn , tn +τn) , t0 ≤ tn < tn +τn ≤ T .

Formal representation of solution based on Magnus expansion

u(tn +τn) = eΩ(τn ,tn ) u(tn) ,

Ω(τn , tn) =
∫ tn+τn

tn

A(σ) dσ

+ 1
2

∫ tn+τn

tn

∫ σ1

tn

[
A(σ1), A(σ2)

]
dσ2 dσ1

+ 1
6

∫ tn+τn

tn

∫ σ1

tn

∫ σ2

tn

([
A(σ1),

[
A(σ2), A(σ3)

]]
+ [

A(σ3),
[

A(σ2), A(σ1)
]])

dσ3 dσ2 dσ1 + . . .
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Magnus integrators

Magnus integrators. Truncation of Magnus expansion

Ω(τn , tn) =
∫ tn+τn

tn

A(σ) dσ+ 1
2

∫ tn+τn

tn

∫ σ1

tn

[
A(σ1), A(σ2)

]
dσ2 dσ1 + . . .

and application of quadrature formulae for approximation of multiple
integrals leads to class of Magnus integrators.

♦ Second-order Magnus integrator (exponential midpoint rule)

τn A
(
tn + τn

2

) ≈ Ω(τn , tn) .

♦ Fourth-order Magnus integrator, see BLANES, CASAS, ROS (2000)

1
6 τn

(
A(tn)+4 A

(
tn + τn

2

)+ A(tn +τn)
)

− 1
12 τ

2
n

[
A(tn), A(tn +τn)

] ≈ Ω(τn , tn) .

Issue. In context of large-scale problems, presence of (iterated)
commutators disadvantageous.
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Magnus-type integrators

Disadvantages. Presence of iterated commutators causes

♦ loss of structure (issues of well-definedness and stability for
PDEs involving differential operators).

♦ large computational cost (for realisation of action of arising
matrix-exponentials on vectors by Krylov-type methods, e.g.).

Alternative. Commutator-free quasi-Magnus exponential integrators
provide useful alternative to interpolatory Magnus integrators.

A. ALVERMANN, H. FEHSKE, P. B. LITTLEWOOD.
Numerical time propagation of quantum systems in radiation fields.
New Journal of Physics 14 (2012) 105008.

... We explain the use of commutator-free exponential time propagators for the
numerical solution of the associated Schrödinger or master equations with a
time-dependent Hamilton operator. These time propagators are based on the
Magnus series but avoid the computation of commutators, which makes them
suitable for the efficient propagation of systems with a large number of degrees of
freedom. ...
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CFQM exponential integrators

Situation. Consider non-autonomous linear evolution equation{
u′(t ) = A(t )u(t ) , t ∈ (t0,T ) ,

u(t0) given.

General format. Determine numerical approximations at certain time
grid points t0 < t1 < ·· · < tN ≤ T by recurrence

un+1 =S (τn , tn)un ≈ u(tn+1) = E (τn , tn)u(tn) ,

τn = tn+1 − tn , n ∈ {0,1, . . . , N −1} .

Cast high-order commutator-free quasi-Magnus (CFQM) exponential
integrators into general form

S (τn , tn) = eτn Bn J · · · eτn Bn1 ,

Bnj =
K∑

k=1
ajk Ank , Ank = A(tn + ckτn) .
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Advantages and numerical realisation

Comparison. CFQM exponential integrators generalise exponential
operator splitting methods defined by coefficients (α`,β`)s

`=1 (freeze time

by adding differential equation d
dt t = 1)

un+1 = eτnαs Ans · · · eτnα1 An1 un , Ank = A(tn + ckτn) , ck =
k∑
`=1

β` ,

with the merit of a significantly reduced number of exponentials for
higher-order schemes, which enhances efficiency.

Numerical realisation.

♦ Action of arising matrix-exponentials on vectors commonly
computed by Krylov-type methods. Computational effort determined
by cost for matrix-vector products.

♦ In context of certain classes of linear Schrödinger equations involving
Laplace operator, favourable approach relies on use of fast Fourier
transform and its inverse.
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Example (Nonstiff orders p = 2,4)

Order 2 (Exponential midpoint rule). Magnus / CFQM exponential
integrator based on single Gaussian quadrature node involves single
exponential at each time step

p = 2, J = 1 = K , c1 = 1
2 , a11 = 1, An1 = A

(
tn + τn

2

)
,

S (τn , tn) = eτn A(tn+ 1
2 τn ) .

Order 4. Fourth-order CFQM exponential integrator based on two
Gaussian quadrature nodes requires evaluation of two exponentials

p = 4, J = 2 = K , ck = 1
2 ∓

p
3

6 , a1k = 1
4 ±

p
3

6 ,

S (τn , tn) = eτn (a12 An1+a11 An2) eτn (a11 An1+a12 An2) .

Scheme suitable for evolution equations of Schrödinger type and of
parabolic type, since

b1 = a11 +a12 = 1
2 = a21 +a22 = b2 .
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Examples (Nonstiff order p = 6)

Order 6. Sixth-order CFQM exponential integrator obtained from
coefficients given in ALVERMANN, FEHSKE. Scheme suitable for evolution
equations of Schrödinger type, but poor stability behaviour observed for
evolution equations of parabolic type, since

∃ j ∈ {1, . . . , J } : bj =
K∑

k=1
ajk < 0.

Higher-order schemes.

♦ With regard to efficiency desirable to use higher-order schemes
(in context of partial differential equations, typically p ∈ {4,5,6}).

♦ Secret of success lies in suitable and smart choice of arising
coefficients.
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First illustration (Parabolic equation)

Practice in numerical methods is the only way of learning it. H. Jeffreys, B. Jeffreys

Test equation. Consider nonlinear diffusion-advection-reaction equation

∂tU (x, t ) = f2
(
U (x, t )

)
∂xxU (x, t )+ f1

(
U (x, t )

)
∂xU (x, t )+ f0

(
U (x, t )

)+g (x, t ) .

Associated variational equation has form of non-autonomous linear
evolution equation

∂t u(x, t ) =α2(x, t )∂xx u(x, t )+α1(x, t )∂x u(x, t )+α0(x, t )u(x, t ) .

Impose periodic boundary conditions and regular initial condition.
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First illustration (Parabolic equation)

Test equation. Consider non-autonomous linear evolution equation

∂t u(x, t ) =α2(x, t )∂xx u(x, t )+α1(x, t )∂x u(x, t )+α0(x, t )u(x, t ) .

Impose periodic boundary conditions and regular initial condition.

Special choice. In particular, set

(x, t ) ∈Ω× [0,T ] , Ω= [0,1] , T = 1,

U (x, t ) = e− t sin(2πx) , u(x,0) = (
sin(2πx)

)2 ,

f2(w) = 1
10

(
cos(w)+ 11

10

)
, f1(w) = 1

10 w ,

f0(w) = w
(
w − 1

2

)
,

α2(x, t ) = f2
(
U (x, t )

)
, α1(x, t ) = f1

(
U (x, t )

)
,

α0(x, t ) = f ′2
(
U (x, t )

)
∂xxU (x, t )

+ f ′1
(
U (x, t )

)
∂xU (x, t )+ f ′0

(
U (x, t )

)
.
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First illustration (Parabolic equation, Global errors)

One must watch the convergence of a numerical code as carefully as a father watching his four
year old play near a busy road. J. P. Boyd

Numerical experiment. Apply CFQM exponential integrators of nonstiff
orders p = 2,4,6 to parabolic test equation (see before). Display global
errors versus time stepsizes for M = 50 (left) and M = 100 (right) space
grid points. Sixth-order scheme shows poor stability behaviour.
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First conclusions

Observations and first conclusions.

♦ Order barrier at order four, i.e. CFQM exponential integrators of
order five or higher necessarily involve negative coefficients which
cause integration backward in time (ill-posed problem).

♦ Close connexion to class of time-splitting methods gives reasons
for the study of unconventional CFQM exponential integrators
involving complex coefficients under additional positivity condition.

Our starting point for a series of works ...
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Complete the big picture ...

♦ Stability and error analysis of CFQM exponential integrators for
parabolic evolution equations and for Schrödinger equations with
time-dependent Hamiltonian of form A(t ) = i∆+ iV (t )

SERGIO BLANES, FERNANDO CASAS, M. TH.
Convergence analysis of high-order commutator-free quasi-Magnus
exponential integrators for non-autonomous linear evolution equations of
parabolic type.
IMA J. Numer. Anal. (2017).

SERGIO BLANES, FERNANDO CASAS, CESÁREO GONZÁLEZ, M. TH.
Convergence analysis of high-order commutator-free quasi-Magnus
exponential integrators for non-autonomous linear Schrödinger equations.
Submitted (2018).

♦ Design of efficient schemes

SERGIO BLANES, FERNANDO CASAS, M. TH.
High-order commutator-free quasi-Magnus exponential integrators and
related methods for non-autonomous linear evolution equations.
Comp. Physics Commun. (2017).
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Convergence analysis
Schrödinger equations

Parabolic equations
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Analytical framework

Analytical framework. Suitable functional analytical framework for evolution equations of
Schrödinger or parabolic type based on

♦ selfadjoint operators and unitary evolution operators on Hilbert spaces or

♦ sectorial operators and analytic semigroups on Banach spaces.

Hypotheses (Parabolic case). Domain of A(t ) : D ⊂ X → X time-independent, dense and
continuously embedded. Linear operator A(t ) : D ⊂ X → X sectorial, uniformly in t ∈ [t0,T ],
i.e., there exist a ∈R, 0 <φ< π

2 , C1 > 0 such that

‖(λI − A(t ))−1‖X←X ≤ C1

|λ−a| , t ∈ [t0,T ] , λ 6∈ Sφ(a) = {a}∪{
µ ∈C : |arg(a −µ)| ≤φ}

.

Graph norm of A(t ) and norm in D equivalent for t ∈ [t0,T ], i.e., there exists C2 > 0 such that

C−1
2 ‖x‖D ≤ ‖x‖X +‖A(t ) x‖X ≤C2‖x‖D , t ∈ [t0,T ] , x ∈ D .

Defining operator family is Hölder-continuous for some exponent ϑ ∈ (0,1], i.e., there exists
C3 > 0 such that

‖A(t )− A(s)‖X←D ≤C3 |t − s|ϑ , s, t ∈ [t0,T ] .

Consequence. Sectorial operator A(t ) generates analytic semigroup
(
eσA(t ))

σ∈[0,∞) on X .
By integral formula of Cauchy, representation follows

eσA(t ) = 1
2πi

∫
Γ

eλ
(
λI −σA(t )

)−1 dλ , σ> 0, eσA(t ) = I , σ= 0.
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Basic assumptions on methods

CFQM exponential integrators. High-order CFQM exponential integrators cast into form

S (τn , tn ) = eτn Bn J · · · eτn Bn1 , Bnj =
K∑

k=1
ajk Ank , Ank = A(tn + ckτn ) .

Employ standard assumption that ratios of subsequent time stepsizes remain bounded

%min ≤ τn+1
τn

≤ %max , n ∈ {0,1, . . . , N −2} .

Nodes and coefficients. Relate nodes to quadrature nodes and suppose

0 ≤ c1 < ·· · < cK ≤ 1.

Assume basic consistency condition to be satisfied (direct consequence of elementary
requirement S (τn , tn ) = eτn A for time-independent operator A)

J∑
j=1

b j = 1, bj =
K∑

k=1
ajk , j ∈ {1, . . . , J } .

In connection with evolution equations of parabolic type employ positivity condition, which
ensures well-definededness of CFQM exponential integrators within analytical framework of
sectorial operators and analytic semigroups

ℜbj > 0, j ∈ {1, . . . , J } .
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Convergence result

Situation.

♦ Employ standard hypotheses on operator family defining non-autonomous linear
evolution equation of parabolic or Schrödinger type. See paper (parabolic case) and
preprint (Schrödinger case, special structure).

♦ Use that coefficients of considered high-order CFQM exponential integrators
fulfill basic assumptions (positivity condition for parabolic case) and order conditions.

Theorem

Provided that operator family and exact solution are sufficiently regular,
following estimate holds in underlying Banach space with constant C > 0
independent of n and time increments∥∥un−u(tn)

∥∥
X ≤C

(∥∥u0−u(t0)
∥∥

X +τp
max

)
, 0 < τn ≤ τmax , n ∈ {0,1, . . . , N } .

Crucial point. Specify regularity and compatibility requirements on exact solution.

♦ Parabolic test equation with X =C (Ω,R): Obtain regularity requirement on solution
u(t ) ∈C 2p (Ω,R) for t ∈ [t0,T ].

♦ Schrödinger equation with A(t ) = i∆+ iV (t ): For X = L2(Ω,C) weaker assumption
∂

p
x u(t ) ∈ L2(Ω,C) for t ∈ [t0,T ] sufficient.
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Main tools of proof

Stability. Relate stability function of CFQM exponential integrator to analytic semigroup
(suitable choice of frozen time t )

∆n
n0

=
n∏

i=n0

Si (τi , ti )−e(tn+1−tn0 ) A(t ) , ‖es A(t )‖X←X + s ‖es A(t )‖D←X ≤C .

Employ telescopic identity, bounds for analytic semigroup, Hölder-continuity of defining
operator family, and Gronwall-type inequality to deduce desired stability bound

∥∥∥ n∏
i=n0

Si (τi , ti )
∥∥∥

X←X
≤C .

Local error. Repeated application of variation-of-constants formula yields suitable
representation which is starting point for further expansions

u(tn+1)−S (τn , tn )u(tn ) =
J∑

j=1

K∑
k=1

a j k

( J∏
i= j+1

eτn Bni (τn )
)∫ τn

0
e(τn−σ)Bn j (τn ) gn j k (σ) dσ ,

gn j k (σ) = (
A(tn +d j−1τn +b jσ)− A(tn + ckτn )

)
u(tn +d j−1τn +b jσ) .

Resulting local error representation involved for high-order schemes.
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Design of novel schemes
Numerical comparisons for dissipative quantum system
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Derivation of order conditions

Approach.

♦ Focus on design of efficient schemes of non-stiff orders p = 4,5 involving K = 3
Gaussian quadrature nodes. By time-symmetry of schemes achieve p = 6.

♦ Employ advantageous reformulation (suffices to study first time step, indicate
dependence on time stepsize τ> 0)

J∏
j=1

eτ(aj 1 A1(τ)+aj 2 A2(τ)+aj 3 A3(τ)) =
J∏

j=1
ex j 1α1(τ)+x j 2α2(τ)+x j 3α3(τ) +O

(
τp+1)

, αk (τ) =O
(
τk )

.

♦ Determine set of independent order conditions (obtain q = 10 conditions for p = 5,
use Lyndon multi-index (1,2) and corresponding word α1α2 etc.)

(1) : yJ =
J∑

`=1
x`1 = 1, (2) : zJ =

J∑
`=1

x`2 = 0, (3) :
J∑

j=1
x j 3 = 1

12 ,

(1,2) :
J∑

j=1
x j 2

(
x j 1 +2 y j−1

)=− 1
6 , (1,3) :

J∑
j=1

x j 3
(
x j 1 +2 y j−1

)= 1
12 , (2,3) :

J∑
j=1

x j 3
(
x j 2 +2 z j−1

)= 1
120 ,

(1,1,2) :
J∑

j=1
x j 2

(
x2

j 1 +3 y2
j−1 +3 x j 1 y j−1

)=− 1
4 , (1,1,3) :

J∑
j=1

x j 3
(
x2

j 1 +3 y2
j−1 +3 x j 1 y j−1

)= 1
10 ,

(1,2,2) :
J∑

j=1
x j 1

(
x2

j 2 −3 x j 2 z j +3 z2
j
)= 1

40 , (1,1,1,2) :
J∑

j=1
x j 2

(
x3

j 1 +4 y3
j−1 +6 x j 1 y2

j−1 +4 x2
j 1 y j−1

)= 3
10 .
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Design of novel schemes

Additional practical constraints.

♦ In certain cases, require time-symmetry to further reduce number of order conditions
(for p = 6 obtain q = 7 conditions (1), (3), (1,2), (2,3), (1,1,3), (1,2,2), (1,1,1,2))

Ψ[r ]
J (−τ) = (

Ψ[r ]
J (τ)

)−1 , xJ+1− j ,k = (−1)k+1x j k .

♦ In certain cases, express solutions to order conditions in terms of few coefficients and
minimise amount by which high-order conditions (e.g. at order seven) are not satisfied.

Favourable novel schemes. Illustrate favourable behaviour of resulting novel schemes for
dissipative quantum system (Rosen–Zener model).
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Dissipative quantum system

Rosen–Zener model with dissipation. For Rosen–Zener model with dissipation, associated
Schrödinger equation in normalised form reads

u′(t ) = A(t )u(t ) =− i H(t )u(t ) , t ∈ (t0,T ) ,

H(t ) = f1(t )σ1 ⊗ I + f2(t )σ2 ⊗R +δD ∈Cd×d , d = 2k ,

I = diag
(
1
) ∈Rk×k , R = tridiag

(
1,0,1

) ∈Rk×k , D =− idiag
(
12,22, . . . ,d2) ∈Cd×d .

Notation and special choice. Recall definitions of Pauli matrices and Kronecker product

σ1 =
(
0 1
1 0

)
, σ2 =

(
0 − i
i 0

)
, σ1 ⊗ I =

(
0 I
I 0

)
, σ2 ⊗R =

(
0 − iR

iR 0

)
.

Special choice of arising functions and parameters

d = 10, T0 = 1, t0 =−4T0 , T = 4T0 , V0 = 1
2 , ω= 5, δ= 10−1 ,

f1(t ) =V0 cos(ωt )
(

cosh
( t

T

))−1 , f2(t ) =−V0 sin(ωt )
(

cosh
( t

T

))−1 .

Remark.

♦ Ordinary differential equation of simple form that shows characteristics of
parabolic equations if δ> 0 and d >> 1.

♦ Straightforward realisation of matrix-exponentials by low-order Taylor series
expansions.
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Favourable novel schemes (p = 4)

Favourable fourth-order schemes. Design fourth-order time-symmetric CFQM
exponential integrator with real coefficients satisfying positivity condition

∀ j ∈ {1, ..., J } : x j 1 > 0.

Use additional degrees of freedom due to inclusion of sixth-order quadrature nodes and
further exponentials to verify certain conditions at order five and to minimise deviation of
the remaining fifth-order conditions without increasing the overall computational cost

p = 4 : CF[4]
4 , CF[4]

5 .

Compare novel schemes with optimised CFQM exponential integrator proposed in
ALVERMANN, FEHSKE (see eq. (43))

p = 4 : CF[4]
3 .
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Illustration (p = 4)

Numerical results. Time integration of Rosen–Zener model by fourth-order schemes

p = 4 : CF[4]
3 (A & F), CF[4]

4 ,CF[4]
5 (novel) .

Implementation by Taylor series approximation of order M = 6. Display global errors in
fundamental matrix solution at final time versus number of matrix-vector products. Novel
schemes favourable for higher accuracy.

2.4 2.6 2.8 3 3.2 3.4
−6

−5

−4

−3

−2

−1

CF
3

[4]

CF
4

[4]

CF
5

[4]

 V0=2,  δ=0

 log10(N. products)

lo
g

1
0
(e

rr
o
r)

2.4 2.6 2.8 3 3.2
−7

−6

−5

−4

−3

−2

 V0=1/2,  δ=0

 log10(N. products)
lo

g
1
0
(e

rr
o

r)

2.5 3 3.5
−8

−7

−6

−5

−4

−3

 V0=2,  δ=10−1

 log10(N. products)

lo
g

1
0
(e

rr
o

r)

2.6 2.8 3 3.2 3.4 3.6
−10

−9

−8

−7

−6

−5

 V0=1/2,  δ=10−1

 log10(N. products)

lo
g

1
0
(e

rr
o

r)

Mechthild Thalhammer Exponential time integration methods of Magnus-type



CFQM exponential integrators for linear evolution equations
Extension to nonlinear evolution equations

Magnus-type exponential integrators
Convergence analysis
Design of novel schemes

Favourable novel scheme (p = 6, commutator)

Favourable novel scheme (commutator). Design unconventional scheme of order six
involving single commutator

p = 6, J = 5, K = 3,

CF[6]
5C (τ) =

5∏
j=4

eτa j 1 A1(τ)+τa j 2 A2(τ)+τa j 3 A3(τ) eD
2∏

j=1
eτa j 1 A1(τ)+τa j 2 A2(τ)+τa j 3 A3(τ) ,

D = τ2 [
C1(τ),C2(τ)

]
, C1(τ) = e1

(
A1(τ)+ A3(τ)

)+e2 A2(τ) , C2(τ) = A3(τ)− A1(τ) .

Contrary to classical interpolatory Magnus integrators, where arising commutators only of
first order, additional computational cost low due to

D ' [
d1α1(τ)+d2α3(τ),α2(τ)

]=O
(
τ3)

, αk (τ) =O
(
τk )

.

Compare novel scheme with optimised CFQM exponential integrator proposed in
ALVERMANN, FEHSKE (see Table 3, stability issues for δ> 0)

p = 6 : CF[6]
6 .
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Illustration (p = 6)

Numerical results. Time integration of Rosen–Zener model by sixth-order schemes

p = 6 : CF[6]
6 (A & F), CF[6]

5C (novel) .

Implementation by Taylor series approximation of order M = 6. Display global errors in
fundamental matrix solution at final time versus number of matrix-vector products. Novel
schemes favourable in all cases.

2.4 2.6 2.8 3 3.2 3.4
−6

−5.5

−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

CF
6

[6]

CF
5C

[6]

 V0=2,  δ=0

 log10(N. products)

lo
g

1
0
(e

rr
o

r)

2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1 3.2
−7

−6.5

−6

−5.5

−5

−4.5

−4

−3.5

−3

−2.5

−2

 V0=1/2,  δ=0

 log10(N. products)
lo

g
1
0
(e

rr
o
r)

2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1 3.2
−6

−5.5

−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

 V0=2,  δ=10−1

 log10(N. products)

lo
g

1
0
(e

rr
o
r)

2.4 2.6 2.8 3 3.2 3.4
−8

−7.5

−7

−6.5

−6

−5.5

−5

−4.5

−4

−3.5

−3

 V0=1/2,  δ=10−1

 log10(N. products)

lo
g

1
0
(e

rr
o
r)

Mechthild Thalhammer Exponential time integration methods of Magnus-type



CFQM exponential integrators for linear evolution equations
Extension to nonlinear evolution equations

Magnus-type exponential integrators
Convergence analysis
Design of novel schemes

Favourable novel schemes (p = 5,6, complex)

Favourable novel schemes (complex coefficients). Design CFQM exponential integrator
with complex coefficients satisfying positivity condition

p = 5 : CF[5]
3 , p = 6 : CF[6]

4 , CF[6]
5 .

♦ Expect schemes to remain stable for δ> 0.

♦ Expect scheme with J = 3 to be most efficient.
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Favourable novel schemes (p = 5,6, complex), Illustration

Numerical results. Time integration of Rosen–Zener model by fifth-order scheme and
sixth-order schemes

p = 5 : CF[5]
3 , p = 6 : CF[6]

4 , CF[6]
5 .

Implementation by Taylor series approximation of order M = 6. Display global errors in
fundamental matrix solution at final time versus number of matrix-vector products. Novel
schemes remain stable for δ> 0.
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Comparison

Numerical results. Time integration of Rosen–Zener model with vanishing diffusion

δ= 0, V0 = 5, ω= 1
2 , T = 20, d = 20.

Comparison of CFQM exponential integrators with standard explicit Runge–Kutta method
and Magnus integrator.

♦ Global errors in fundamental matrix solution U versus total number of matrix–vector
products (left).

♦ Corresponding errors in preservation of norm ‖U (T )−1‖ (right).
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Extension to non-autonomous
nonlinear evolution equations

Formal extension
Realisation by splitting methods

Numerical tests
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Areas of application

Situation. Consider nonlinear evolution equations of form

u′(t ) = A(t )u(t )+B
(
u(t )

)
, t ∈ (t0,T ) .

Areas of application. In context of Bose–Einstein condensates and their
description by nonlinear Schrödinger equations, study

♦ Gross–Pitaevskii equations with opening trap

♦ Gross–Pitaevskii equations with rotation (moving frame)

PHILIPP BADER, SERGIO BLANES, FERNANDO CASAS, M. TH. Efficient time
integration methods for Gross–Pitaevskii equations with rotation term.
Submitted (2019).
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Numerical realisation by operator splitting

Approach. Apply CFQM exponential integrators in combination with
operator splitting methods to nonlinear evolution equations of form{

u′(t ) = A(t )u(t )+B
(
u(t )

)
, t ∈ (t0,T ) ,

u(t0) given.

In each time step, resolve (small number of) autonomous nonlinear
evolution equations (frozen time), and employ suitable compositions of
solutions to associated subproblems

v ′(t ) = A(t∗) v(t ) , w ′(t ) = B
(
w(t )

)
.

Example. Second-order splitting method (Strang, specification for
autonomous linear equation, first step)

u′(t ) = A u(t )+B u(t ) ,

e
τ
2 A eτB e

τ
2 Au0 ≈ u(t0 +τ) = eτ(A+B)u(t0) .
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Illustration (BEC)
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Illustration (BEC)
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Time integration of rotational Gross−Pitaevskii equation

d = 2, Ω = 0.5, γ = (0.8,1.2), ϑ = 1

 

 

Order 2, CFQM (p=2,J=1,K=1), Strang (p=2,s=2)

Order 2, Scheme BBK (p=6), Strang (p=2,s=2)

Order 4, CFQM (p=4,J=2,K=2), B & M (p=4,s=7)

Order 4, CFQM A & F (p=4,J=3,K=3), B & M (p=4,s=7)

Order 4, Scheme BBK (p=6), B & M (p=4,s=7)

Order 6, CFQM A & F (p=6,J=6,K=3), B & M (p=6,s=11)

Order 6, Scheme BBK (p=6), B & M (p=6,s=11)
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Conclusions

Summary.

♦ Commutator-free quasi-Magnus (CFQM) exponential integrators
form favourable class of time discretisation methods for linear
evolution equations of Schrödinger type and of parabolic type.

♦ Theoretical analysis contributes to deeper understanding (reveals
approach to resolve stability issues, explains order reductions
causing signifcant loss of accuracy).

Current and future work.

♦ Extension of CFQM exponential integrators combined with operator
splitting methods to nonlinear Schrödinger equations.

Thank you!
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