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Opening statements

Time integration methods.

Exponential operator splitting methods constitute a favourable class
of time integration methods for differential equations.

Numerous contributions demonstrate their substantial advantages
over standard approaches regarding reliability and efficiency.

The preservation of conserved quantities over amplified timeframes
justifies the perception as geometric numerical integrators.

The design, theoretical analysis, and practical implementation for
specific applications continues to be an active area of research.
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Opening statements

Scope of applications.

Exponential operator splitting methods are appropriate for a broad
variety of relevant applications.

This includes Hamiltonian systems (classical mechanics) as well as
Schrödinger equations (quantum mechanics), where the advantages
of geometric numerical integrators become apparent.

The scope naturally extends to high-order reaction-diffusion systems
and complex Ginzburg–Landau-type equations forming beautiful
spatio-temporal patterns (biology, chemistry, geology, physics),
higher-order damped wave equations (nonlinear acoustics), and
kinetic equations (plasma physics).
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Class of problems

Class of problems. We focus on partial differential equations that
comprise linear combinations of powers of the Laplace operator,
space-dependent functions, and nonlinear multiplication operators∂tU (x, t ) =

K∑
k=0

αk ∆
kU (x, t )+W (x)U (x, t )+ f

(
U (x, t )

)
,

U (x, t0) =U0(x) , (x, t ) ∈Ω× [t0,T ] ⊂Rd ×R .

We perform short-term as well as long-term simulations for relevant
model problems in d ∈ {1,2,3} space dimensions.

High-order reaction-diffusion equations (quasicrystals)

Complex Ginzburg–Landau equations (superconductivity)

Gross–Pitaevskii equations (Bose–Einstein condensates)
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General formulation

General formulation. Setting u(t ) =U (·, t ) for t ∈ [t0,T ] and assigning
linear differential operators as well as nonlinear multiplication operators

(
A v

)
(x) =

K∑
k=0

αk ∆
k v(x) ,

(
B(v)

)
(x) =W (x) v(x)+ f

(
v(x)

)
, x ∈Ω ,

we obtain compact reformulations as nonlinear evolution equations{
d
dt u(t ) = F

(
u(t )

)= A u(t )+B
(
u(t )

)
,

u(t0) = u0 , t ∈ [t0,T ] ,

which indicate natural decompositions into two subproblems.
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Splitting approach

Splitting approach. Exponential operator splitting methods for
nonlinear evolution equations of the form{

d
dt u(t ) = F

(
u(t )

)= F1
(
u(t )

)+F2
(
u(t )

)
,

u(t0) = u0 , t ∈ [t0,T ] ,

rely on the presumption that the numerical approximation of the
associated subproblems

d
dt u1(t ) = F1

(
u1(t )

)
, d

dt u2(t ) = F2
(
u2(t )

)
,

is significantly simpler compared to the numerical approximation of the
original problem.

Side remark. In connection with our model problems, we identify F1 = A (linear
differential operator) and F2 = B (nonlinear multiplication operator).
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Splitting approach

Classical notation. The exact evolution operator associated with the
original problem is denoted by

Et ,F (u0) = u(t ) , t ∈ [t0,T ] ,

that is, we indicate the dependence on the current time, the defining
operator, and the initial state.

Alternative notation. The alternative formal notation

etDF u0 = u(t ) , t ∈ [t0,T ] ,

is justified by the calculus of Lie-derivatives. This calculus is most useful with regard
to the convergence analysis of complex exponential operator splitting methods and the
design of (processed) modified operator splitting methods, since it reveals analogies
between linear and nonlinear cases.
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Splitting approach

Time-stepping approach. We aim at the computation of numerical approximations
at certain time grid points based on a standard time-stepping approach (recurrences
for exact and numerical solution values)

t0 < t1 < ·· · < tN = T , τn = tn+1 − tn ,

un+1 =S τn ,F (un ) ≈ u(tn+1) = E τn ,F
(
u(tn )

)
,

n ∈ {0,1, . . . , N −1} .

Standard splitting methods. Any standard exponential operator
splitting method can be cast into the following form with real coefficients

Sτ,F = Eτ,bs F2 ◦Eτ,as F1 ◦ · · · ◦Eτ,b1F2 ◦Eτ,a1F1 ,
(
a j ,b j

)s
j=1 ∈R2s .
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On firm ground

On firm ground. The excellent behaviour of (optimised) exponential
operator splitting methods with respect to stability, accuracy, efficiency,
and the preservation of conserved quantities over long timeframes has
been confirmed by a variety of contributions.

Selection of comprehensive descriptions and specific studies.

Open access review of S. Blanes, F. Casas, A. Murua on splitting methods for
differential equations is now published online in Acta Numerica 33 (2024).

Hairer, Lubich, Wanner (2006), McLachlan, Quispel (2002), Sanz-Serna, Calvo
(2018).

Auzinger, Hofstätter, Koch (2019), Bao, Jin, Markowich (2002), Bertoli, Besse,
Vilmart (2021), Caliari, Zuccher (2021), Castella, Chartier, Decombes, Vilmart
(2009), Chin (1997), Danaila, Protas (2017), Goth (2022), Hansen, Ostermann
(2009), Jahnke, Lubich (2000), Kieri (2015), Kozlov, Kvaerno, Owren (2004),
Omelyan, Mryglod, Folk (2003), Strang (1968), Trotter (1959), Yoshida (1990).
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Alternative approaches

Alternative approaches. Despite the benefits of standard exponential
operator splitting methods, it remains an issue of substantial interest to
exploit alternative approaches, amongst others,

to overcome a second-order barrier valid for stable exponential
operator splitting methods applied to non-reversible systems,

to gain additional freedom in the adjustment of the method
coefficients for the design of optimised schemes.

The investigation of these fundamental questions
reveals surprising findings ...
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Alternative approaches

Complex operator splitting methods. The inclusion of complex
coefficients permits the design of stable high-order exponential
operator splitting methods with specific structural features.

Modified operator splitting methods. Modifications of standard
exponential operator splitting methods are expedient for our model
problems of complex Ginzburg-Landau type, since the nonlinear
multiplication operators F2 and the iterated commutators[

DF2 , [DF2 ,DF1 ]
]= F ′′

1 F2 F2 +F ′
1 F ′

2 F2 +F ′
2 F ′

2 F1 −F ′′
2 F1 F2 −2F ′

2 F ′
1 F2

have similar structures.

Processed operator splitting methods. The incorporation of processors
enhances the benefits of modified operator splitting methods for nonlinear
Schrödinger equations (occurrence of resonances).
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Complex operator splitting methods
Reaction-diffusion equations

Convergence analysis
Quasicrystalline pattern formation

S. Blanes, F. Casas, C. González, M. Th.
Symmetric-conjugate splitting methods for evolution equations of parabolic type.
Journal of Computational Dynamics 11/1 (2024) 108-134.
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Model problem. We consider high-order reaction-diffusion equations
involving analytic nonlinearities (K = 4 = K̃ +1)∂tU (x, t ) =

K∑
k=0

αk ∆
kU (x, t )+

K̃∑
k=1

βk
(
U (x, t )

)k ,

U (x, t0) =U0(x) , (x, t ) ∈Ω× [t0,T ] .
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Complex operator splitting methods. We apply exponential operator
splitting methods involving complex coefficients

Sτ,F = Eτ,bs F2 ◦Eτ,as F1 ◦ · · · ◦Eτ,b1F2 ◦Eτ,a1F1 ,
(
a j ,b j

)s
j=1 ∈C2s .

Structural features. Additional structural features are of importance in long-term
computations, in particular for linear evolution equations. Specifically, we apply
symmetric, symmetric-conjugate, and alternating-conjugate schemes(

b1, a2,b2, . . . , ar ,br , ar+1,br , ar , . . . ,b2, a2,b1,0
)

,(
b1, a2,b2, . . . , ar ,br , ar+1,br , ar , . . . ,b2, a2,b1,0

)
,(

b1, a2,b2, . . . , ar ,br , ar+1,br , ar , . . . ,b2, a2,b1,

b1, a2,b2, . . . , ar ,br , ar+1,br , ar , . . . ,b2, a2,b1,0) .
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Stability analysis (Hilbert space setting, Fourier).

In view of the decisive linear subproblem involving powers of the Laplacian, it
suffices to consider the principal contributions

a j AK = a j αK ∆
K , a j ,αK ∈C , j ∈ {1, . . . , s} .

For simplicity, we consider the Lebesgue space
(
L2(Ω,C),∥ ·∥L2

)
with bounded

domain Ω= [−π,π]d as underlying function space.

A complete orthonormal system is given by the family of Fourier functions
(Fm )m∈Zd , which forms a set of eigenfunctions such that

d
dx e iµx = iµe iµx , a j AK Fm = a j αK

(− λm
)K

Fm ,

λm = |m|2 =
d∑
ℓ=1

m2
ℓ , m = (m1, . . . ,md ) ∈Zd .
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Stability analysis (Hilbert space setting, Fourier). By Fourier series representations
and Parseval’s identity, we obtain (τn ,λm ≥ 0)

a j AK Fm = a j αK (−λm )K Fm ,

Eτn ,a j AK Fm = eτn a j αK (−λm )K
Fm ,

v(tn ) = ∑
m∈Zd

vm (tn )Fm , ∥v(tn )∥2
L2 = ∑

m∈Zd

|vm (tn )|2 ,

Eτn ,a j AK v(tn ) = ∑
m∈Zd

eτn a j αK (−λm )K
vm (tn )Fm ,

∥Eτn ,a j AK v(tn )∥2
L2 = ∑

m∈Zd

∣∣∣eτn a j αK (−λm )K ∣∣∣2 |vm (tn )|2 = ∑
m∈Zd

e(−1)K ℜ(a j αK )2τn λ
K
m |vm (tn )|2 .

Boundedness is ensured under the condition (λm →∞ as |m|→∞)

e(−1)K ℜ(a j αK )τn λ
K
m ≤ 1, m ∈Zd .

Mechthild Thalhammer Splitting methods for nonlinear evolution equations



Complex operator splitting methods
Modified operator splitting methods

Stability analysis

Stability analysis. For complex exponential operator splitting methods,
the following stability conditions hold

(−1)K ℜ(
a j αK

)= (−1)K
(
ℜ(a j )ℜ(αK )−ℑ(a j )ℑ(αK )

)
≤ 0, j ∈ {1, . . . , s} .

These conditions apply to high-order reaction-diffusion equations (K = 4)
and complex Ginzburg–Landau equations (K = 1).
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Theorem (Reaction-diffusion and Ginzburg–Landau equations). Assume that

the evolution equation comprises a sectorial operator A : D(A) ⊆ X → X
generating an analytic semigroup (Et ,A )t∈[t0 ,T ] on a Banach space and a
nonlinear operator B : D(B) ⊆ X → X ,

the coefficients of the complex exponential operator splitting method fulfill the
classical order conditions for some integer p ∈N≥1,

the stability bounds ∥Et ,a j A∥X←X ≤ eC1t hold for t ∈ [t0,T ] and j ∈ {1, . . . , s},

the iterated commutators arising in the local error expansion ∥adℓA (B)∥X←D ≤C2
for ℓ ∈ {0,1, . . . , p} and the solution values ∥u(t )∥D ≤C3 remain bounded with
respect to the norm of a suitably restricted subspace.

Then the following global error estimate is valid

∥un −u(tn )∥X ≤C
(
∥u0 −u(t0)∥X +τp

max

)
, n ∈ {1, . . . , N } .

Side remarks.

Analogous statements for nonlinear Schrödinger equations (framework of
strongly continuous groups).

Generalisations to full discretisations based on spectral space discretisations
combined with time-splitting methods (Hilbert space setting).
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Focus.

Complex exponential operator splitting methods (p ∈ {4,6})

High-order reaction-diffusion equations (analytic nonlinearities)

Short-term integration (stability, global error, efficiency, 3d)

Long-term integration (solution profile, pattern formation, 2d)

Verification.

The performed numerical experiments confirm the theoretical
stability and global error analysis.
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Yoshida splitting (real, symmetric, p = 4, s = 4)

Yoshida splitting (complex, symmetric, p = 4, s = 4)

Complex splitting (symmetric-conj, p = 4, s = 4)

Complex splitting (symmetric-conj, p = 6, s = 16)

Complex splitting (alternating-conj, p = 4, s = 7)

Complex splitting (alternating-conj, p = 6, s = 19)
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Numerical experiments
Summary. Design of stable and efficient sixth-order exponential operator splitting
methods based on the incorporation of complex coefficients.
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Numerical experiments

Summary. Application of complex exponential operator splitting methods in
long-term computations for the simulation of quasicrystalline pattern formation.

techmath.uibk.ac.at/mecht/MyHomepage/Research/Movie2024Quasicrystal1.m4v
techmath.uibk.ac.at/mecht/MyHomepage/Research/Movie2024Quasicrystal2.m4v
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Modified operator splitting methods
Complex Ginzburg–Landau equations

Invariance principle
Superconductivity

S. Blanes, F. Casas, C. González, M. Th.
Generalisation of splitting methods based on modified potentials to nonlinear evolution
equations of parabolic and Schrödinger type.
Computer Physics Communications 295 (2024) 109007.
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Basic idea. An educated guess leads us to the novel class of modified
operator splitting methods for nonlinear evolution equations. In essence,
we exploit a formal generalisation of the linear case based on the calculus
of Lie derivatives [

B , [B , A]
]= B 2 A−2B AB + AB 2 ,[

DF2 , [DF2 ,DF1 ]
]= F ′′

1 F2 F2 +F ′
1 F ′

2 F2 +F ′
2 F ′

2 F1 −F ′′
2 F1 F2 −2F ′

2 F ′
1 F2 .

Focus. We focus on the extension of Chin’s fourth-order modified
potential operator splitting method to Ginzburg–Landau equations.

Side remark. For linear operators F1,F2, we indeed obtain

F ′
j = F j , F ′′

j = 0,
[
DF2 , [DF2 ,DF1 ]

]= F1 F2 F2 +F2 F2 F1 −2F2 F1 F2 .
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Linear case

Linear ordinary differential equations. Our starting point are (large)
systems of linear ordinary differential equations defined by square matrices

d
dt u(t ) = A u(t )+B u(t ) , t ∈ [0,T ] , A,B ∈CM×M .

The solution values at the final time are given by the matrix exponential

u(T ) = eT (A+B) u(0) =
(
eτ(A+B)

)N
u(0) , τ= T

N , N ∈N .
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Linear case

Operator splitting methods.

Standard exponential operator splitting methods are built on several
compositions of the factors eaτA, ebτB with real coefficients a,b ∈R.

Modified potential operator splitting methods are built on

eaτA , ebτB+c τ3 [B ,[B ,A]] ,
[
B , [B , A]

]= B 2 A−2B AB + AB 2 ,

with real coefficients a,b,c ∈R (positivity a,b ≥ 0 desirable).
The underlying idea of this approach is to overcome a second-order barrier that
is valid for standard stable exponential operator splitting methods when applied
to non-reversible systems and to gain additional freedom in the adjustment of
the method coefficients for the design of optimised schemes.
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Linear case
Linear partial differential equations. The advantages of modified
potential operator splitting methods become apparent in the context of
ground and excited state computations for linear Schrödinger equations
based on an imaginary time propagation. In this setting, the arising
operators A and B correspond to the Laplacian and a potential, and
hence the iterated commutator reduces to a multiplication operator,
which is defined by the gradient of the potential

B ∼V ,
[
B , [B , A]

]∼∇V .

This explains the common notion force-gradient operator splitting
method or modified potential operator splitting method.
In Chin’s words (1997). The basic idea is to incorporate an additional higher order
composite operator so that the implementation of one algorithm requires only one
evaluation of the force and one evaluation of the force and its gradient

Sτ,F = e
1
6 τB e

1
2 τA e

2
3 τB− 1

72 τ
3[B ,[B ,A]] e

1
2 τA e

1
6 τB .
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Nonlinear case

Nonlinear partial differential equations. Our guideline for the
extension to nonlinear evolution equations is provided by the formal
calculus of Lie derivatives.

The nonlinear operators F1,F2 take the roles of the matrices A,B .

The matrix exponential

ebτB+c τ3 [B ,[B ,A]] ,
[
B , [B , A]

]= B 2 A−2B AB + AB 2 ,

is replaced by the evolution operator associated with the nonlinear
evolution equation involving the iterated commutator

d
dt u(t ) = b F2

(
u(t )

)+ c τ2
n G

(
u(t )

)
, t ∈ [tn , tn +τn] ,

G = F ′′
1 F2 F2 +F ′

1 F ′
2 F2 +F ′

2 F ′
2 F1 −F ′′

2 F1 F2 −2F ′
2 F ′

1 F2 .
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Nonlinear case

As a consequence, the extension of Chin’s fourth-order scheme

Sτ,F = e
1
6 τB e

1
2 τA e

2
3 τB− 1

72 τ
3[B ,[B ,A]] e

1
2 τA e

1
6 τB

to (general) nonlinear evolution equations is (formally) given by

Sτ,F = Eτ, 1
6 F2

◦Eτ, 1
2 F1

◦Eτ, 2
3 F2− 1

72 τ
2G ◦Eτ, 1

2 F1
◦Eτ, 1

6 F2
.
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Specification

Specification. We specify the extension of Chin’s fourth-order scheme
for our general model problem of complex Ginzburg–Landau-type

∂tU (x, t ) =α1∆U (x, t )+α0 U (x, t )+β1V (x)U (x, t )+β2
∣∣U (x, t )

∣∣2 U (x, t ) .

As special cases, it includes reaction-diffusion equations (real constants)
and time-dependent Gross–Pitaevskii equations (purely imaginary
constants).
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Specification
Iterated commutator. For the general model problem based on the complex
Ginzburg–Landau-type equation, the iterated commutator is given by

G =G1 +G2 +G3 +G4 ,

G1(v) = 4ℜ(β1)β2
(−ℜ(α2) |v |2 v +2α1 |∇v |2 v + iℑ(α1)∆v v2 +α1 ∇v ·∇v v

)
V ,

G2(v) = 2
(
α1β

2
1 ∇V +4α1 ℜ(β1)β2 ∇v v + (

3α1β1 +α1β1 −2α1β1
)
β2 ∇v v

)
·∇V v ,

G3(v) =−2
(
iα1 ℑ(β1)+α1β1

)
β2∆V |v |2 v +2α1

(
2β2

2 +3 |β2|2
)∇v ·∇v v2 v ,

G4(v) = 4
(
2α1β

2
2 +3α1 |β2|2 −2α1 |β2|2

) |∇v |2 |v |2 v + 2
(
2α1β

2
2 +α1 |β2|2

−2α1 |β2|2
)∇v ·∇v v3 +8 iℑ(α1) |β2|2 ℜ

(
∆v v

) |v |2 v .

The simplification for reaction-diffusion equations with (normalised) real constants is

G(v) = 2
(∇V ·∇V −∆V v2 +6∇V ·∇v v +6

(
V +2 v2)∇v ·∇v)

)
v .

The simplification for GPEs with (normalised) purely imaginary constants is

G(v) =−2 i
(
∇V ·∇V −2

(|v |2∆V +|v |2 (
2ℜ(v∆v)+3∇v ·∇v

)+ℜ(
v2 ∇v ·∇v

)))
v .
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Invariance principle
Invariance principle.

A fundamental invariance principle holds for standard exponential
operator splitting methods applied to nonlinear Schrödinger
equations (Gross–Pitaevskii equations).

It (magically) extends to modified operator splitting methods.

Theorem. The exact solution to the nonlinear subproblem comprising the iterated
commutator { d

dt u(t ) = i
(

f1
(
u(t )

)+τ2
n f2

(
u(t )

))
u(t ) ,

u(tn ) = un , t ∈ [tn , tn +τn ] ,

satisfies the invariance principle

f1
(
u(t )

)+τ2
n f2

(
u(t )

)= f1(un )+τ2
n f2(un ) , t ∈ [tn , tn +τn ] .

Proof. Verify the identity

d
dt

(
f1

(
u(t )

)+τ2
n f2

(
u(t )

))= 0, t ∈ [tn , tn +τn ] .
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Invariance principle

Summary. The realisation of the modified operator splitting method

un+1 = (
E
τ, 1

6 F2
◦E

τ, 1
2 F1

◦E
τ, 2

3 F2− 1
72 τ

2G ◦E
τ, 1

2 F1
◦E

τ, 1
6 F2

)
un ,

n ∈ {0,1, . . . , N −1} ,

applied to Gross–Pitaevskii equations involves the time integration of linear
Schrödinger equations (fast Fourier techniques)

d
dt u(t ) = ia∆u(t ) , t ∈ [tn , tn +τn ] ,

and pointwise evaluations of solution representations of the form

E
τn ,bF2+cτ2

nG (un ) = eiτn (b f1(un )+cτ2
n f2(un )) un , τn ∈R .

Due to the invariance principle, the time integration of nonlinear problems
reduces to the time integration of linear subproblems.
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Numerical experiments

Focus.

Fourth-order modified operator splitting method (in comparison
with complex exponential operator splitting methods)

Complex Ginzburg–Landau equations and related evolution
equations of parabolic and Schrödinger type (Gross–Pitaevskii)

Short-term integration (stability, global error, efficiency, 3d)

Long-term integration (solution profile, 2d)

Verification.

The performed numerical experiments confirm the validity of the
invariance principle for modified operator splitting methods as well
as the theoretical stability and global error analysis for complex
exponential operator splitting methods.
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Numerical experiments

Practical aspects.

Even though the formula for the iterated commutator is lengthy, the
implementation of modified operator splitting methods is
straightforward.

The application of the second-order Strang splitting method to the
nonlinear subproblem (u′ = bF2(u)+ cτ2G(u)) and the knowledge of
the exact solution (u′ = bF2(u)) improves stability and efficiency.

The correct implementation of higher-order complex exponential
operator splitting methods for evolution equations involving
non-analytic nonlinearities is a subtle issue and requires suitable
reformulations as systems for (u,u). Otherwise, significant order
reductions are encountered!
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Numerical experiments

Yoshida splitting (real, symmetric, p = 4, s = 4)

Yoshida splitting (complex, symmetric, p = 4, s = 4)

Complex splitting (symmetric-conj, p = 4, s = 4)

Complex splitting (symmetric-conj, p = 6, s = 16)

Complex splitting (alternating-conj, p = 4, s = 7)

Complex splitting (alternating-conj, p = 6, s = 19)

Modified splitting (real, p = 4, s = 3)

Modified splitting (Strang, RKM)
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Numerical experiments

Observations.

The modified operator splitting method remains stable and retains order four.

When applied to non-reversible systems, the fourth-order Yoshida splitting
method involving negative coefficients suffers from severe instabilities.

A naive implementation of higher-order real or complex exponential operator
splitting methods for complex Ginzburg–Landau-type equations involving
non-analytic nonlinearities leads to significant order reductions.
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Numerical experiments
Summary. Design and practical implementation of stable and efficient fourth-order
operator splitting methods for complex Ginzburg–Landau-type equations based on the
incorporation of iterated commutators.
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Left/Right: Stability issues for complex splittings (α1 ∈ {1+ i,1+10 i}). Up: Order. Down: Cost.
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Numerical experiments

Summary. Application of modified operator splitting methods in long-term
computations for the simulation of nonlinear waves.

techmath.uibk.ac.at/mecht/MyHomepage/Research/Movie2024GinzburgLandau1.m4v
techmath.uibk.ac.at/mecht/MyHomepage/Research/Movie2024GinzburgLandau2.m4v
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Final conclusions and future work

Summary. Our theoretical results and numerical experiments confirm
the benefits of complex exponential operator splitting methods for
reaction-diffusion equations and of modified operator splitting methods
for complex Ginzburg–Landau-type equations.

General perspective. Our investigations range from the design of time
integration methods and their theoretical analysis to implementation
aspects for relevant applications.
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Final conclusions and future work

Future work to complete the picture.

Rigorous convergence analysis of modified operator splitting
methods applied to Ginzburg–Landau-type equations.

Implementation of modified operator splitting methods for
high-order reaction-diffusion equations describing quasicrystals.

Thorough investigation and design of (processed) modified operator
splitting methods in the context of resonances.

Thank you very much!
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Stability analysis – Special case
Stability analysis. For complex exponential operator splitting methods,
the following stability conditions hold

(−1)K ℜ(
a j αK

)= (−1)K
(
ℜ(a j )ℜ(αK )−ℑ(a j )ℑ(αK )

)
≤ 0, j ∈ {1, . . . , s} .

These conditions apply to high-order reaction-diffusion equations (K = 4)
and complex Ginzburg–Landau equations (K = 1).

Side remark. For exponential operator splitting methods involving real coefficients
(a j )s

j=1, the following simplifications are valid

ℑ(a j ) = 0, j ∈ {1, . . . , s} =⇒ (−1)K ℜ(a j )ℜ(αK ) ≤ 0, j ∈ {1, . . . , s} .

For well-posed reaction-diffusion equations such that (−1)K ℜ(αK ) ≤ 0, this yields the
stability conditions (second-order barrier)

a j =ℜ(a j ) ≥ 0, j ∈ {1, . . . , s} .

Due to ℜ(αK ) = 0, stability is ensured for Schrödinger equations.
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Processed (modified) splitting methods
Nonlinear Schrödinger equations

Observation of resonances
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Processed methods

Basic idea. We raise the order and enhance the efficiency of a time
integration method when applied with constant time stepsizes

un =S n
τ,F (u0)

by incorporating a processor (corrector)

un =
((

P −1
τ,F ◦Sτ,F ◦Pτ,F

)◦ · · · ◦ (
P −1
τ,F ◦Sτ,F ◦Pτ,F

))
(u0)

= (
P −1
τ,F ◦S n

τ,F ◦Pτ,F
)
(u0) .
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Processed methods

Special setting. Processing techniques permit the design of higher-order
exponential operator splitting methods involving low numbers of stages.
We observe favourable performances for nonlinear Schrödinger equations
in long-term computations (occurrence of resonances).

Example. A fourth-order processed modified operator splitting method
involving a single stage is given by

d
dt u(t ) = A u(t )+B

(
u(t )

)
, t ∈ [t0,T ] ,

Sτ,F = Eτ, 1
2 A ◦Eτ,B− 1

24 τ
2G ◦Eτ, 1

2 A ,

P : (ã4, b̃3, ã3, b̃2, ã2, b̃1) , P −1 : − (b̃1, ã2, b̃2, ã3, b̃3, ã4) , ã3 = ã2 .
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Numerical experiments

Focus.

We apply standard and (processed) modified operator splitting
methods for the time integration of nonlinear Schrödinger equations
over longer timeframes.

For various choices of the constant time stepsizes, we determine the
errors in energy at the final time.
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Numerical experiments

Lie splitting (real, p = 1, s = 1)

Strang splitting (real, symmetric, p = 2, s = 2)

Yoshida splitting (real, symmetric, p = 4, s = 4)

Modified splitting (real, p = 4, s = 3)

Processed modified splitting (real, p = 4, s = 1)
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Numerical experiments

Observations.

For smaller / larger time stepsizes, the errors in energy at the final
time are smooth / erratic (phenomenon of resonances).

This behaviour can be understood for simplified test cases such as
linear differential equations defined by Pauli matrices, where explicit
representations of the exact and numerical solutions are known.

The analysis of nonlinear cases is a highly complex problem.

Refinements of the space discretisations as well as the sizes of
potentials and nonlinearities effect the occurrence of resonances.

The stated fourth-order processed modified operator splitting
method performs in a favourable manner. This justifies the
thorough investigation of this class of methods.
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Numerical experiments
Summary. Design and practical implementation of stable and efficient operator
splitting methods for the long-term integration of nonlinear Schrödinger equations
based on the incorporation of iterated commutators and processors.
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