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Nonlinear acoustics

Nonlinear acoustics. Field of nonlinear acoustics concerned with
propagation of sound waves in thermoviscous fluids. Applications in
high-intensity ultrasonics include

medical treatment (lithotripsy, thermotherapy) and

industrial applications (ultrasound cleaning, welding).

Simulations. Numerical simulations provide valuable tools for design
and improvement of high-intensity ultrasound devices.

Kidney stones, Lithotripsy. Quotation from https://www.healthline.com/

Kidney stones, or renal calculi, are solid masses made of crystals.

Kidney stones are known to cause severe pain.

Extracorporeal shock wave lithotripsy uses sound waves to break up large stones
so they can more easily pass down the ureters into your bladder. This procedure
can be uncomfortable and may require light anesthesia. It can cause bruising on
the abdomen and back and bleeding around the kidney and nearby organs.
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Our approach

Our approach. Contributions regarding analytical aspects as well as
numerical challenges.

Derivation and analysis of underlying models (PDEs).

Design of efficient time integration methods.

Mechthild Thalhammer (Universität Innsbruck, Austria) Fundamental models in nonlinear acoustics



Numerical aspects
Analytical aspects

Conclusions

Mathematical models

Mathematical models. Propagation of high-intensity ultrasound waves
in thermoviscous fluids described by nonlinear damped wave equations.
Blackstock–Crighton–Brunnhuber–Jordan–Kuznetsov equation has form

(
∂ttt −β(a)

1 ∆∂tt +β(a)
2 (σ0)∆2∂t −β3∆∂t +β(a)

4 (σ0)∆2
)
ψ(a)(t )

+ ∂tt

(
1
2 β5(σ)

(
∂tψ

(a)(t )
)2 +β6(σ)

∣∣∇ψ(a)(t )
∣∣2

)
= 0, t ∈ (0,T ) ,

ψ(a)(0) =ψ0, ∂tψ
(a)(0) =ψ1 , ∂ttψ

(a)(0) =ψ2 .

Reduced models. Commonly used Kuznetsov and Westervelt equations result when
neglecting thermal and local nonlinear effects

{ (
∂tt −β(0)

1 ∆∂t −β3∆
)
ψ(t )+∂t

(
1
2 β5(σ)

(
∂tψ(t )

)2 + β6(σ) |∇ψ(t )|2
)
= 0, t ∈ (0,T ) ,

ψ(0) =ψ0, ∂tψ(0) =ψ1 .

Numerical challenges. Use of transient numerical simulations within
mathematical optimisation of high-intensity ultrasound devices still
beyond scope of existing approaches.
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Novel approach

Novel approach. Operator splitting methods known to be efficient time
integration methods for nonlinear partial differential equations{

u′(t ) = F
(
u(t )

)= A
(
u(t )

)+B
(
u(t )

)
, t ∈ (0,T ) ,

u(0) given,

un =SF (τn−1,un−1) =
s∏

j=1
eas+1− j τn−1DA ebs+1− j τn−1DB un−1

≈ u(tn) = EF
(
τn−1,u(tn−1)

)= eτn−1DF u(tn−1) , n ∈ {1, . . . , N } .

Motivates introduction and investigation of operator splitting methods for
nonlinear damped wave equations arising in nonlinear acoustics.

Remark. Approach reveals underlying parabolic equations.
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Our contributions and plans

Former contributions.

BARBARA KALTENBACHER, VANJA NIKOLIĆ, M. TH.
Efficient time integration methods based on operator splitting and application to
the Westervelt equation.
IMA J. Numer. Anal. 35/3 (2015) 1092–1124.

BARBARA KALTENBACHER, M. TH.
Fundamental models in nonlinear acoustics. Part I. Analytical comparison.
M3AS 28/12 (2018).

Future work.

BARBARA KALTENBACHER, M. TH.
Part II. Numerical comparison.
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Operator splitting methods
Convergence analysis
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Westervelt equation

Westervelt equation. Consider nonlinear damped wave equation for
acoustic velocity potential

∂ttψ(t )−α∂xxtψ(t )−β∂xx ψ(t )

= γ∂t
(
∂tψ(t )

)2 = δ∂tψ(t )∂ttψ(t ) , t ∈ (0,T ) ,

ψ(0) =ψ0, ∂tψ(0) =ψ1 ,

involving constants α,β> 0 and δ= 2γ 6= 0.

Remarks.

For notational simplicity, consider single space dimension.

Focus on relevant case of homogeneous Dirichlet boundary conditions.

Assume that prescribed initial data are sufficiently regular and small. Theoretical
result ensures existence, non-degeneracy, and regularity of solution.

Justifies reformulation of non-degenerate Westervelt equation

∂ttψ(t ) =α(
1−δ∂tψ(t )

)−1
∂xxtψ(t )+β(

1−δ∂tψ(t )
)−1

∂xx ψ(t ) .
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Associated subproblems (Decomposition I)

Reformulation. Regarding introduction and error analysis of operator
splitting methods, rewrite Westervelt equation as first-order system for
Ψ= (Ψ1,Ψ2) = (ψ,∂tψ){

∂tΨ1(t ) =Ψ2(t ) ,

∂tΨ2(t ) =α(
1−δΨ2(t )

)−1
∂xx Ψ2(t )+β(

1−δΨ2(t )
)−1

∂xxΨ1(t ) .

Abstract formulation and subproblems. Employ compact formulation
as nonlinear evolution equation with nonlinear operators A,B

u′(t ) = F
(
u(t )

)= A
(
u(t )

)+B
(
u(t )

)
, t ∈ (0,T ) ,

A(v) =
(

v2

α
(
1−δv2

)−1
∂xx v2

)
, B(v) =

(
0

β
(
1−δv2

)−1
∂xx v1

)
.

Associated subproblems correspond to nonlinear diffusion equation and
ordinary differential equation.
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Associated subproblems (Decomposition I)

Abstract formulation. Employ compact formulation as nonlinear evolution equation with
nonlinear operators A,B

u′(t ) = F
(
u(t )

)= A
(
u(t )

)+B
(
u(t )

)
, t ∈ (0,T ) ,

A(v) =
(

v2

α
(
1−δv2

)−1
∂xx v2

)
, B(v) =

(
0

β
(
1−δv2

)−1
∂xx v1

)
.

Subproblem (Nonlinear diffusion equation). Resolution of subproblem associated with A{
∂tΨ1(x, t ) =Ψ2(x, t ) ,

∂tΨ2(x, t ) =α(
1−δΨ2(x, t )

)−1
∂xxΨ2(x, t ) ,

amounts to solution of nonlinear diffusion equation for second component Ψ2 = ∂tψ

∂tΨ2(x, t ) =α(
1−δΨ2(x, t )

)−1
∂xxΨ2(x, t ) .

First componentΨ1 =ψ then retained by (pointwise) integration

Ψ1(x, t ) =Ψ1(x,0)+
∫ t

0
Ψ2(x,τ) dτ .
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Associated subproblems (Decomposition I)

Employ compact formulation as nonlinear evolution equation with nonlinear operators A,B

u′(t ) = F
(
u(t )

)= A
(
u(t )

)+B
(
u(t )

)
, t ∈ (0,T ) ,

A(v) =
(

v2

α
(
1−δv2

)−1
∂xx v2

)
, B(v) =

(
0

β
(
1−δv2

)−1
∂xx v1

)
.

Subproblem (Explicit representation). For subproblem associated with B{
∂tΨ1(x, t ) = 0,

∂tΨ2(x, t ) =β(
1−δΨ2(x, t )

)−1
∂xxΨ1(x, t ) ,

first component remains constant on considered time interval

Ψ1(x, t ) =Ψ1(x,0) .

Consequently, second component is (pointwise) solution to ODE with explicit representation

∂tΨ2(x, t ) =β(
1−δΨ2(x, t )

)−1
∂xxΨ1(x,0) ,

Ψ2(x, t ) = 1
δ

(
1−√

ϕ(x, t )
)

, ϕ(x, t ) = (
1−δΨ2(x,0)

)2 −2βδ t ∂xxΨ1(x,0) .

Suitable choice of time increment t > 0 ensures ϕ(x, t ) > 0 and hence Ψ2(x, t ) ∈R.

Mechthild Thalhammer (Universität Innsbruck, Austria) Fundamental models in nonlinear acoustics



Numerical aspects
Analytical aspects

Conclusions

Westervelt equation
Operator splitting methods
Convergence analysis

Operator splitting methods for
Westervelt equation
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Operator splitting methods

Operator splitting methods. Time integration of nonlinear evolution equation

u′(t ) = F
(
u(t )

)= A
(
u(t )

)+B
(
u(t )

)
, t ∈ (0,T ) .

Approximations at time grid points 0 = t0 < ·· · < tN ≤ T with increments τn−1 = tn − tn−1
are determined by recurrence of form

un =SF (τn−1,un−1) ≈ u(tn ) = EF
(
τn−1,u(tn−1)

)= eτn−1DF u(tn−1) , n ∈ {1, . . . , N } .

Exponential operator splitting methods rely on suitable decomposition of right-hand side
and presumption that associated subproblems are solvable in accurate and efficient manner

v ′(t ) = A
(
v(t )

)
, v(t ) = etDA v(0) , w ′(t ) = B

(
w(t )

)
, w(t ) = etDB w(0) .

Lower-order schemes. First-order Lie–Trotter splitting method and second-order Strang
splitting method given by

SF (t , ·) = etDB etDA , SF (t , ·) = e
1
2 tDA etDB e

1
2 tDA .

Westervelt equation. Solution of subproblem associated with A requires resolution of
nonlinear diffusion equation and (pointwise) integration. Explicit (pointwise) representation
available for solution to subproblem associated with B .

Mechthild Thalhammer (Universität Innsbruck, Austria) Fundamental models in nonlinear acoustics



Numerical aspects
Analytical aspects

Conclusions

Westervelt equation
Operator splitting methods
Convergence analysis

Stability and error analysis
of Lie–Trotter splitting method
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Approach

Approach. Consider first-order Lie–Trotter splitting method

SF (t , ·) = etDA etDB = EA
(
t ,EB (t , ·)) .

Employ compact local error expansion

LF (t , ·) =
∫ t

0

∫ τ1

0
∂2EF

(
t −τ1,SF (τ1, ·)) ∂2EB

(
τ1 −τ2,EA (τ1, ·))

× [
B , A

](
EB

(
τ2,EA (τ1, ·))) dτ2 dτ1

deduced in DESCOMBES, TH. (2010, 2012) and studied for Schrödinger equations in
semi-classical regime.
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Application to Westervelt equation

Challenge. Application to Westervelt equation requires derivation of auxiliary regularity
results for Westervelt equation, associated subproblems and variational equations, as well as
estimate for Lie-commutator

‖EF (t , v)‖Hk+6×Hk+5 ≤ eC t ‖v‖Hk+6×Hk+5 , k ∈N≥0 ,

‖EA (t , v)‖Hk+4×Hk+2 ≤ eC t ‖v‖Hk+4×Hk+2 , k ∈N≥0 ,

‖EB (t , v)‖Hk+2×Hk ≤ eC t ‖v‖Hk+2×Hk , k ∈N≥0 ,

‖∂2EF (t , v) w‖H`+1×H` ≤ eC (‖v‖H4×H4 )t ‖w‖H`+1×H` , `= 0,1,2,3,

‖∂2EA (t , v) w‖Hk+2×Hk ≤
{

eC (‖v‖H5×H3 )t ‖w‖Hk+2×Hk , k = 0,1,2 ,

eC (‖v‖H7×H5 )t ‖w‖Hk+2×Hk , k ∈N≥3 ,

‖∂2EB (t , v) w‖Hk+2×Hk ≤ e
C (‖v‖

Hk+4×Hk+2 )t ‖w‖Hk+2×Hk , k ∈N≥0 ,

‖[A,B ](v)‖Hk+2×Hk ≤C
(‖v‖Hk+4×Hk+2

)
, k ∈N≥0 .

Remark. Obtained regularity results imply stability estimate for splitting methods. Global
error estimate follows by standard approach (telescopic identity).
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Main result (Lie–Trotter splitting)

Convergence result. Employ basic regularity assumption on initial state and additional
compatibility conditions

u(0) = (
ψ(·,0),∂tψ(·,0)

) ∈ H6(Ω)×H5(Ω) ,

‖u(0)‖H6×H5 = ‖ψ(·,0)‖H6 +‖∂tψ(·,0)‖H5 ≤C0 .

Apply auxiliary result that ensures regularity and boundedness of solution

u(t ) ∈ H6(Ω)×H5(Ω) , ‖u(t )‖H6×H5 ≤C , t ∈ [0,T ] .

Obtain global error estimate for Lie–Trotter splitting method applied to Westervelt equation.

Theorem (Kaltenbacher, Nikolić, Th., 2015)

Assume that initial state fulfills above requirements and that intial approximation u0 remains
bounded in H5(Ω)×H3(Ω). Then, Lie–Trotter splitting method applied to Westervelt equation
satisfies global error estimate

‖uN −u(tN )‖H3×H1 ≤C
(
‖u0 −u(0)‖H3×H1 +τ

)
, τ= max

n∈{0,1,...,N−1}
τn ,

with constant depending on bounds for ‖u‖C ([0,tN ],H6×H5), ‖u0‖H5×H3 , and final time T .
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Illustration (Global error)

Situation.

Consider Westervelt equation in single space dimension (facilitates computations)

a = 8, α= 1, β= 1, γ= 1
2 , δ= 2γ= 1,

∂ttψ(x, t )−α∂xxtψ(x, t )−β∂xxψ(x, t ) = δ∂tψ(x, t )∂ttψ(x, t ) ,

ψ(x,0) = e−x2
, ∂tψ(x,0) =−x e−x2

, (x, t ) ∈ [−a, a]× [0,T ] ,

and impose homogeneous Dirichlet boundary conditions. Note that for prescribed
initial data solution to Westervelt equation is regular.

Chose spatial grid width sufficiently fine such that global error dominated by time
discretisation error (M = 100).

Compare accuracy of Lie–Trotter and Strang splitting methods. For numerical
solution of parabolic subproblem apply explicit and implicit time integrators of same
order as underlying splitting method, i.e. combine Lie–Trotter splitting method with
explicit and implicit Euler methods and Strang splitting method with second-order
explicit Runge–Kutta method and Crank–Nicolson scheme. Note that use of explicit
solvers requires sufficiently small time increments to avoid instabilities.

Display local and global errors at time T = 1.
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Illustration (Local and global errors)

Numerical results (H3 ×H1-norm). Time integration of Westervelt equation by Lie–Trotter
and Strang splitting methods (Decomposition I). Comparison of different methods for
numerical solution of subproblems. Computation of local (left) and global (right) errors with
respect to H3 ×H1-norm. Nonstiff orders retained in accordance with convergence result.

Remark. Consider different ranges of time stepsizes for local error (include larger time
stepsizes to study stability behaviour) and global error (include smaller time stepsizes to
study attainable accuracy).
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Derivation of general model
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Derivation of general model
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Approach

Approach. Derivation of general model relies on physical and
mathematical principles.

Decompose basic state variables of acoustics into constant mean
values and space-time-dependent fluctuations

mass density %= %0 +%∼ , acoustic particle velocity v = v∼ ,

acoustic pressure p = p0 +p∼ , temperature T = T0 +T∼ .

Use Helmholtz decomposition of acoustic particle velocity and
assign irrotational part to gradient of acoustic velocity potential

v∼ =∇ψ+∇×S .
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Approach

Employ conservation laws for mass, momentum, energy

∂t%+∇· (%v) = 0,

∂t (%v)+ v ∇· (%v)+% (v ·∇) v +∇p =µ∆v + (
µB + 1

3 µ
)∇(∇· v) ,

% (cV ∂t T + cV v ·∇T + cp−cV

αV
∇· v)

= a∆T + (
µB − 2

3 µ
)

(∇· v)2 + 1
2 µ

∥∥∇v + (∇v)T ∥∥2
F ,

as well as equation of state for acoustic pressure

p∼ ≈ A %∼
%0

+ B
2

(%∼
%0

)2 + Â T∼
T0

.

Relations in particular involve thermal conductivity a > 0 and
parameter of nonlinearity B

A > 0.

Accordingly to BLACKSTOCK (1963) and LIGHTHILL (1956), take first-
and second-order contributions with respect to fluctuating
quantities into account.
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General model

General model. Above approach leads to general model

∂t t tψ
(a)(t )−β(a)

1 ∆∂t tψ
(a)(t )+β(a)

2 (σ0)∆2∂tψ
(a)(t )

− β3∆∂tψ
(a)(t )+β(a)

4 (σ0)∆2ψ(a)(t )

+ ∂t t

(
1
2 β5(σ)

(
∂tψ

(a)(t )
)2 +β6(σ)

∣∣∇ψ(a)(t )
∣∣2

)
= 0, t ∈ (0,T ) ,

where coefficients in particular depend on thermal conductivity a > 0 and
parameter of nonlinearity B

A > 0

β(a)
1 = a

(
1+ B

A

)+νΛ , β(a)
2 (σ0) = a

(
νΛ+a B

A +σ0
B
A (νΛ−a)

)
,

β3 = c2
0 , β(a)

4 (σ0) = a
(
1+σ0

B
A

)
c2

0 ,

β5(σ) = 1
c2

0

(
2(1−σ)+ B

A

)
, β6(σ) =σ , σ,σ0 ∈ {0,1} .

Fundamental question. Use of reduced model for a → 0+ justified?
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Hierarchy

Hierarchy. Overview of considered hierachy of nonlinear damped wave equations.

Brunnhuber–Jordan–Kuznetsov (BJK)
σ=0−−−−−−−→ Brunnhuber–Jordan–Westervelt (BJW)yσ0=0

yσ0=0

Blackstock–Crighton–Kuznetsov (BCK)
σ=0−−−−−−−→ Blackstock–Crighton–Westervelt (BCW)ya→0+

ya→0+

Kuznetsov (K)
σ=0−−−−−−−→ Westervelt (W)

Remarks.

BJK cast into general formulation with σ=σ0 = 1.

BCK describes monatomic gases (quantity (νΛ−a) B
A negligible).

Kuznetsov equation results as limiting system.

Westervelt-type equations additionally do not take into account local nonlinear
effects (term c2

0 |∇ψ|2 − (∂tψ)2 negligible).
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Illustration (General model)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.05

0.1

Brunnhuber−Jordan−Kuznetsov equation
FFT (M = 1000), RKM (p = 4, N = 1000)

Solution at time t = 0.001, (a,b,c,k) = (0.01,0.0001,1000,0.0007)

 

 

Initial condition
Linear model
Nonlinear model

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−200

0

200

Time derivative at t = 0.001
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Illustration (General versus reduced model)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.05

0.1

Brunnhuber−Jordan−Westervelt equation versus Westervelt equation
FFT (M = 1000), RKM (p = 4, N = 1000)

Solutions at time t = 0.001, (a,b,c,k) = (0.01,0.06,1000,0.0008)

 

 

Initial condition
Linear model
Nonlinear model 1
Nonlinear model 2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

1

2

x 10
−6 Difference of solutions
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Existence and regularity result
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Existence and regularity result

Initial-boundary value problem.

Let a ∈ (0, a].

Consider nonlinear damped wave equation
∂t t tψ

(a)(t )−β(a)
1 ∆∂t tψ

(a)(t )+β(a)
2 (σ0)∆2∂tψ

(a)(t )

−β3∆∂tψ
(a)(t )+β(a)

4 (σ0)∆2ψ(a)(t )

+∂t t

(
1
2 β5(σ)

(
∂tψ

(a)(t )
)2 +β6(σ)

∣∣∇ψ(a)(t )
∣∣2

)
= 0, t ∈ (0,T ) ,

ψ(a)(0) =ψ0, ∂tψ
(a)(0) =ψ1 , ∂t tψ

(a)(0) =ψ2 .

Impose homogeneous Dirichlet boundary conditions

∂t tψ(t )
∣∣
∂Ω = 0, ∆∂tψ(t )

∣∣
∂Ω = 0, ∆ψ(t )

∣∣
∂Ω = 0,

∂t t tψ(t )
∣∣
∂Ω = 0, ∆∂t tψ(t )

∣∣
∂Ω = 0.
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Existence and regularity result

Assumptions.

Suppose that prescribed initial data satisfy regularity and
compatibility conditions

ψ0,ψ1 ∈ H 3(Ω)∩H 1
0 (Ω) , ∆ψ0,∆ψ1,ψ2 ∈ H 1

0 (Ω) .

Assume that for ‖∆ψ0‖L2 , ‖∇∆ψ0‖L2 , and upper bounds e0,e1 > 0 on
initial energies∥∥ψ2

∥∥2
L2

+β(a)
2 (σ0)

∥∥∆ψ1
∥∥2

L2
+∥∥∇ψ1

∥∥2
L2

≤ e0 ,∥∥∇ψ2
∥∥2

L2
+β(a)

2 (σ0)
∥∥∇∆ψ1

∥∥2
L2

+∥∥∆ψ1
∥∥2

L2
≤ e1 ,

following quantity is sufficiently small

M
(
e0,e1

)= C 2
PF C 2

L4←-H1β5(σ)

β
1

√
e0 +C0 e1

+ C2
β

1

(∥∥∆ψ0
∥∥2

L2
+C3 T 2 e1

)
+C4

(
1
2

∥∥∇∆ψ0
∥∥

L2
+

√
e1

)
.
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Existence and regularity result

Theorem (Kaltenbacher, Th., 2018)

Under the above assumptions, there exists a weak solution

ψ ∈ X = H 2([0,T ], H 2
¦ (Ω)

)∩W 2
∞

(
[0,T ], H 1

0 (Ω)
)∩W 1

∞
(
[0,T ], H 3

¦ (Ω)
)

,

H 2
¦ (Ω) = {

χ ∈ H 2(Ω) :χ ∈ H 1
0 (Ω)

}
, H 3

¦ (Ω) = {
χ ∈ H 3(Ω) :χ,∆χ ∈ H 1

0 (Ω)
}

,

to the associated equation

∂t tψ(t )− ψ2 −β(a)
1 ∆

(
∂tψ(t )−ψ1

)+β(a)
2 (σ0)∆2(ψ(t )−ψ0

)−β3∆
(
ψ(t )−ψ0

)
+β(a)

4 (σ0)
∫ t

0
∆2ψ(τ) dτ+β5(σ)

(
∂t tψ(t )∂tψ(t )−ψ2ψ1

)
+2β6(σ)

(∇∂tψ(t ) ·∇ψ(t )−∇ψ1 ·∇ψ0
)= 0,

obtained by integration with respect to time.
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Existence and regularity result

Theorem (Kaltenbacher, Th., 2018)

This solution satisfies a priori energy estimates of the form

E0
(
ψ(t )

)= ∥∥∂t tψ(t )
∥∥2

L2
+β(a)

2 (σ0)
∥∥∆∂tψ(t )

∥∥2
L2

+∥∥∇∂tψ(t )
∥∥2

L2
,

E1
(
ψ(t )

)= ∥∥∇∂t tψ(t )
∥∥2

L2
+β(a)

2 (σ0)
∥∥∇∆∂tψ(t )

∥∥2
L2

+∥∥∆∂tψ(t )
∥∥2

L2
,

sup
t∈[0,T ]

E0
(
ψ(t )

)≤ E 0 , sup
t∈[0,T ]

E1
(
ψ(t )

)≤ E 1 ,
∫ T

0

∥∥∆∂t tψ(t )
∥∥2

L2
dt ≤ E 2 ,

which hold uniformly for a ∈ (0, a]. In particular, the quantity M(E 0,E 1)
remains sufficiently small to ensure uniform boundedness and hence
non-degeneracy of the first time derivative

0 <α= 1
2 ≤ ∥∥1+β5(σ)∂tψ

∥∥
L∞([0,T ],L∞(Ω)) ≤α= 3

2 ,

0 < 1
α
= 2

3 ≤
∥∥∥(

1+β5(σ)∂tψ
)−1

∥∥∥
L∞([0,T ],L∞(Ω))

≤ 1
α = 2.
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Existence and regularity result

Main tools. Introduction of higher-order energy functional

E1
(
ψ(a)(t )

)= ∥∥∇∂t tψ
(a)(t )

∥∥2
L2

+β(a)
2 (σ0)

∥∥∇∆∂tψ
(a)(t )

∥∥2
L2

+∥∥∆∂tψ
(a)(t )

∥∥2
L2

.

Derivation of a priori bound of form

sup
t∈[0,T ]

E1
(
ψ(a)(t )

)+∫ T

0

∥∥∆∂t tψ
(a)(t )

∥∥2
L2

dt ≤C .

Application of fixed point theorem by Schauder (weak formulation).

Remark. Second term in energy functional associated with Bochner–Sobolev space

W 1∞
(
[0,T ], H3(Ω)

)
.

Due to fact that β(a)
2 (σ0) → 0 as a → 0+, only convergence in weaker sense

ψ(a) ∗
*ψ(0) in H2(

[0,T ], H2(Ω)
)

can be achieved.
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Justification of limiting systems
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Justification of limiting systems

Additional assumption. In above situation, assume in addition that
prescribed initial data satisfy consistency condition

ψ2 −β(0)
1 ∆ψ1 −β3∆ψ0 +β5(σ)ψ2ψ1 +2β6(σ)∇ψ1 ·∇ψ0 = 0.

For any a ∈ (0, a], let ψ(a) : [0,T ] → L2(Ω) denote solution to nonlinear
damped wave equation or of reformulation obtained by integration

∂t tψ
(a)(t )−β(0)

1 ∆∂tψ
(a)(t )− (

β(a)
1 −β(0)

1

)(
∆∂tψ

(a)(t )−∆ψ1
)

+β(a)
2 (σ0)

(
∆2ψ(a)(t )−∆2ψ0

)−β3∆ψ
(a)(t )+β(a)

4 (σ0)
∫ t

0
∆2ψ(a)(τ) dτ

+β5(σ)∂t tψ
(a)(t )∂tψ

(a)(t )+2β6(σ)∇∂tψ
(a)(t ) ·∇ψ(a)(t ) = 0.
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Justification of limiting systems

Theorem

Under the above assumptions, as a → 0+, the family (ψ(a))a∈(0,a] converges
to the solution ψ(0) : [0,T ] → L2(Ω) of the limiting system

∂t tψ
(0)(t )−β(0)

1 ∆∂tψ
(0)(t )−β3∆ψ

(0)(t )

+β5(σ)∂t tψ
(0)(t )∂tψ

(0)(t )+2β6(σ)∇∂tψ
(0)(t ) ·∇ψ(0)(t ) = 0.

More precisely, for the solution to the associated weak formulation,
obtained by testing with v ∈ L1([0,T ], H 1

0 (Ω)) and performing integration-
by-parts, convergence is ensured in the following sense

ψ(a) ∗
*ψ(0) in X0 as a → 0+ .
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Conclusions and future work

Summary.

Rigorous justification of Kuznetsov and Westervelt equations as limiting systems.

Relevant open questions.

Numerical methods for more involved models arising in nonlinear acoustics.

Application of higher-order splitting methods involving complex coefficients.

Reliable and efficient time integration based on adaptive time stepsize control.

Thank you!
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