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Main reference (Optimal control)

Main reference (Optimal control). M. Hintermüller, D. Marahrens,
P. Markowich, Ch. Sparber. Optimal bilinear control of Gross–Pitaevskii
equations. SIAM Journal on Control and Optimization (2013).

Formulation of optimal control problem

Proof of well-posedness and existence of optimal control

Derivation of first-order optimality system
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Main inspiration (Quantum systems)

Main inspiration (Quantum systems). Experimental realisation and
manipulation of Bose–Einstein condensates by Hanns-Christoph Nägerl
and his team.

Hanns-Christoph Nägerl’s research centers on experimental quantum many-
body physics with systems of ultracold atoms and molecules. A central
goal is to “quantum engineer” novel states of matter using the toolbox of
quantum atom optics. At temperatures in the nanokelvin range, quantum
mechanics dominates the individual and collective properties of the par-
ticles, giving rise to novel phases for quantum matter and to non-trivial
phase transitions between the different quantum phases. Using advanced
techniques such as laser cooling, Bose-Einstein condensation, and coherent
laser control, Nägerl’s group investigates e.g. the properties of highly corre-
lated many-body states that are generated when the particles are confined
to periodic potentials or to lower dimensions.

www.uibk.ac.at/en/sp-physik/forschung/forschungsgruppen/experimental-physics/
strongly-correlated-quantum-matter
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Optimal control problem

Bilinear optimal control problem. The basic aim is to minimise an
objective functional

J (α) →minimal

under the condition that the time evolution of a parameter-dependent
quantum state

ψ=ψ(α)

is governed by a Gross–Pitaevskii equation.

Typically, the considered objective functionals comprise

the physical quantities to be minimised (observables, target states),

the physical work for the desired outcome (time derivatives of energy
functionals, integrals of certain powers up to fixed control times), and

penalisation terms (integrals of time derivatives of control parameters).
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Fundamental model (Gross–Pitaevskii equation)
Fundamental model. The time-dependent Gross–Pitaevskii equation

iħ∂tψ(x, t ) =− ħ2

2m ∆ψ(x, t )+W (x, t )ψ(x, t )+N g f
(|ψ(x, t )|2)ψ(x, t )

for the macroscopic wave function ψ :Rd × [t0,T ] →C : (x, t ) 7→ψ(x, t )
involves physical parameters (particle mass and number), an external
space-time-dependent potential, and a nonlinear term.

The characteristic scattering length describes repulsive / attractive
interparticle collisions and defines the coupling constant g = 4πħ2a

m .

Commonly, cubic ( f (x) = x) and quintic ( f (x) = x2) nonlinearities or
generalisations ( f (x) = xσ with σ ∈ (0,2] for d = 3) are considered.

Typically, the real-valued potential W (x, t ) =U (x)+α(t )V (x)
comprises a trapping potential (harmonic confinement) and a
control potential (intensity and spatial profile of the external laser
field, Gaussian-like, lattice, additional kicks).
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Our approach (Specific setting)

Specific setting. The numerical solution of the optimal control problem
involves a sequence of initial value problems for nonlinear Schrödinger
equations with space-time-dependent potentials.

Our approach. Apply higher-order geometric numerical integrators
based on commutator-free Magnus-type and operator splitting methods
to obtain reliable and efficient numerical approximations.
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Our approach (General setting)

General setting. The considered problems can be cast into the form

d
dt u(t ) = F

(
t ,u(t )

)= F1
(
t ,u(t )

)+F2
(
t ,u(t )

)
.

Our approach. Consider different classes of nonlinear evolution
equations with a similar structure of the defining operators.

Commutator-free Magnus-type integrators permit a reduction to
autonomous problems (high-order approximations by evaluation at
certain intermediate times and composition)

d
dt u(t ) = F

(
t∗,u(t )

)= F1
(
t∗,u(t )

)+F2
(
t∗,u(t )

)
.

Operator splitting methods permit a reduction to subproblems of a
simpler structure (high-order approximations by certain method
coefficients scaling the time increment and composition)

d
dt u(t ) = F1

(
t∗,u(t )

)
, d

dt u(t ) = F2
(
t∗,u(t )

)
.
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Class of problems
Splitting approach

Operator splitting methods in a nutshell
Time-dependent Gross–Pitaevskii equations and related problems

Standard and novel classes of splitting methods
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Class of problems
Splitting approach

Time integration methods

Time integration methods.

Exponential operator splitting methods constitute a favourable class
of time integration methods for differential equations.

Numerous contributions demonstrate their substantial advantages
over standard approaches regarding reliability and efficiency.

The preservation of conserved quantities over amplified timeframes
justifies the perception as geometric numerical integrators.

The design, theoretical analysis, and practical implementation for
specific applications continues to be an active area of research.
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Class of problems
Splitting approach

Scope of applications

Scope of applications.

Exponential operator splitting methods are appropriate for a broad
variety of relevant applications.

This includes Hamiltonian systems (classical mechanics) as well as
Schrödinger equations (quantum mechanics), where the advantages
of geometric numerical integrators become apparent.

The scope naturally extends to high-order reaction-diffusion systems
and complex Ginzburg–Landau-type equations forming beautiful
spatio-temporal patterns (biology, chemistry, geology, physics),
higher-order damped wave equations (nonlinear acoustics), and
kinetic equations (plasma physics).
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Class of problems
Splitting approach

Class of problems
Class of problems. We focus on partial differential equations that
comprise linear combinations of powers of the Laplace operator,
space-dependent functions, and nonlinear multiplication operators∂tU (x, t ) =

K∑
k=0

αk ∆
kU (x, t )+W (x)U (x, t )+ f

(
U (x, t )

)
,

U (x, t0) =U0(x) , (x, t ) ∈Ω× [t0,T ] ⊂Rd ×R .

We perform short-term as well as long-term simulations for relevant
model problems in d ∈ {1,2,3} space dimensions.

High-order reaction-diffusion equations (quasicrystals)

Complex Ginzburg–Landau equations (superconductivity)

Gross–Pitaevskii systems (multi-species Bose–Einstein condensates)

We obtain compact reformulations as nonlinear evolution equations which
indicate natural decompositions into two subproblems.
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Class of problems
Splitting approach

Splitting approach
Splitting approach. Exponential operator splitting methods for
nonlinear evolution equations of the form{

d
dt u(t ) = F

(
u(t )

)= F1
(
u(t )

)+F2
(
u(t )

)
,

u(t0) = u0 , t ∈ [t0,T ] ,

rely on the presumption that the numerical approximation of the
associated subproblems

d
dt u1(t ) = F1

(
u1(t )

)
, d

dt u2(t ) = F2
(
u2(t )

)
,

is significantly simpler compared to the numerical approximation of the
original problem.

Classical notation. The exact evolution operator is denoted by (indicate dependence
on current time, defining operator, and initial state)

Et ,F (u0) = u(t ) , t ∈ [t0,T ] .
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Class of problems
Splitting approach

Standard splitting methods

Time-stepping approach. We aim at the computation of numerical approximations
at certain time grid points based on a standard time-stepping approach (recurrences
for exact and numerical solution values)

t0 < t1 < ·· · < tN = T , τn = tn+1 − tn ,

un+1 =S τn ,F (un ) ≈ u(tn+1) = E τn ,F
(
u(tn )

)
,

n ∈ {0,1, . . . , N −1} .

Standard splitting methods. Any standard exponential operator
splitting method can be cast into the following form with real coefficients

Sτ,F = Eτ,bs F2 ◦Eτ,as F1 ◦ · · · ◦Eτ,b1F2 ◦Eτ,a1F1 ,
(
a j ,b j

)s
j=1 ∈R2s .
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Class of problems
Splitting approach

On firm ground

On firm ground. The excellent behaviour of (optimised) exponential
operator splitting methods with respect to stability, accuracy, efficiency,
and the preservation of conserved quantities over long timeframes has
been confirmed by a variety of contributions.

Selection of comprehensive descriptions and specific studies.

Open access review of S. Blanes, F. Casas, A. Murua on splitting methods for
differential equations (Acta Numerica 33, 2024).

Hairer, Lubich, Wanner (2006), McLachlan, Quispel (2002), Sanz-Serna, Calvo
(2018).

Auzinger, Hofstätter, Koch (2019), Bao, Jin, Markowich (2002), Bertoli, Besse,
Vilmart (2021), Caliari, Zuccher (2021), Castella, Chartier, Decombes, Vilmart
(2009), Chin (1997), Danaila, Protas (2017), Goth (2022), Hansen, Ostermann
(2009), Jahnke, Lubich (2000), Kieri (2015), Kozlov, Kvaerno, Owren (2004),
Omelyan, Mryglod, Folk (2003), Strang (1968), Trotter (1959), Yoshida (1990).
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Class of problems
Splitting approach

Alternative approaches

Alternative approaches. Despite the benefits of standard exponential
operator splitting methods, it remains an issue of substantial interest to
exploit alternative approaches, amongst others,

to overcome a second-order barrier valid for stable exponential
operator splitting methods applied to non-reversible systems,

to gain additional freedom in the adjustment of the method
coefficients for the design of optimised schemes.

The investigation of these fundamental questions
reveals surprising findings ...
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Class of problems
Splitting approach

Alternative approaches

Complex operator splitting methods. The inclusion of complex
coefficients permits the design of stable high-order exponential
operator splitting methods with specific structural features.

Modified operator splitting methods. Modifications of standard
exponential operator splitting methods are expedient for our model
problems of complex Ginzburg-Landau type, since the nonlinear
multiplication operators F2 and the iterated commutators[

DF2 , [DF2 ,DF1 ]
]= F ′′

1 F2 F2 +F ′
1 F ′

2 F2 +F ′
2 F ′

2 F1 −F ′′
2 F1 F2 −2F ′

2 F ′
1 F2

have similar structures.
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Complex operator splitting methods
Reaction-diffusion equations

Convergence analysis
Quasicrystalline pattern formation

S. Blanes, F. Casas, C. González, M. Th.
Symmetric-conjugate splitting methods for evolution equations of parabolic type.
Journal of Computational Dynamics 11/1 (2024) 108-134.
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Numerical experiments

Summary. Application of complex exponential operator splitting methods in
long-term computations for the simulation of quasicrystalline pattern formation.

techmath.uibk.ac.at/mecht/MyHomepage/Research/Movie2024Quasicrystal1.m4v
techmath.uibk.ac.at/mecht/MyHomepage/Research/Movie2024Quasicrystal2.m4v
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Modified operator splitting methods
Complex Ginzburg–Landau equations

Invariance principle
Superconductivity

S. Blanes, F. Casas, C. González, M. Th.
Generalisation of splitting methods based on modified potentials to nonlinear evolution
equations of parabolic and Schrödinger type.
Computer Physics Communications 295 (2024) 109007.
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Numerical experiments

Summary. Application of modified operator splitting methods in long-term
computations for the simulation of nonlinear waves.

techmath.uibk.ac.at/mecht/MyHomepage/Research/Movie2024GinzburgLandau1.m4v
techmath.uibk.ac.at/mecht/MyHomepage/Research/Movie2024GinzburgLandau2.m4v
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Adaptive modified operator splitting methods
Systems of coupled Gross–Pitaevskii equations

Groundstate computation, Time evolution
Multi-species Bose–Einstein condensates
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Numerical experiments
Summary. Design of a stable and efficient fourth-order exponential operator splitting
method based on the incorporation of an iterated commutator.
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Parabolic equation.

C1 = 0.5, C2 = -0.5, C3 = 0, C4 = 0.

 Time = 1. M = 512.

p = 1 (Standard)

p = 2 (Standard)

p = 4 (Standard)

p = 4 (Modified)
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Schrödinger equation.

C1 = -0.5, C2 = 0.5, C3 = 0, C4 = 0.

 Time = 1. M = 512.

p = 1 (Standard)

p = 2 (Standard)

p = 4 (Standard)

p = 4 (Modified)
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Parabolic equation.

C1 = 0.5, C2 = -0.5, C3 = 0, C4 = -1.

 Time = 1. M = 512.

p = 1 (Standard)

p = 2 (Standard)

p = 4 (Standard)

p = 4 (Modified)
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Schrödinger equation.

C1 = -0.5, C2 = 0.5, C3 = 0, C4 = 1.

 Time = 1. M = 512.

p = 1 (Standard)

p = 2 (Standard)

p = 4 (Standard)

p = 4 (Modified)

Severe stability issues for a standard fourth-order splitting method
applied to linear (up) and nonlinear (down) problems of parabolic type (left).
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Numerical experiments
Questions. Favourable behaviour of a fourth-order modified operator splitting method
for linear and nonlinear Schrödinger-type equations over longer times? Benefits of a
simple local error control based on the second-order Strang splitting method?
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Schrödinger equation.

C1 = -0.5, C2 = 0.5, C3 = 0, C4 = 0.

Modified splitting method (Strang, p = 4(2)).

 Time = 0. N = 1695. M = 512.
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Schrödinger equation.

C1 = -0.5, C2 = 0.5, C3 = 0, C4 = 0.

Modified splitting method (Strang, p = 4(2)).

 Time = 100. N = 1695. M = 512.
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Schrödinger equation.

C1 = -0.5, C2 = 0.5, C3 = 0, C4 = 1.

Modified splitting method (Strang, p = 4(2)).

 Time = 0. N = 1643. M = 512.
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Schrödinger equation.

C1 = -0.5, C2 = 0.5, C3 = 0, C4 = 1.

Modified splitting method (Strang, p = 4(2)).

 Time = 100. N = 1643. M = 512.

Linear (up) versus nonlinear (down) cases.
Solution profiles ℜ(

ψ(x, t )
)
for initial (left) and final (right) times.
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Numerical experiments
Summary. Mass preservation of a fourth-order modified operator splitting method for
linear and nonlinear Schrödinger equations over longer times.
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Schrödinger equation.

C1 = -0.5, C2 = 0.5, C3 = 0.

Strang splitting method (p = 2).

Error in mass over time. M = 512. N = 1695.
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Schrödinger equation.

C1 = -0.5, C2 = 0.5, C3 = 0.

Splitting method by Blanes and Moan (p = 4).

Error in mass over time. M = 512. N = 1695.
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Schrödinger equation.

C1 = -0.5, C2 = 0.5, C3 = 0.

Modified splitting method (Strang, p = 4(2)).

Error in mass over time. M = 512. N = 1695.
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Schrödinger equation.

C1 = -0.5, C2 = 0.5, C3 = 1.

Strang splitting method (p = 2).

Error in mass over time. M = 512. N = 1643.
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Schrödinger equation.

C1 = -0.5, C2 = 0.5, C3 = 1.

Splitting method by Blanes and Moan (p = 4).

Error in mass over time. M = 512. N = 1643.
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Schrödinger equation.

C1 = -0.5, C2 = 0.5, C3 = 1.

Modified splitting method (Strang, p = 4(2)).

Error in mass over time. M = 512. N = 1643.

Linear (up) versus nonlinear (down) case. Uniform (left, middle) versus non-uniform (right) time grid.
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Numerical experiments
Summary. Energy preservation of a fourth-order modified operator splitting method
for linear and nonlinear Schrödinger equations over longer times.
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Schrödinger equation.

C1 = -0.5, C2 = 0.5, C3 = 0.

Strang splitting method (p = 2).

Error in energy over time. M = 512. N = 1695.
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Schrödinger equation.

C1 = -0.5, C2 = 0.5, C3 = 0.

Splitting method by Blanes and Moan (p = 4).

Error in energy over time. M = 512. N = 1695.
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Schrödinger equation.

C1 = -0.5, C2 = 0.5, C3 = 0.

Modified splitting method (Strang, p = 4(2)).

Error in energy over time. M = 512. N = 1695.
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Schrödinger equation.

C1 = -0.5, C2 = 0.5, C3 = 1.

Strang splitting method (p = 2).

Error in energy over time. M = 512. N = 1643.
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Schrödinger equation.

C1 = -0.5, C2 = 0.5, C3 = 1.

Splitting method by Blanes and Moan (p = 4).

Error in energy over time. M = 512. N = 1643.
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Schrödinger equation.

C1 = -0.5, C2 = 0.5, C3 = 1.

Modified splitting method (Strang, p = 4(2)).

Error in energy over time. M = 512. N = 1643.

Linear (up) versus nonlinear (down) case. Uniform (left, middle) versus non-uniform (right) time grid.
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Numerical experiments
Observation. Improved energy preservation for lower tolerances. Rigorous analysis?
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Schrödinger equation.

C1 = -0.5, C2 = 0.5, C3 = 1.

Modified splitting method (Strang, p = 4(2)).

Error in energy over time. M = 512. N = 763.
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Schrödinger equation.

C1 = -0.5, C2 = 0.5, C3 = 1.

Modified splitting method (Strang, p = 4(2)).

Error in energy over time. M = 512. N = 1643.
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Schrödinger equation.

C1 = -0.5, C2 = 0.5, C3 = 1.

Modified splitting method (Strang, p = 4(2)).

Error in energy over time. M = 512. N = 3537.
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Schrödinger equation.

C1 = -0.5, C2 = 0.5, C3 = 1.

Modified splitting method (Strang, p = 4(2)).

Error in energy over time. M = 512. N = 7619.
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Schrödinger equation.

C1 = -0.5, C2 = 0.5, C3 = 1.

Modified splitting method (Strang, p = 4(2)).

Error in energy over time. M = 512. N = 16413.
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Schrödinger equation.

C1 = -0.5, C2 = 0.5, C3 = 1.

Modified splitting method (Strang, p = 4(2)).

Error in energy over time. M = 512. N = 35361.

Nonlinear case. Tolerances in {10−3,10−4,10−5,10−6,10−7,10−8}.
Numbers of time steps (763,1643,3537,7619,16413,35361) with ratios ≈ 2.15.
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Numerical experiments

Summary. Groundstate computation based on adaptive modified operator splitting
method (additional lattice potential, strong nonlinearity). Improvement by stepwise
reduction of prescribed tolerances. Initial value given by Thomas–Fermi approximation.

techmath.uibk.ac.at/mecht/MyHomepage/Research/Movie2025GS1LatticeNonlinear2d.m4v
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Final conclusions and future work

General perspective. Our investigations range from the design of
(geometric) time integration methods and their theoretical analysis to
implementation aspects for relevant applications.

Summary. Our theoretical results and numerical experiments confirm
the benefits of complex splitting methods for reaction-diffusion equations
and (adaptive) modified splitting methods for Ginzburg–Landau-type
equations and systems of Gross–Pitaevskii equations.

On the way towards the numerical approximation of
quantum control systems, we gain new insight,

but also take some mountain trails ...

Thank you very much!
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Optimal control problem

Optimal control problem. The first-order optimality conditions read as
(for notational simplicity, set d =σ= 1)

d
dt

(
α′(t )

(
γ1

(
V ψ(·, t )

∣∣ψ(·, t )
)2

L2 +γ2
))= 1

2 ℜ
(
V ψ(·, t )

∣∣ϕ(·, t )
)

L2 ,

i ∂tψ(x, t ) =− 1
2 ∂xx ψ(x, t )+ (

U (x)+α(t )V (x)
)
ψ(x, t )+ϑ |ψ(x, t )|2ψ(x, t ) ,

i∂tϕ(x, t ) =− 1
2 ∂xx ϕ(x, t )+ (

U (x)+α(t )V (x)
)
ϕ(x, t )+2ϑ |ψ(x, t )|2ϕ(x, t )

+ϑ(
ψ(x, t )

)2
ϕ(x, t )+4γ1α

′(t )2 (
V ψ(·, t )

∣∣ψ(·, t )
)

L2 V (x)ψ(x, t ) ,

α(0) ,ψ(x,0) given ,

α′(T ) = 0, ϕ(x,T ) = 4 i
(
ψ(·,T )

∣∣A0ψ(·,T )
)

L2 A0ψ(x,T ) .
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