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Nonlinear evolution equations

General formulation. We consider nonlinear evolution equations that
permit a natural decomposition into two subproblems{

d
dt u(t ) = F1

(
u(t )

)+F2
(
u(t )

)
,

u(0) = u0 , t ∈ [0,T ] .
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Nonlinear evolution equations
Nonlinear Schrödinger equation. We consider the time-dependent
Gross–Pitaevskii equation (GPE) describing a Bose–Einstein condensate{

i ∂tΨ(x, t ) =−∆Ψ(x, t )+V (x)Ψ(x, t )+ϑ |Ψ(x, t )|2Ψ(x, t ) ,

Ψ(x,0) =Ψ0(x) , (x, t ) ∈Ω× [0,T ] .

General formulation. We obtain the above formulation by setting

u(t ) =Ψ(·, t ) , t ∈ [0,T ] ,

and assigning for regular complex-valued functions v :Ω→C the linear
differential and nonlinear multiplication operators(

F1(v)
)
(x) = c∆v(x) , c = i ,(

F2(v)
)
(x) = c

(
V (x)+ϑ |v(x)|2)v(x) , c =− i ,

x ∈Ω .
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Nonlinear evolution equations

Nonlinear parabolic equation. By analogy to the GPE, we consider{
∂tU (x, t ) =∆U (x, t )+V (x)U (x, t )+ϑ |U (x, t )|2 U (x, t ) ,

U (x,0) =U0(x) , (x, t ) ∈Ω× [0,T ] .

General formulation. We obtain the above formulation by setting

u(t ) =U (·, t ) , t ∈ [0,T ] ,

and assigning for regular real-valued functions v :Ω→R the linear
differential and nonlinear multiplication operators(

F1(v)
)
(x) = c∆v(x) , c = 1,(

F2(v)
)
(x) = c

(
V (x)+ϑ |v(x)|2)v(x) , c = 1,

x ∈Ω .
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Operator splitting methods

Standard approach. Standard operator splitting methods rely on the
presumption that the numerical approximation of the associated
subproblems

d
dt u1(t ) = F1

(
u1(t )

)
, d

dt u2(t ) = F2
(
u2(t )

)
,

is significantly simpler compared to the numerical approximation of the
original problem. The excellent behaviour of (optimised) splitting
methods (stability, accuracy, preservation of conserved quantities) has
been confirmed by a variety of contributions.
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Operator splitting methods

Alternative approach. We propose a favourable alternative to standard
operator splitting methods for settings, where the operator F2 and the
iterated commutator

G2(v) = F ′′
1 (v)F2(v)F2(v)+F ′

1(v)F ′
2(v)F2(v)+F ′

2(v)F ′
2(v)F1(v)

−F ′′
2 (v)F1(v)F2(v)−2F ′

2(v)F ′
1(v)F2(v)

have a similar structure.

Scope of applications.

Model problems. Relevant applications include the time evolution
and imaginary time propagation of GPEs.

Extensions. The approach applies to complex Ginzburg–Landau
equations and high-order semilinear parabolic equations
(quasicrystalline patterns).
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Basic idea

Basic idea. An educated guess leads us to the class of modified
operator splitting methods. In essence, we exploit a formal generalisation
of the linear case by the calculus of Lie derivatives.

Specification. For simplicity, we focus on the extension of Chin’s
fourth-order modified potential operator splitting method (1997) to
nonlinear evolution equations.
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Linear case

Linear ordinary differential equations. Our starting point is a (large)
system of linear ordinary differential equations (defined by
non-commuting square matrices)

d
dt u(t ) = A u(t )+B u(t ) , t ∈ [0,T ] .

The corresponding solution value at the final time is given by the matrix
exponential, that is

u(T ) = eT (A+B) u(0) =
(
eτ(A+B)

)N
u(0) , τ= T

N , N ∈N .
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Linear case

Standard splitting methods are built on compositions of the
factors eaτA and ebτB with suitably chosen real coefficients a,b ∈R.

Modified potential operator splitting methods are built on additional
components of the form

ebτB+c τ3 [B ,[B ,A]] ,
[
B , [B , A]

]= B 2 A−2B AB + AB 2 ,

suitably chosen real coefficients b,c ∈R.

The underlying idea of this alternative approach is to gain freedom
in the adjustment of the method coefficients and, amongst others,
to overcome an order barrier that is valid for standard splitting
methods.
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Linear case
Linear partial differential equations. Advantages of modified potential
operator splitting methods become apparent in the context of the
imaginary time propagation of linear Schrödinger equations. In this
setting, the operators A and B correspond to the Laplacian and a
potential, and hence the iterated commutator[

B , [B , A]
]= B 2 A−2B AB + AB 2

reduces to a multiplication operator, which is defined by the gradient of
the potential.

In Chin’s words: The basic idea is to incorporate an additional
higher order composite operator so that the implementation of one
algorithm requires only one evaluation of the force and one
evaluation of the force and its gradient.

This explains the common notion force-gradient operator splitting
method or modified potential operator splitting method.
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Nonlinear case
Nonlinear partial differential equations. Our guide line for the
extension to nonlinear evolution equations is provided by the calculus of
Lie derivatives.

The operators F1 and F2 take the roles of the matrices A and B .

The matrix exponential

ebτB+c τ3 [B ,[B ,A]] ,
[
B , [B , A]

]= B 2 A−2B AB + AB 2 ,

is replaced by the solution to the nonlinear evolution equation

d
dt u(t ) = b F2

(
u(t )

)+ c τ2 G2
(
u(t )

)
, t ∈ [0,τ] ,

involving the iterated commutator

G2(v) = F ′′
1 (v)F2(v)F2(v)+F ′

1(v)F ′
2(v)F2(v)+F ′

2(v)F ′
2(v)F1(v)

−F ′′
2 (v)F1(v)F2(v)−2F ′

2(v)F ′
1(v)F2(v) .
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Nonlinear case

Denoting the exact evolution operators associated with the two
subproblems by

d
dt u j (t ) =αF j

(
u j (t )

)
, Eτ,αF j

(
u j (tn)

)= u j (tn +τ) ,

the extension of Chin’s scheme

un+1 = e
1
6 τB e

1
2 τA e

2
3 τB− 1

72 τ
3[B ,[B ,A]] e

1
2 τA e

1
6 τB un ≈ u(tn+1) ,

n ∈ {0,1, . . . , N −1} .

to the nonlinear case reads as

un+1 =
(
Eτ, 1

6 F2
◦Eτ, 1

2 F1
◦Eτ, 2

3 F2− 1
72 τ

2G2
◦Eτ, 1

2 F1
◦Eτ, 1

6 F2

)
un ≈ u(tn+1) ,

n ∈ {0,1, . . . , N −1} .
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Nonlinear case

For the model problems of parabolic and Schrödinger type, the
iterated commutators are given by multiplication operators involving
first- and second-order space derivatives of the potential and the
current solution value

G2(v) = 2
(
(∇V )T (∇V )+ϑG̃2(v)

)
v ,

G̃2(v) =−∆V v2 +6(∇V )T (∇v) v +6
(
V +2ϑv2) (∇v)T (∇v) ,

G2(v) =−2 i
(
(∇V )T (∇V )−2ϑ

(
G̃21(v)+ϑG̃22(v)

))
v ,

G̃21(v) = |v |2∆V ,

G̃22(v) = |v |2 (
2ℜ(v̄∆v)+3(∇v̄)T (∇v)

)+ℜ(
v̄2 (∇v)T (∇v)

)
.
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Invariance principle

Schrödinger case. A fundamental invariance principle that holds for
standard operator splitting methods applied to the GPE (magically)
extends to modified operator splitting methods.

Theorem. The solution to the nonlinear subproblem{
d
dt u(t ) =− i f

(
u(t )

)
u(t ) ,

u(0) = u0 , t ∈ [0,τ] ,

satisfies the invariance principle

f
(
u(t )

)= f (u0) , t ∈ [0,τ] .
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Invariance principle

Sketch of the proof. Exploit the structure of the components

f (v) =β1 f1(v)+β2τ
2 f2(v) ,

F2(v) = c f1(v) v , G2(v) = c f2(v) v ,

f1(v) =V +ϑg1(v) , f2(v) = 2(∇V )T (∇V )−4ϑg6(v) ,

g1(v) = |v |2 , g2(v) =ℜ(v̄∆v) ,

g3(v) = (∇v̄)T (∇v) , g4(v) =ℜ(
v̄2 (∇v)T (∇v)

)
,

g5(v) =ϑ(
2 g2(v)+3 g3(v)

)
, g6(v) = g1(v)

(
∆V + g5(v)

)+ϑg4(v) ,

and confirm the identity

d
dt f

(
u(t )

)= 0, t ∈ [0,τ] .
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Invariance principle

Summary. The realisation of the modified operator splitting method

un+1 =
(
Eτ, 1

6 F2
◦Eτ, 1

2 F1
◦Eτ, 2

3 F2− 1
72 τ

2G2
◦Eτ, 1

2 F1
◦Eτ, 1

6 F2

)
un ,

n ∈ {0,1, . . . , N −1} ,

applied to the time-dependent Gross–Pitaevskii equation involves the time
integration of the linear Schrödinger equation (fast Fourier techniques)

d
dt u(t ) = iα∆u(t ) , t ∈ [tn , tn +τ] , Eτ,αF1

(
u(tn)

)= u(tn +τ) ,

and the pointwise evaluation of the solution representation

Eτ,β1F2+β2τ2G2
(u0) = e− iτ(β1 f1(u0)+β2τ

2 f2(u0)) u0 , τ ∈R .
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Numerical experiments

Time integration of the Gross–Pitaevskii equation involving a
quadratic potential by standard operator splitting methods and the
novel modified operator splitting method.

Global errors versus time stepsizes in space dimensions d ∈ {1,2,3}.

Nonlinear (ϑ= 1) versus simplified linear (ϑ= 0) case.

Due to the validity of the invariance principle, the application of an
explicit Runge–Kutta method is not needed (RK0).
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Numerical experiments

Time integration of the parabolic problem involving a quadratic
potential by standard splitting methods and the novel modified
operator splitting method.

Global errors versus time stepsizes in space dimensions d ∈ {1,2,3}.

Nonlinear (ϑ= 1) versus simplified linear (ϑ= 0) case.

In order to resolve the nonlinear subproblem, a fourth-order explicit
Runge–Kutta method is applied (RK4).

Depending on the stiffness of the equation, stability is ensured for
sufficiently small time stepsizes.

For a naive implementation of the Yoshida splitting method with
complex coefficients, an order reduction is observed.
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Further numerical experiments
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Numerical experiments

Corresponding results for the time-dependent Gross–Pitaevskii equation
involving a fourth-order polynomial potential.
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Numerical experiments

Corresponding results for the parabolic problem involving a fourth-order
polynomial potential.
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Numerical experiments

Time integration of the one-dimensional parabolic equation
involving a quadratic potential (left) or a fourth-order potential
(right), respectively, by the modified operator splitting method.

Global errors versus time stepsizes.

The original approach is based on the application of an explicit
fourth-order Runge–Kutta method for the numerical solution of the
nonlinear subproblem involving the double commutator
Eτ, 2

3 F2− 1
72 τ

2G2
.

Alternative approaches are based on the Strang splitting method
E 1

2 τ, 2
3 F2

◦Eτ,− 1
72 τ

2G2
◦E 1

2 τ, 2
3 F2

. Here, a reduced number of (inverse)
fast Fourier transforms is required and an improved accuracy is
observed. Furthermore, the knowledge of the exact solution to the
component E 1

2 τ, 2
3 F2

enhances the stability behaviour of the resulting
time integration method for larger time increments.
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Numerical experiments

Long-term integration of the one-dimensional Gross–Pitaevskii
equation by standard and modified operator splitting methods.

Computation of numerical approximations to the values of the
energy at time grid points tn = nτ for τ= 10−3 and n ∈ {0,1, . . . ,105}
as well as corresponding deviations with respect to the minimal
values.

The obtained results confirm the favourable geometric properties of
the modified operator splitting method.
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Summary.

Introduction of a general framework for the extension of Chin’s
fourth-order modified potential operator splitting method to
nonlinear evolution equations.

Specification of the resulting fourth-order modified operator
splitting method for the time-dependent Gross–Pitaevskii equation
and its parabolic counterpart.
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Conclusions and future work

Future work.

Rigorous analysis (stability, error) of modified operator splitting
methods applied to the time-dependent Gross–Pitaevskii equation
and its parabolic analogue.

Extensions of modified operator splitting methods to complex
Ginzburg–Landau equations and higher-order reaction-diffusion
equations with pattern formation describing quasicrystals.

Design of high-order modified operator splitting methods for
nonlinear evolution equations that are optimal with regard to a
preselected criterium such as efficiency.

Thank you very much!
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