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Opening statements

Time integration methods.

Exponential operator splitting methods constitute a favourable class
of time integration methods for differential equations.

Numerous contributions demonstrate their substantial advantages
over standard approaches regarding reliability and efficiency.

The preservation of conserved quantities over amplified timeframes
justifies the perception as geometric numerical integrators.

The design, theoretical analysis, and practical implementation for
specific applications continues to be an active area of research.
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Opening statements

Scope of applications.

Exponential operator splitting methods are appropriate for a broad
variety of relevant applications.

This includes Hamiltonian systems (classical mechanics) as well as
Schrödinger equations (quantum mechanics), where the advantages
of geometric numerical integrators become apparent.

The scope naturally extends to high-order reaction-diffusion systems
and complex Ginzburg–Landau-type equations forming beautiful
spatio-temporal patterns (biology, chemistry, geology, physics),
higher-order damped wave equations (nonlinear acoustics), and
kinetic equations (plasma physics).
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Class of problems

Class of problems. We focus on partial differential equations that
comprise linear combinations of powers of the Laplace operator,
space-dependent functions, and nonlinear multiplication operators∂tU (x, t ) =

K∑
k=0

αk ∆
kU (x, t )+W (x)U (x, t )+ f

(
U (x, t )

)
,

U (x, t0) =U0(x) , (x, t ) ∈Ω× [t0,T ] ⊂Rd ×R .

We perform short-term as well as long-term simulations for relevant
model problems in d ∈ {1,2,3} space dimensions.

High-order reaction-diffusion equations (quasicrystals)

Complex Ginzburg–Landau equations (superconductivity)

Gross–Pitaevskii equations (Bose–Einstein condensates)
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General formulation

General formulation. Setting u(t ) =U (·, t ) for t ∈ [t0,T ] and assigning
linear differential operators as well as nonlinear multiplication operators

(
A v

)
(x) =

K∑
k=0

αk ∆
k v(x) ,

(
B(v)

)
(x) =W (x) v(x)+ f

(
v(x)

)
, x ∈Ω ,

we obtain compact reformulations as nonlinear evolution equations{
d
dt u(t ) = F

(
u(t )

)= A u(t )+B
(
u(t )

)
,

u(t0) = u0 , t ∈ [t0,T ] ,

which indicate natural decompositions into two subproblems.
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Splitting approach

Splitting approach. Exponential operator splitting methods for
nonlinear evolution equations of the form{

d
dt u(t ) = F

(
u(t )

)= F1
(
u(t )

)+F2
(
u(t )

)
,

u(t0) = u0 , t ∈ [t0,T ] ,

rely on the presumption that the numerical approximation of the
associated subproblems

d
dt u1(t ) = F1

(
u1(t )

)
, d

dt u2(t ) = F2
(
u2(t )

)
,

is significantly simpler compared to the numerical approximation of the
original problem.

Mechthild Thalhammer Operator splitting methods



Complex operator splitting methods
Modified operator splitting methods

Class of problems
Splitting approach

Splitting approach

Classical notation. The exact evolution operator associated with the
original problem is denoted by

Et ,F (u0) = u(t ) , t ∈ [t0,T ] ,

that is, we indicate the dependence on the current time, the defining
operator, and the initial state.

Alternative notation. The alternative formal notation

etDF u0 = u(t ) , t ∈ [t0,T ] ,

is justified by the calculus of Lie-derivatives. This calculus is most useful with regard
to the convergence analysis of complex exponential operator splitting methods and the
design of (processed) modified operator splitting methods, since it reveals analogies
between linear and nonlinear cases.
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Splitting approach

Time-stepping approach. We aim at the computation of numerical approximations
at certain time grid points based on a standard time-stepping approach (recurrences
for exact and numerical solution values)

t0 < t1 < ·· · < tN = T , τn = tn+1 − tn ,

un+1 =S τn ,F (un ) ≈ u(tn+1) = E τn ,F
(
u(tn )

)
,

n ∈ {0,1, . . . , N −1} .

Standard splitting methods. Any standard exponential operator
splitting method can be cast into the following form with real coefficients

Sτ,F = Eτ,bs F2 ◦Eτ,as F1 ◦ · · · ◦Eτ,b1F2 ◦Eτ,a1F1 ,
(
a j ,b j

)s
j=1 ∈R2s .
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On firm ground

On firm ground. The excellent behaviour of (optimised) exponential
operator splitting methods with respect to stability, accuracy, efficiency,
and the preservation of conserved quantities over long timeframes has
been confirmed by a variety of contributions.

Selection of comprehensive descriptions and specific studies.

Open access review of S. Blanes, F. Casas, A. Murua on splitting methods for
differential equations (Acta Numerica 33, 2024).

Hairer, Lubich, Wanner (2006), McLachlan, Quispel (2002), Sanz-Serna, Calvo
(2018).

Auzinger, Hofstätter, Koch (2019), Bao, Jin, Markowich (2002), Bertoli, Besse,
Vilmart (2021), Caliari, Zuccher (2021), Castella, Chartier, Decombes, Vilmart
(2009), Chin (1997), Danaila, Protas (2017), Goth (2022), Hansen, Ostermann
(2009), Jahnke, Lubich (2000), Kieri (2015), Kozlov, Kvaerno, Owren (2004),
Omelyan, Mryglod, Folk (2003), Strang (1968), Trotter (1959), Yoshida (1990).
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Alternative approaches

Alternative approaches. Despite the benefits of standard exponential
operator splitting methods, it remains an issue of substantial interest to
exploit alternative approaches, amongst others,

to overcome a second-order barrier valid for stable exponential
operator splitting methods applied to non-reversible systems,

to gain additional freedom in the adjustment of the method
coefficients for the design of optimised schemes.

The investigation of these fundamental questions
reveals surprising findings ...
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Alternative approaches

Complex operator splitting methods. The inclusion of complex
coefficients permits the design of stable high-order exponential
operator splitting methods with specific structural features.

Modified operator splitting methods. Modifications of standard
exponential operator splitting methods are expedient for our model
problems of complex Ginzburg-Landau type, since the nonlinear
multiplication operators F2 and the iterated commutators[

DF2 , [DF2 ,DF1 ]
]= F ′′

1 F2 F2 +F ′
1 F ′

2 F2 +F ′
2 F ′

2 F1 −F ′′
2 F1 F2 −2F ′

2 F ′
1 F2

have similar structures.
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Complex operator splitting methods
Reaction-diffusion equations

Convergence analysis
Quasicrystalline pattern formation

S. Blanes, F. Casas, C. González, M. Th.
Symmetric-conjugate splitting methods for evolution equations of parabolic type.
Journal of Computational Dynamics 11/1 (2024) 108-134.
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Numerical experiments

Summary. Application of complex exponential operator splitting methods in
long-term computations for the simulation of quasicrystalline pattern formation.

techmath.uibk.ac.at/mecht/MyHomepage/Research/Movie2024Quasicrystal1.m4v
techmath.uibk.ac.at/mecht/MyHomepage/Research/Movie2024Quasicrystal2.m4v
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Modified operator splitting methods
Complex Ginzburg–Landau equations

Invariance principle
Superconductivity

S. Blanes, F. Casas, C. González, M. Th.
Generalisation of splitting methods based on modified potentials to nonlinear evolution
equations of parabolic and Schrödinger type.
Computer Physics Communications 295 (2024) 109007.
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Summary. Application of modified operator splitting methods in long-term
computations for the simulation of nonlinear waves.

techmath.uibk.ac.at/mecht/MyHomepage/Research/Movie2024GinzburgLandau1.m4v
techmath.uibk.ac.at/mecht/MyHomepage/Research/Movie2024GinzburgLandau2.m4v
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Adaptive modified operator splitting methods
Gross–Pitaevskii equations

Groundstate computation, Time evolution
Bose–Einstein condensation
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Summary. Design of a stable and efficient fourth-order exponential operator splitting
method based on the incorporation of an iterated commutator.
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Parabolic equation.

C1 = 0.5, C2 = -0.5, C3 = 0, C4 = 0.

 Time = 1. M = 512.

p = 1 (Standard)

p = 2 (Standard)

p = 4 (Standard)

p = 4 (Modified)
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Schrödinger equation.

C1 = -0.5, C2 = 0.5, C3 = 0, C4 = 0.

 Time = 1. M = 512.

p = 1 (Standard)

p = 2 (Standard)

p = 4 (Standard)

p = 4 (Modified)

10-2 10-1 100

Time stepsize

10-15

10-10

10-5

100

105

G
lo

b
a
l 
e
rr

o
r

Parabolic equation.

C1 = 0.5, C2 = -0.5, C3 = 0, C4 = -1.

 Time = 1. M = 512.

p = 1 (Standard)

p = 2 (Standard)

p = 4 (Standard)

p = 4 (Modified)
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Schrödinger equation.

C1 = -0.5, C2 = 0.5, C3 = 0, C4 = 1.

 Time = 1. M = 512.

p = 1 (Standard)

p = 2 (Standard)

p = 4 (Standard)

p = 4 (Modified)

Severe stability issues for a standard fourth-order splitting method
applied to linear (up) and nonlinear (down) problems of parabolic type (left).
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Numerical experiments
Questions. Favourable behaviour of a fourth-order modified operator splitting method
for linear and nonlinear Schrödinger-type equations over longer times? Benefits of a
simple local error control based on the second-order Strang splitting method?
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Schrödinger equation.

C1 = -0.5, C2 = 0.5, C3 = 0, C4 = 0.

Modified splitting method (Strang, p = 4(2)).

 Time = 0. N = 1695. M = 512.
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Schrödinger equation.

C1 = -0.5, C2 = 0.5, C3 = 0, C4 = 0.

Modified splitting method (Strang, p = 4(2)).

 Time = 100. N = 1695. M = 512.
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Schrödinger equation.

C1 = -0.5, C2 = 0.5, C3 = 0, C4 = 1.

Modified splitting method (Strang, p = 4(2)).

 Time = 0. N = 1643. M = 512.
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Schrödinger equation.

C1 = -0.5, C2 = 0.5, C3 = 0, C4 = 1.

Modified splitting method (Strang, p = 4(2)).

 Time = 100. N = 1643. M = 512.

Linear (up) versus nonlinear (down) cases.
Solution profiles ℜ(

ψ(x, t )
)
for initial (left) and final (right) times.
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Numerical experiments
Summary. Mass preservation of a fourth-order modified operator splitting method for
linear and nonlinear Schrödinger equations over longer times.
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Schrödinger equation.

C1 = -0.5, C2 = 0.5, C3 = 0.

Strang splitting method (p = 2).

Error in mass over time. M = 512. N = 1695.
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Schrödinger equation.

C1 = -0.5, C2 = 0.5, C3 = 0.

Splitting method by Blanes and Moan (p = 4).

Error in mass over time. M = 512. N = 1695.
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Schrödinger equation.

C1 = -0.5, C2 = 0.5, C3 = 0.

Modified splitting method (Strang, p = 4(2)).

Error in mass over time. M = 512. N = 1695.
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Schrödinger equation.

C1 = -0.5, C2 = 0.5, C3 = 1.

Strang splitting method (p = 2).

Error in mass over time. M = 512. N = 1643.
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Schrödinger equation.

C1 = -0.5, C2 = 0.5, C3 = 1.

Splitting method by Blanes and Moan (p = 4).

Error in mass over time. M = 512. N = 1643.
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Schrödinger equation.

C1 = -0.5, C2 = 0.5, C3 = 1.

Modified splitting method (Strang, p = 4(2)).

Error in mass over time. M = 512. N = 1643.

Linear (up) versus nonlinear (down) case. Uniform (left, middle) versus non-uniform (right) time grid.
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Numerical experiments
Summary. Energy preservation of a fourth-order modified operator splitting method
for linear and nonlinear Schrödinger equations over longer times.

0 20 40 60 80 100

0

0.5

1

1.5

2

2.5

3

10
-7

Schrödinger equation.

C1 = -0.5, C2 = 0.5, C3 = 0.

Strang splitting method (p = 2).

Error in energy over time. M = 512. N = 1695.
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Schrödinger equation.

C1 = -0.5, C2 = 0.5, C3 = 0.

Splitting method by Blanes and Moan (p = 4).

Error in energy over time. M = 512. N = 1695.
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Schrödinger equation.

C1 = -0.5, C2 = 0.5, C3 = 0.

Modified splitting method (Strang, p = 4(2)).

Error in energy over time. M = 512. N = 1695.
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Schrödinger equation.

C1 = -0.5, C2 = 0.5, C3 = 1.

Strang splitting method (p = 2).

Error in energy over time. M = 512. N = 1643.
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Schrödinger equation.

C1 = -0.5, C2 = 0.5, C3 = 1.

Splitting method by Blanes and Moan (p = 4).

Error in energy over time. M = 512. N = 1643.
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Schrödinger equation.

C1 = -0.5, C2 = 0.5, C3 = 1.

Modified splitting method (Strang, p = 4(2)).

Error in energy over time. M = 512. N = 1643.

Linear (up) versus nonlinear (down) case. Uniform (left, middle) versus non-uniform (right) time grid.
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Numerical experiments

Observation. Improved energy preservation for lower tolerances. Rigorous analysis?
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Schrödinger equation.

C1 = -0.5, C2 = 0.5, C3 = 1.

Modified splitting method (Strang, p = 4(2)).

Error in energy over time. M = 512. N = 763.
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Schrödinger equation.

C1 = -0.5, C2 = 0.5, C3 = 1.

Modified splitting method (Strang, p = 4(2)).

Error in energy over time. M = 512. N = 1643.
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Schrödinger equation.

C1 = -0.5, C2 = 0.5, C3 = 1.

Modified splitting method (Strang, p = 4(2)).

Error in energy over time. M = 512. N = 3537.
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Schrödinger equation.

C1 = -0.5, C2 = 0.5, C3 = 1.

Modified splitting method (Strang, p = 4(2)).

Error in energy over time. M = 512. N = 7619.
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Schrödinger equation.

C1 = -0.5, C2 = 0.5, C3 = 1.

Modified splitting method (Strang, p = 4(2)).

Error in energy over time. M = 512. N = 16413.
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Schrödinger equation.

C1 = -0.5, C2 = 0.5, C3 = 1.

Modified splitting method (Strang, p = 4(2)).

Error in energy over time. M = 512. N = 35361.

Nonlinear case. Tolerances in {10−3,10−4,10−5,10−6,10−7,10−8}.
Numbers of time steps (763,1643,3537,7619,16413,35361) with ratios ≈ 2.15.
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Numerical experiments
Summary. Simulation of linear Schrödinger equations. Application of adaptive
modified operator splitting methods for groundstate computations (imaginary time
method, normalised gradient flow) and time evolution.
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Parabolic equation.

Modified splitting method (Strang, p = 4(2)).

 Time = 8.1454. C1 = 0.5, C2 = -0.5, C3 = 0. M = 512.

N = 349. E = -0.5. Err = 6.3648e-08.
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Schrödinger equation.

Modified splitting method (Strang, p = 4(2)).

 Time = 10. C1 = -0.5, C2 = 0.5, C3 = 0. M = 512.

N = 3312. E = 0.5. Err = 6.9935e-08.

Linear case (1d). Evolution of solution profiles ℜ(
ψ(x, t )

)
in imaginary and real times.

Ground state solution given by Hermite basis function. Verify time-dependent solution ψ(x, t ) = e− iµ tφ(x).

techmath.uibk.ac.at/mecht/MyHomepage/Research/Movie2025GS1Linear1d.m4v
techmath.uibk.ac.at/mecht/MyHomepage/Research/Movie2025GS2Linear1d.m4v
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Numerical experiments

Summary. Straightforward extension to higher space dimensions.

Linear case (2d). Evolution of solution profiles ℜ(
ψ(x, t )

)
in imaginary and real times.

Ground state solution given by Hermite basis function. Verify time-dependent solution ψ(x, t ) = e− iµ tφ(x).

techmath.uibk.ac.at/mecht/MyHomepage/Research/Movie2025GS1Linear2d.m4v
techmath.uibk.ac.at/mecht/MyHomepage/Research/Movie2025GS2Linear2d.m4v
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Numerical experiments
Summary. Simulation of Gross-Pitaevskii equations (Bose–Einstein condensates).
Application of adaptive modified operator splitting methods for groundstate
computations (imaginary time method, normalised gradient flow) and time evolution.
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Parabolic equation.

Modified splitting method (Strang, p = 4(2)).

 Time = 11.5762. C1 = 0.5, C2 = -0.5, C3 = -1. M = 512.

N = 382. E = -0.68949. 
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Schrödinger equation.

Modified splitting method (Strang, p = 4(2)).

 Time = 10. C1 = -0.5, C2 = 0.5, C3 = 1. M = 512.

N = 3427. E = 0.68949. Err = 0.0042946.

Nonlinear case (1d). Evolution of solution profiles ℜ(
ψ(x, t )

)
in imaginary and real times.

Verify time-dependent solution ψ(x, t ) = e− iµ tφ(x).

techmath.uibk.ac.at/mecht/MyHomepage/Research/Movie2025GS1Nonlinear1d.m4v
techmath.uibk.ac.at/mecht/MyHomepage/Research/Movie2025GS2Nonlinear1d.m4v
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Numerical experiments

Summary. Straightforward extension to higher space dimensions.

Nonlinear case (2d). Evolution of solution profiles ℜ(
ψ(x, t )

)
in imaginary and real times.

techmath.uibk.ac.at/mecht/MyHomepage/Research/Movie2025GS1Nonlinear2d.m4v
techmath.uibk.ac.at/mecht/MyHomepage/Research/Movie2025GS2Nonlinear2d.m4v
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Numerical experiments

Summary. Groundstate computation based on adaptive modified operator splitting
method (additional lattice potential, strong nonlinearity). Improvement by stepwise
reduction of prescribed tolerances. Initial value given by Thomas–Fermi approximation.

techmath.uibk.ac.at/mecht/MyHomepage/Research/Movie2025GS1LatticeNonlinear2d.m4v
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Final conclusions and future work

Summary. Our theoretical results and numerical experiments confirm
the benefits of complex exponential operator splitting methods for
reaction-diffusion equations and of modified operator splitting methods
for complex Ginzburg–Landau-type equations.

General perspective. Our investigations range from the design of time
integration methods and their theoretical analysis to implementation
aspects for relevant applications.
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Final conclusions and future work

Future work to complete the picture.

Rigorous convergence analysis of modified operator splitting
methods applied to Ginzburg–Landau-type equations.

Extensions to other classes of nonlinear evolution equations.

Thank you very much!
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