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Guide line

Large-scale classical dynamical systems.

Algorithms for the evaluation of the defining functions

Issues and novel approaches

Extended systems on networks / graphs.

Algorithms for the detection of communities

Suitable modifications of novel approaches

Widely-used models with relevant applications.

Classical and extended Kuramoto systems

Synchronisation of coupled oscillators
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Classical Kuramoto systems
Considerations for classical systems provide the basis for our work.

Classical systems correspond to the special cases of complete graphs.
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Kuramoto systems

Kuramoto systems.

Consider a set of oscillators with time-dependent phases

ϑm : [0,T ] −→S1 =R/2πZ , m ∈ {1,2, . . . , M } .

Prescribe the intrinsic frequencies and the coupling constant

ωm ∈R , m ∈ {1,2, . . . , M } , K > 0.

Describe the pairwise interactions between the oscillators by a
system of coupled nonlinear ordinary differential equationsϑ

′
m(t ) =ωm + K

M

M∑
`=1

sin
(
ϑ`(t )−ϑm(t )

)
, t ∈ (0,T ) ,

ϑm(0) given, m ∈ {1,2, . . . , M } .
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Kuramoto systems

Large-scale systems.

Focus on systems involving a high number of oscillators

M >> 1.

Special choices.

Consider uniformly distributed initial phases

ϑm(0) = 2πm
M , m ∈ {1,2, . . . , M } .

Define the intrinsic frequencies by

ωm = 1+ω0
(2m−M−1)

M−1 ∈ [1−ω0,1+ω0] ,

ω0 ≥ 0, m ∈ {1,2, . . . , M } ,
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Fundamental issue

Fundamental issue.

Consider a dynamical system of the form{
y ′(t ) = F

(
y(t )

)
, t ∈ (0,T ) ,

y(0) given.

Algorithms for the reliable and efficient evaluation of the defining
function (for fixed t ∈ [0,T ]) constitute basic ingredients regarding
numerical simulations (e.g. time integration, optimisation).
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Quadratic complexity

Computational complexity.

For Kuramoto systems, the naive evaluation of the decisive sums

M∑
`=1

sin
(
ϑ`(t )−ϑm(t )

)
, m ∈ {1,2, . . . , M } ,

requires M 2 sine function evaluations.

Quadratic computational complexity considerably reduces
practicability. Typically, we reach a critical range for

M = 105 , M 2 = 1010 .
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Quadratic complexity

Quadratic complexity.

It is highly desirable to avoid quadratic complexity, since it effects
the allocatable memory capacity and the computation time.

For standard programming and numeric computing platforms, we
are confronted with a severe restriction of the maximum dimension.

Error message in MATLAB.

Requested 10000000000x1 (74.5GB) array exceeds maximum
array size preference. Creation of arrays greater than this limit
may take a long time and cause MATLAB to become
unresponsive.

Out of memory for a vector of dimension 1010.
Out of memory for a matrix of dimension 105.

Is a reduction from quadratic to linear complexity feasible?
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Quadratic complexity

Natural idea.

Use a compact matrix representation and sum over all columns
s11(t ) s12(t ) . . . . . . s1M (t )
s21(t ) s22(t ) . . . . . . s2M (t )

...
...

sM1(t ) sM2(t ) . . . sM ,M−1(t ) sM M (t )

 ,

s`m(t ) = sin
(
ϑ`(t )−ϑm(t )

)
, `,m ∈ {1,2, . . . , M } ,

M∑
`=1

sin
(
ϑ`(t )−ϑm(t )

)= M∑
`=1

s`m(t ) , m ∈ {1,2, . . . , M } .

MATLAB script by Cleve Moler.
% theta-theta’ is a matrix with elements theta(j)-theta(k).
% The sum is by colums and produces a column vector.
g = sum(sin(theta-theta’),2);
See https://blogs.mathworks.com/cleve/2019/10/30/stability-of-kuramoto-oscillators.

This representation is convenient, but quadratic complexity remains!

Mechthild Thalhammer Kuramoto systems on graphs

https://blogs.mathworks.com/cleve/2019/10/30/stability-of-kuramoto-oscillators


Classical Kuramoto systems
Higher-order Kuramoto-type systems

Kuramoto systems on graphs

Kuramoto systems
Issues and novel approaches
Numerical simulations

Quadratic complexity

Natural idea – modification.

Omit zero entries and use anti-symmetry of sine function

s`m(t ) = sin
(
ϑ`(t )−ϑm(t )

)=− sm`(t ) , `,m ∈ {1,2, . . . , M } ,
0 s12(t ) . . . . . . s1M (t )

− s12(t ) 0 s23(t ) . . . s2M (t )
...

...
− s1M (t ) . . . . . . − sM−1,M (t ) 0

 .

Number of sine function evaluations

(M −1)+ (M −2)+·· ·+2+1 =
Kleiner Gauß

1
2 M (M −1) =O

(
M 2) .

This representation is useful to recognise a conserved quantity,
but quadratic complexity still remains!
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Linear complexity

Novel approach.

Based on the addition theorem for the sine function

sin
(
ϑ`(t )−ϑm(t )

)= sin
(
ϑ`(t )

)
cos

(
ϑm(t )

)−cos
(
ϑ`(t )

)
sin

(
ϑm(t )

)
,

`,m ∈ {1,2, . . . , M } ,

and the precomputation of sums

SM
(
ϑ(t )

)= M∑
m=1

sin
(
ϑm(t )

)
, CM

(
ϑ(t )

)= M∑
m=1

cos
(
ϑm(t )

)
,

we obtain a suitable reformulation that permits the simultaneous
evaluation of the right-hand side and requires 4M evaluations
of sine and cosine functions

M∑
`=1

sin
(
ϑ`(t )−ϑm(t )

)= SM
(
ϑ(t )

)
cos

(
ϑm(t )

)−CM
(
ϑ(t )

)
sin

(
ϑm(t )

)
,

m ∈ {1,2, . . . , M } .
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Numerical simulations

Computational cost for the evaluation of the function defining the right-hand side of the
classical Kuramoto model.

Number of sine and cosine evaluations versus the total number of oscillators when
using straighforward summation and the precomputation of sums, respectively.

Numerical comparison of the computation time for different implementations in
MATLAB.
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And now we are ready to study structural properties of Kuramoto
systems and perform numerical simulations! :-)
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Structural properties

Potential.

Kuramoto systems have the intrinsic structure of gradient systems{
ϑ′(t ) =−∇V

(
ϑ(t )

)
, t ∈ (0,T ) ,

ϑ(0) given.

A compact representation of the associated potential reads as

V :RM −→R :

ϑ= (ϑ1, . . . ,ϑM )T 7−→−ωTϑ+ K M
2

(
1− (

CM (ϑ)
)2 − (

SM (ϑ)
)2

)
.

A short calculation confirms that the values of the potential indeed
decrease when time evolves

d
dt V

(
ϑ(t )

)= (
∇V

(
ϑ(t )

))T
ϑ′(t ) =−∥∥∇V

(
ϑ(t )

)∥∥2 ≤ 0,

V
(
ϑ(t )

)≤V
(
ϑ(0)

)
, t ∈ [0,T ] .
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Structural properties

Order parameter.

The modulus r :SM
1 →R and the angle ψ :SM

1 →R of the complex
order parameter are given by

r (ϑ)eiψ(ϑ) = 1
M

M∑
m=1

eiϑm =CM (ϑ)+ iSM (ϑ) , ϑ ∈SM
1 .

For configurations, where all cosine and sine values are close-by, the
modulus of the complex order parameter has values nearly one and
thus indicates synchronisation

cos(ϑm) ≈ cos(ϑ1) , sin(ϑm) ≈ sin(ϑ1) , m ∈ {2,3, . . . , M } ,

CM (ϑ) ≈ cos(ϑ1) , SM (ϑ) ≈ sin(ϑ1) ,

r (ϑ) =
√(

CM (ϑ)
)2 + (

SM (ϑ)
)2 ≈ 1, V (ϑ) ≈−ωTϑ , ϑ ∈SM

1 .
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Structural properties

Conserved quantity.

From the representationϑ
′
m (t ) =ωm + K

M

M∑
`=1

s`m (t ) , t ∈ (0,T ) ,

ϑm (0) given, m ∈ {1,2, . . . , M } ,


0 s12(t ) . . . . . . s1M (t )

− s12(t ) 0 s23(t ) . . . s2M (t )
...

...
− s1M (t ) . . . . . . − sM−1,M (t ) 0

 , t ∈ (0,T ) ,

it is evident that summation over all governing equations (i.e. all entries of the
associated matrix) and integration with respect to time yields

1
M

M∑
m=1

ϑ′m (t ) = 1
M

M∑
m=1

ωm , 1
M

M∑
m=1

ϑm (t ) = 1
M

M∑
m=1

ϑm (0)+ t 1
M

M∑
m=1

ωm , t ∈ [0,T ] .

Thus, the mean values of the initial phases and the intrinsic frequencies determine
the mean values of the phases at later times.
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Numerical simulations (no synchronisation)

Numerical integration of the classical Kuramoto model involving M = 104 oscillators.
Coupling constant K = 1 (no synchronisation). Visualisation of the phases at the final time.
The time series confirms decreasing potential values. A conserved quantity is numerically
preserved with high accuracy.

http://techmath.uibk.ac.at/mecht/MyHomepage/Research/MovieKuramotoClassicalK1.m4v
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Numerical simulations (gradual synchronisation)

Numerical integration of the classical Kuramoto model involving M = 104 oscillators.
Coupling constant K ∈ {3,5} (gradual synchronisation).

http://techmath.uibk.ac.at/mecht/MyHomepage/Research/MovieKuramotoClassicalK3.m4v

http://techmath.uibk.ac.at/mecht/MyHomepage/Research/MovieKuramotoClassicalK5.m4v
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Numerical simulations (long-term integration)

Long-term integration of the classical Kuramoto model based on a second-order explicit
Runge–Kutta method and a second-order implicit Runge–Kutta method with improved
numerical preservation of a conserved quantity.
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Higher-order Kuramoto-type systems
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Higher-order Kuramoto-type systems

Higher-order contributions.

Single sums describe pairwise interactions between oscillators

1
M

M∑
`=1

sin
(
ϑ`(t )−ϑm(t )

)
, m ∈ {1,2, . . . , M } .

Multiple sums describe interactions between several oscillators

1
M L

M∑
`1,...,`L=1

sin
(
σ1ϑ`1 (t )+·· ·+σL ϑ`L (t )−ϑm(t )

)
,

σ1, . . . ,σL ∈ {−1,1} , m ∈ {1, . . . , M } .

Mechthild Thalhammer Kuramoto systems on graphs
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Poynomial complexity

Computational complexity.

The naive evaluation of single sums

M∑
`=1

sin
(
ϑ`(t )−ϑm(t )

)
, m ∈ {1,2, . . . , M } ,

requires O (M 2) sine function evaluations.

The naive evaluation of multiple sums

1
M L

M∑
`1,...,`L=1

sin
(
σ1ϑ`1 (t )+·· ·+σL ϑ`L (t )−ϑm(t )

)
,

σ1, . . . ,σL ∈ {−1,1} , m ∈ {1, . . . , M } .

requires O (M L+1) sine function evaluations.

Is a reduction from polynomial to linear complexity feasible? YES!

Mechthild Thalhammer Kuramoto systems on graphs
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Linear complexity

Novel approach.

Based on the addition theorem for the sine function and the
precomputation of sums

SM
(
ϑ(t )

)= M∑
m=1

sin
(
ϑm(t )

)
, CM

(
ϑ(t )

)= M∑
m=1

cos
(
ϑm(t )

)
,

we obtain a suitable reformulation that permits the simultaneous
evaluation of the right-hand side and requires O (M) evaluations
of sine and cosine functions.

Example (L = 3). With SM = SM (ϑ) and CM =CM (ϑ), the multiple sums rewrite as

M∑
`1 ,`2 ,`3=1

sin(σ1ϑ`1
+σ2ϑ`2

+σ3ϑ`3
−ϑm )

=
(
(σ1 +σ2 +σ3)C 2

M −σ1σ2σ3 S2
M

)
SM cos(ϑm )

+
(
(σ1σ2 +σ1σ3 +σ2σ3)S2

M −C 2
M

)
CM sin

(
ϑm (t )

)
, m ∈ {1, . . . , M } .

Mechthild Thalhammer Kuramoto systems on graphs
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Summary

Computational complexity. It is reasonable to measure the cost for the
evaluation of the defining functions of classical Kuramoto systems and
generalisations involving terms of order L by the number of sine and
cosine function evaluations in dependence of the total number of
oscillators.

A naive formulation results in polynomial complexity.

Suitable reformulations and precomputations of sums permit the
reduction to linear complexity.

Naive approach Novel approach
Classical Kuramoto systems O (M 2) O (M)
Higher-order generalisations O (M L+1) O (M)

Mechthild Thalhammer Kuramoto systems on graphs
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Numerical simulations

Numerical integration of a higher-order Kuramoto-type system involving a term of the form

M∑
`1 ,`2 ,`3=1

sin(ϑ`1
−ϑ`2

+ϑ`3
−ϑm ) =

(
C 2

M +S2
M

)(
SM cos(ϑm )−CM sin

(
ϑm (t )

))
, m ∈ {1, . . . , M } .

Computation times in seconds versus the dimensions of the system.

A naive formulation and implementation leads to quartic complexity O (M4).

A suitable reformulation and the precomputation of sums permit the reduction to
linear complexity O (M).

Naive formulation  
Reformulation and precomp.

Mechthild Thalhammer Kuramoto systems on graphs
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Kuramoto systems on graphs
A picture says more than a thousand words ...
... rigorous formulas are found in our papers.

Mechthild Thalhammer Kuramoto systems on graphs



Classical Kuramoto systems
Higher-order Kuramoto-type systems

Kuramoto systems on graphs

Kuramoto systems on graphs
Issues and novel approaches
Numerical simulations

Kuramoto systems on graphs

Kuramoto systems on graphs.

Take into account pairwise interactions between certain oscillators.

Build up the associated adjacency matrix

A = (
Am`

)
`,m∈{1,...,M } ,{

Interaction between oscillators ` and m : Am` = 1,

No interaction between oscillators ` and m : Am` = 0,

`,m ∈ {1,2, . . . , M } .

Mechthild Thalhammer Kuramoto systems on graphs



Classical Kuramoto systems
Higher-order Kuramoto-type systems

Kuramoto systems on graphs

Kuramoto systems on graphs
Issues and novel approaches
Numerical simulations

Kuramoto systems on graphs

Kuramoto systems on graphs.

The resulting system of coupled nonlinear ordinary differential
equations has the formϑ

′
m(t ) =ωm + K

Mm

M∑
`=1

Am` sin
(
ϑ`(t )−ϑm(t )

)
, t ∈ (0,T ) ,

ϑm(0) given, m ∈ {1,2, . . . , M } .

Common uniform scaling

Mm = M , m ∈ {1,2, . . . , M } .

Alternative non-uniform scaling

Mm =
M∑
`=1

Am` , m ∈ {1,2, . . . , M } .

Mechthild Thalhammer Kuramoto systems on graphs
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Kuramoto systems on graphs.

A full matrix corresponds to a classical system (all-to-all coupling).

A relatively dense matrix reflects relatively many interactions
between the oscillators.

A relatively sparse matrix reflects relatively few interactions
between the oscillators.

Mechthild Thalhammer Kuramoto systems on graphs
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Kuramoto systems on graphs

Realistic situations.

Randomly generated adjacency matrices studied in the context of
Kuramoto systems on graphs.

Adjacency matrix associated with a real data graph for animal
networks studied in the context of Cucker–Smale systems.
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See https://networkrepository.com/aves-wildbird-network.php.
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Computational complexity

Computational complexity.

The number of non-zero coefficients determines the computational
complexity (required memory capacity, computation time).

Natural questions.

Is there an alternative approach to the straightforward summation of
contributions corresponding to non-zero coefficients?

M∑
`=1

Am` 6=0

sin
(
ϑ`(t )−ϑm(t )

)
, m ∈ {1,2, . . . , M } .

Is there a possibility to use the underlying structure of the graph?

Mechthild Thalhammer Kuramoto systems on graphs
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Key idea (pre-simulation step)

Community detection.

Transform the underlying adjacency matrix (first row) by a
permutation matrix to a block matrix (second row).
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Key idea (pre-simulation step)

Identification of submatrices.

Identify relatively dense and relatively sparse submatrices.

Simple test case (left).

Four communities of oscillators. Numerous pairwise interactions
within each community and few pairwise interactions otherwise.
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Key idea (evaluation step)

Evaluation of defining function.

For a relatively dense submatrix, the main component corresponds
to a classical subsystem, which is resolved in an efficient manner by
precomputations (see first part of the talk). The contributions of zero
coefficients are compensated.

dense submatrix = full matrix − sparse submatrix

For a relatively sparse submatrix, the straightforward summation of
non-zero coefficients is used.

Mechthild Thalhammer Kuramoto systems on graphs
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Numerical simulations

General setting. Time integration of Kuramoto systems on graphs.

Specific setting. Random generation of adjacency matrices through
certain thresholds per block. Evaluation of the defining functions by
straightforward summation or approaches adapted to sparse matrices,
dense matrices, and block matrices.

Illustration of the adjacency matrix.

Comparison of the numbers of sine and cosine evaluations versus
the total numbers of oscillators.

Comparison of the computation times.

Observations. The obtained results confirm that the novel approach
is beneficial for a higher number of oscillators, where the evaluation of
functions and the computation of sums are expected to be the most
time consuming components.
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Numerical simulations

Block matrices involving two dense blocks.

Mechthild Thalhammer Kuramoto systems on graphs
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Numerical simulations

Block matrix involving four dense blocks. A more realistic adjacency
matrix describes the interactions of four communities of oscillators.

Mechthild Thalhammer Kuramoto systems on graphs
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Numerical simulations

Numerical integration of a Kuramoto model on a graph comprising four communities.
Consideration of the common uniform scaling.

Evaluation of the right-hand side by straightforward summation.

Employing the block structure of the associated adjacency matrix and using the
precomputation of sums permits a significant reduction of the computation time!

Mechthild Thalhammer Kuramoto systems on graphs
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Numerical simulations

Corresponding results for a non-uniform scaling. Synchronisation within four communities
is observed. Due to the lack of symmetry of the system, the conservation property does not
hold. Again, the computation time is significantly reduced.
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Summary and open questions

Summary.

A novel approach for the reliable and efficient evaluation of the
defining functions permits numerical simulations for large-scale
dynamical systems on graphs.

Open questions.

Suitable approximations of the defining functions to enhance
general applicability.

Thank you!
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