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Summary

In this lecture, I address the issue of efficient numerical methods for the time integration of
nonlinear Schrédinger equations. As model problems, I consider systems of coupled Gross—
Pitaevskii equations that arise in quantum physics for the description of multi-component
Bose-Einstein condensates. My concern is to study the quantitative and qualitative behaviour
of high-accuracy space and time discretisations that rely on time-splitting Fourier and Hermite
spectral methods. In particular, this includes a stability and convergence analysis of high-order
exponential operator splitting methods for evolutionary Schrodinger equations. Numerical
examples illustrate the theoretical results.
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Figure 1.: Ground state solution of the Gross—Pitaevskii equation (1) with x =25 and 9 = 400.

Preface

The actual research activities on efficient space and time discretisations for time-independent
as well as time-dependent nonlinear Schrédinger equations is reflected in various contribu-
tions [1, 2, 3,4, 5,6, 7,8,9, 10, 15, 16, 18, 22, 23, 24, 26, 27, 28, 31, 33, 38, 42, 43, 45, 48, 49].
The present manuscript shall provide an introduction to advanced integration methods for
nonlinear Schrédinger equations that rely on high-order time-splitting Hermite and Fourier
spectral methods.

Part I is dedicated to exponential operator splitting methods [11, 30, 32, 34, 35, 41, 50] for
ordinary differential equations. In particular, a result on the convergence behaviour of splitting
methods is deduced. To avoid technicalities, the focus is on a splitting scheme involving two
compositions applied to non-stiff linear differential equations. Extensions to splitting methods
of arbitrarily high order and nonlinear evolutionary problems of parabolic or Schrodinger
type, respectively, are indicated, see also [10, 17, 19, 20, 21, 25, 26, 31, 33, 36, 37, 44]. In
Part II, Fourier and Hermite spectral methods and their numerical realisations are discussed,
see [12, 46]. Part III is concerned with high-order time-splitting Fourier and Hermite pseudo-
spectral methods for the space and time discretisation of Gross—Pitaevskii systems [29, 39] that
arise in the description of multi-component Bose-Einstein condensates. In an appendix, the
works [13, 14, 36, 44] are included.

vii



As an illustration, the ground state of the two-dimensional Gross—Pitaevskii equation

0,0 =(-1a+ U@+l o)y n, {eR?, 120,

(1)
lyc.ol,=1, U(€)=U(€1,5z)=%2(€ +xsin(36),

describing a Bose-Einstein condensate in a lattice under an external harmonic potential is
displayed in Figure 1. The ground state solution is computed by means of the imaginary
time method; hereby, the space and time discretisation relies on the Fourier spectral method
with 256 basis functions in each space direction and a linearly implicit Euler method with
constant time step 1073. A MATLAB code for the ground state computation and the time
evolution of Gross—Pitaevskii systems in one, two, and three space dimensions is available on
request.
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Part 1.

Exponential operator splitting methods






Situation. Let X = RY. We consider the following initial value problem for y : [fy, T] — X
involving a nonlinear autonomous differential equation

V) =F(y®), tw<st<T,  yt)given. 0.2)

Assumption. Throughout, we suppose the function F: D c X — X defining the right-hand
side of the differential equation in (0.2) to be sufficiently often differentiable with bounded
derivatives. For simplicity, we further assume D = X.

Generalisation. It is straightforward to extend our considerations to the case where the
Euclidian space X = R is replaced with a Banach space (X, || - | x).

Exact solution. For the following, it is useful to introduce the exact solution operator Eg
associated with the initial value problem (0.2) through

y(to+71) = Ep(1, 10, y(t0)), 0<71<T-1. (0.3a)
A standard existence and uniqueness result for (0.2) implies the identity

Ep(o+71,1t0,y(t0)) = Ep(t, 00+ 0,y(to+0)), 0<o+1=<T—1. (0.3b)

Numerical approximation. For an initial approximation yy = y(#) and a time grid with
associated time stepsizes

h<h<:--<ty=T, hp-1=t,—ty_1, 1<n<N,

numerical approximations y,, to the exact solution values at time ¢, are determined through a
reccurrence relation of the form

Yn=Pr(hp-1,tyh-1,Yn-1), 1=<n<N, Yo given;
this is in accordance with the identity
Y(tn) = Ep(hn-1, ta1,¥(ta-1), 1=nsN,  y(to)given,
see also (0.3). A numerical method is said to be consistent of order p iff the local error fulfills
dy = Or(hp-1, th-1,Y(tn-1)) = Er(Bn-1, ta-1, Y (tn-1)) = @’(hzj) , (0.4)

provided that the exact solution of (0.2) and the nonlinear function F defining the differential
equation are sufficiently regular. It suffices to specify the first step of the numerical scheme

1=k, 1, y0) = y(t1) = Ep(h, to, y(t0)), h=hg.






1. Linear problems

Situation. Let X = R?. Henceforth, we consider the following initial value problem for a
function y: [y, T] — X involving a linear differential equation of the form

V() =Ay®)+By(t), tph<t<T, y(1p) given. (1.1)

Generalisation. It is straightforward to extend our considerations to the case where the
Euclidian space X = R? is replaced with a Banach space (X, || - | x).

Assumption. We suppose the matrices A, B € R*4 or linear operators A,B: X — X, respec-
tively, to be bounded, that is, there exist (moderate) constants C4, Cp = 0 such that

lAlx_x<Ca,  [Blx_x=Cs; (1.2)
we tacitly assume Cy4, Cp = 1. Consequently, also A+ B is bounded
|A+B| y_x<Ca+Cs.

In general, the linear operators A and B do not commute, that is, it holds AB # BA.

Exact solution. In the present situation, the exact solution of the initial value problem (1.1)
is given by

7 (A+B)

y(to+1) =€ (%), 0<t=<T-1.

Here, for any matrix L € R*4 or bounded linear operator L: X — X, respectively, the exponen-

tial function is well defined through
w . .
et=) 7L, 1eR. (1.3)
Jj=0

Noting that the exact solution operator E4 g is linear with respect to the initial value, we write
Ea+p(1) y(to) = Ea+5(7, to, y(1o)) for short, that is, we have

7 (A+B)

y(t0+T):EA+B(T)y(t())=e y(to), O0<st<T-1. (1.4)



Numerical approximation. In regard to relation (1.4), we require the numerical solution
operator @4 g to be linear with respect to the initial value

Y1=Pasr(h) yo = y(t1) = Eaxp(h) y(to), h=hy.

1.1. Splitting methods

Approach. Exponential operator splitting methods rely on a decomposition of the right-hand
side of the differential equation in (1.1) into two (or more) parts and the presumption that the
initial value problems

2 =Az(), tyst<T, z(1p) given,

~1 ~ ~ . (1.5)
Z2()=Bz(t), p<t=<T, Z(tp) given,

are solvable numerically in an accurate and efficient manner. The (approximate) solutions of
the initial value problems (1.5) are then composed in a suitable way; this yields an approxima-
tion @44 = E4p to the exact solution operator. For simplicity and in view of Gross—Pitaevskii
systems, we may assume that the exact solutions of (1.5)

z(to+7) = Ex(1) 2(ty) =™ z(ty), O0<1<T—1y,

Z(to+7) = Eg(M) Z(ty) =P Z(ty), 0<1<T-1,

are available.

General form of splitting methods. Any exponential operator splitting method involving
several compositions can be cast into the following form

N S
y1=@asp(h) yo = [ Esbih) Ealaih) yo = [] "B e®" 4y, h=hy, (1.6)
i=1 i=1

yielding an approximation to the exact solution value
y(0) = Earp(W) y(1) =" 4P y(19),  h=ho.

In (1.6), the product is defined downwards, i.e., for linear operators (L;) j<ij<x wWe set
k k
[1Li=Lk- LinLj, j<k, [[Li=1, j>k.
i=j i=j

Example (Lie-Trotter splitting method). The Lie-Trotter splitting method for (1.1) can be
cast into the general form (1.6) with

s=1, a4=1, b1 =1, or s=2, a1=0, a=1 b1=1, by=0, (1.7a)



method ‘ order ‘ #comp. ‘

McLachlan McLACHLAN [30, V.3.1, (3.3), pp. 138-139] | p=2 s=3
Strang STRANG (1.8) p=2 s=2
BM4-1 BLANES & MOAN [11, Table 2, PRKSg] p=4 s=7
BM4-2 BLANES & MOAN [11, Table 3, SRKNZ] p=4| s=7
M4 MCLACHLAN [30, V.3.1, (3.6), pp. 140] p=4 $=6
S4 SuzuKi [30, 11.4, (4.5), pp. 41] p=4 s=6
Y4 YosHIDA [30, 1.4, (4.4), pp. 40] p=4 s=4
BM6-1 BLANES & MOAN [11, Table 2, PRKS,¢] p=6| s=11
BM6-2 BLANES & MOAN [11, Table 3, SRKN{’I] p=6| s=12
BM6-3 BLANES & MOAN [11, Table 3, SRKNY, ] p=6| s=15
KL6 KAHAN & LI [30, V3.2, (3.12), pp. 144] p=6| s=10
S6 SUZUKI [30, 1.4, (4.5), pp. 41] p=6 | s=26
Y6 YOSHIDA [30, V.3.2, (3.11), pp. 144] p=6 s=8

Table 1.: Exponential operator splitting methods of order p involving s compositions.

respectively, that is, the first numerical solution value is given by

y1= elB ehA Yo, or )= el ehB Yo, (1.7b)

respectively. In Section 1.2 it is verified that the Lie-Trotter splitting method is of (classical)
order one.

Example (Strang splitting method). The symmetric Lie-Trotter splitting method or Strang
splitting method [40, 47] can be cast into the general form (1.6) with

s=2, alzaZ:%,blzl,bZ:O, or s=2, a; =0, agzl,blzbzz%, (1.8a)
respectively, that is, the first numerical solution value is given by
1 1 1 1
1 = ethAehBeihd or  y =eBehdeihB (1.8b)

respectively. The computational effort of the Strang splitting method is essentially that of the
Lie-Trotter splitting method. In Section 1.2 it is verified that the Strang splitting method is of
(classical) order two.

Higher order splitting methods. Exponential operator splitting methods of order four and
six are given in [11, 30], e.g., see also Table 1.



1.2. Convergence analysis

Objective. In the following, we are concerned with deducing an estimate for the global error
yn — y(T) of an exponential operator splitting method (1.6) when applied to the initial value
problem (1.1); to this purpose, we follow a standard approach based on a Lady Windermere’s
Fan argument.

Local error and order. In the present situation, the local error equals
dp = D(hp-1) y(tn-1) = (Pa+B(hn-1) — Eas+g(hp-1)) y(tn-1), l=sn<N,

see also (0.4). Therefore, the numerical method (1.6) is consistent of order p, see also (0.4),
whenever the defect operator D fulfills

D(h) =0(hP*). (1.9)
Lady Windermere’s Fan. In order to relate the global and the local error, we employ the
telescopic identity
N-1 N N-1
yN—y(n) = [ @arsh)) (yo— y(10)) + Z H ®pp(hj)dy. (1.10)
j=0 n=1 j=n
In Sections 1.2.1 and 1.2.2, we are concerned with deriving a bound for the splitting opera-

tor @4, p and a suitable expansion of the defect operator D.

Explanation. The validity of relation (1.10) is verified by a short calculation

N-1 N N-1
[T @assh) (o—y) + Y. [] Pars(hj)dn
j=0 n=1 j=n
N-1 N N-
= || @a+h)) (yo—y(t0)) + Z l_[ D@p15(hj) (Pasg(hp-1) — Earp(hn-1)) y(tn-1)
]=O n=1 j=n
-1 N-1
l_[ Duip(hj) yo— [ ] Pasn(hj) y(t0)
j=0 j=0
N N-1 N N-
+> [1 ®arshy) ytn-1) - Z H Da+p(h)) y(tn)
n=1 j=n-1 n=1 j=n
N-1 N-1N-1 N N-1
=yn— ] @arhp) y) + Y [] @asnrp) y(tn) = Y. [ Pasnh)) y(ty)
j=0 n=0 j=n n=1 j=n
N-1 N-1
=yn— [[ ®arg(hj) y(to) + [ Pasn(h)) y(t0) — y(tn)
j=0 j=0
=yn—Yy(nN).



1.2.1. Stability

Assumption. In order to prove the desired stability result for exponential operator splitting
methods, we employ the bounds

||eTA||X<_XSeMA|T|, ||eTB||X<_X59MB|T|’ T€eR, (1.11)

involving certain positive constants My, Mg = 0.

Remark. In the present situation, for bounded linear operators A, B: X — X relation (1.11)
holds with My = C4 and Mp = Cp, see (1.2). Namely, a straightforward estimation of the
exponential series (1.3) yields

”eTL”X‘_Xse”L”X‘_XlTl, TER.
Stability result. Under assumption (1.11), the estimate
S
b;h;B aih;A Coh;
||®A+B(hj)||X<—X = Hl ||e o ||X<—X ||e o ||X<—X e,
1=
follows, see also (1.6), which further implies the stability bound

m—1 S s
H H®A+B(hj)HX L(SEIT, Co=My ) lail+Mp Y bil,  m>k=0.  (112)
j=k - i=1 i=1

Extension (Evolutionary Schri;'2dinger equations). The above stability estimate (1.12) can
also be established in the context of abstract evolution problems. For instance, for evolutionary
Schri;'2dinger equations of the form (1.1), we require that the unbounded linear operators
A:D(A)c X — X and B: D(B) c X — X generate 6;-groups (e™)__ and (e”®)__, such that

Mg|t
B", TeR.

TA My|t| B
le™ | x_x <e o e xox=e
In this case, exponential operator splitting methods that involve negative coefficients are
permitted.

Extension (Parabolic evolution equations) . For evolution equations (1.1) of parabolic type,
we require the unbounded linear operators A: D(A) € X — X and B: D(B) € X — X to generate

6o-semigroups (e™)__, and (e”?)__, such that

MAT MB‘[
) )

||eTA”X«—Xse ”eTB”X«—Xfe 7=0.

In this case, exponential operator splitting methods that involve complex coefficients with
positive real part are permitted.



1.2.2. Local error expansion

Situation. For the following, to avoid technicalities, we consider exponential operator split-
ting methods (1.6) that involve two compositions only

yl — ebth eazhA eblhB ealhA yOy h — hO . (113)

Method examples that can be cast into this form are the Lie-Trotter splitting method (1.7) and
the Strang splitting method (1.8).

Objective. We are concerned with deducing a suitable expansion of the defect operator

with respect to h, see also (1.4) and (1.6).

Approach. We employ the power series expansion (1.3) for the matrix exponential; more
precisely, performing a stepwise Taylor series expansion of e*’, we obtain

1
eTL = I+ e(J'TL

o=0

1
:I+TLf e’"Ldo
0
1
:I+TL+TZL2f (1-0)e’Ldo
0
1
:I+TL+%T2L2+T3L3f l1-0)*e’do, 7120.
0

With the help of the bounds (1.2) and (1.11), we thus have

eTL =1+0(,Cr, Mp)
=I+1L+0(1? C? My) (1.15)
:I+TL+%TZL2+6’(T?’,C%,ML), 7=0.

Expansion (Exact solution operator). By means of (1.15), we obtain the following expansion

of the exact solution operator

Epvp(h) = A+B)

(1.16)
=I+h(A+B)+1h*(A*+ AB+BA+B*)+0(h’,C3, 5, Masp);

here, we assume that the following estimate is valid

||eT(A+B) ”X«—X < eMassltl , TER.

10



Expansion (Splitting operator). By means of relation (1.15), we next employ a stepwise
expansion of the splitting operator

Dy, () = eP2hB g@2hA obihB qarhA
= (I+bahB + 1 b3h?B?) e®2 el "B oA 4 ¢(h3,C3, Ma, M)
— eaghA eblhB ealhA + bth eazhA eblhB ealhA + % b%thz eazhA eb1 hB ealhA
+0(h*,C3, Ma, Mp)
= (I+ayhA+ L ash? A%) e" "B e 1 by B (I + aphA) €118 A
+1b3R2 B2 B e L G (1P, C3, C3, Ma, M)
= el B g@hA 4 (g, A+ byB) el1B e@hA

+1? (3 a5 A%+ ap boB A+ 3 b3B%) e" "B e+ 6 (1P, C3, C3, Ma, M)
and, furthermore, we have

®arp(h) = (I+bihB + 3 bih?*B?) e " + h(ay A+ byB) (I+ b1 hB) e
+h* (L a5 A% + a, by B A+ 1 b3B?) e+ 6(13, C3, C3, Mu, M)
=e®" L h(azA+ (b +by)B) e
+ 1 (L a3 A%+ asbi AB+ a by B A+ % (by + by)?B?) e/
+0(h*,C3,C3, Ma, M3)
=I+a1hA+1aih* A + h(az A+ (by + by)B) (I + a1 hA)
+h* (L a5A* + axby AB + a; byB A+ 1 (by + by)*B?)
+0(h*,C3,C3, Mg, M3).

This finally yields the following expansion

Oy p(W)=1+h ((al +ax)A+ (b + bz)B)
+ h2 (% (ap + a2)2A2 + agblAB + (611 (bl + bg) +do bg)BA (1.17)
+ 2 (b1 +b2)*B*) + 0 (h°,C3, C}, Ma, Mg).

Expansion (Defect operator). Altogether, the above relations (1.16) and (1.17) imply the
following expansion of the defect operator D = ®4.p — Eq4p With respect to h

D(h) = h((a1 +az-1)A+ (b1 + b, —1)B)
+ h2 (% ((611 + {Zz)z - 1)A2 + ([Zzbl - %)AB + (Lll(bl +by)+as by — %)BA (1.18)

+1((by+b2)? - 1)32) +0(h,C3,C3, My, Mg, My, 5).

11



Order conditions. Employing the above expansion (1.18) of the defect operator D and re-
quiring (1.9) to be valid with p = 1 for arbitrary matrices or bounded linear operators A and B,
respectively, the (classical) first order conditions

a+ar=1, b1 +bsy=1, (1.19a)

1

follow. For (classical) order two, that is, setting p = 2, the additional conditions are a»b; = 3

and a1 + a> by, = %, or, equivalently,
Q-a)b =1. (1.19b)

Obviously, the Lie-Trotter splitting method (1.7) has (classical) order one; the second-order
Strang splitting method (1.8) is retained from the order conditions (1.19) under the symmetry
requirement b, =0 and a; = a, or a; =0 and b; = b,, respectively.

Local error estimate. The above consideration imply the local error estimate
D) < ChPH! (1.20)

with constant C depending on Cf: +1, CJ’;H, My, Mg, M 4.5, and further on the method coef-
ficients. In particular, the above bound holds true with p =1 for the Lie-Trotter splitting
method (1.7) and with p = 2 for the Strang splitting method (1.8).

1.2.3. Convergence result

Convergence estimate. Assume that the exponential operator splitting method (1.6) applied
to the linear problem (1.1) fulfills the (classical) order conditions for order p = 1. Then, the
following global error estimate

N-1
”J/N_J/(IN) ”X <C (||y0—y(t0)”X+ ZO hgﬂ)
n=

holds with constant C depending in particular on Cy4, Cp, M4+ 5, Ma, M, T, and y(fy). Namely,
estimating the global error relation (1.10) by means of the stability bound (1.12) and the local
error estimate (1.20), the desired result follows. Especially, for constant stepsizes, that is, it
holds h, = hfor 0 < n < N -1, the expected convergence bound

lyn=yElx=C(lyo-y@|x+h?), o0<n<n,

follows.

12



2. Alternative local error expansions

Situation. As before, we focus on exponential operator splitting methods (1.6) for linear
initial value problems of the form (1.1) that involve two compositions only, see (1.13).

Objective. Regarding possible extensions of the convergence analysis given in Section 1.2
to evolutionary Schri;’2dinger equations or parabolic evolution equations, respectively, we
next investigate alternative approaches for deducing a suitable expansion of the defect opera-
tor (1.14) with respect to h.

Notation. For matrices L;, L, € R%*¢ or bounded linear operators L;, L, : X — X, respectively,

the iterated commutators are defined by
ad/"'(Ly) = [L1,ad] (Ly)] = Liad] (L) -ad] (L)L,  j=0, 2.1

where adgl(Lg) = Ly, see [30]. Note that for the first commutator ady, (L) = L1Ly — LyL; it
follows ady,(L;) =0and ad;,(L1) = — adp,(Ly).

2.1. Baker-Campbell-Hausdorff formula

Approach. The Baker-Campbell-Hausdorff formula considerably facilitates the expansion of
compositions involving the matrix exponential, see for example [30]. However, as for the power
series expansion (1.3), it is not evident to extend this approach to evolutionary equations (1.1)
with unbounded linear operators A and B; in particular, it is difficult to obtain error estimates
that are optimal with respect to the regularity properties of the exact solution.

2.1.1. Derivation of the Baker-Campbell-Hausdorff formula

Objective. The objective is to determine a time-dependent linear operator Q(#) : X — X,
t = 0, such that the identity
efze!li =% >0, 2.2)

holds for (non-commuting) bounded linear operators Ly, L, : X — X. More precisely, the aim is
to calculate the time-independent linear operators Q; : X — X arising in the expansion of Q(#)

Qn=>Y tQ;. (2.3)
j=0

13



The derivation of the Baker—-Campbell-Hausdorff formula relies on the following auxiliary
results.

Notation. The (analytic) exponential functions ¢y, ¢; : C — C are given by

o0
po(2)=) 52/ =e,  zeC,
j=0

€-1  0#£zeC,

m .
(2)=) —1xz/={ *
(pl ];0(]+1)' 1’ ZZO.

Furthermore, we introduce the complex function y; : {z € C: |z| < 7} — C, defined by
&8 .
Yi(2) =) %ﬁjzj,
j=0

with Bernoulli numbers y =1, ; = — %, etc. Note that ¢1(2)w1(2) =1 =y1(2) p1(z) for all
zeCwith |z| <.

Fréchet derivative. A function f: X — Y between Banach spaces (X, || - |l x) and (Y, || - ||y) is
called Fréchet differentiable at x € X with Fréchet derivative f’(x) = L if there exists a bounded
linear operator L = L(x) : X — Y such that

fx+2)—f(x)=Lz+o(lzllx).

Auxiliary relation. The Fréchet derivative of QF k=0, with Q : X — X a bounded linear
operator, can be rewritten as

k-1

0= () adgo ot U, k=0
]:

Clearly, the above identity holds for the trivial cases
-0- d 7_ —1- d —
k=0: £r1=0, k=1: f£a=I
Furthermore, by means of the product rule and the relation

QX =QXFXQ=XQ+ado(X),

we have
k=2: £0°=£00=(00+Q0=2()Q+adq(),

14



as well as

_ d d
k=3: £ao*=400?
=()Q*+Q(2()Q+adq(")
=()Q%+2 Q¢ Q+ Qadg()
=(-)Q+adq(") ado() Q+adé(.)
=3()Q*+3adqg(") Q+adi().

In general, proceeding by induction and using that
k k k+1
Nl =1. )
J j+1 j+1

k—k+1: Lo =dqqokf

we obtain

=004 +0 X (1) adj) 0

J:

-1 , ‘
= (0" + Z(m) Qadg() QU

=ad/ () Q+ad/" ()

k-1 ) _
=+ + Y ((j’jl) + (’]?)) ad),() Q17U 1 adf ()
j=1
k k+1 j k+1- (+1)
(511) adfy Q17U
]:

Derivative of exponential. For a bounded linear operator Q: X — X, the first derivative of e’
with respect to Q is given by

e’ = Z iy adh()e? = (1 (ada)) (Ve

Namely, employing the exponential series and the previously deduced identity for d% QF and
exchanging the order of summation, it follows

Ble-
(¢°]
2
Il
i agk:
=~
Bl
2
2,

T
L

Il
18
|

(]+1) ad] o) QF U+

T
(=]
.
Il
(=)

15



and furthermore

(=¥
&=
¢]
Q
Il
.
I agfe
[
+ |~
=
Qo
[oN
Shey
I M
=
~ | —
=
@)
T
~
L

Il
~
I agfe
<
i»—t
Qo
[oN
D\.
~N
™
Sl
o
~N

Il
.
I aglf
Qo
o
~

Q(1)

As a consequence, taking the first time derivative of e**'"’ yields

Q-lQ_

teﬂ(ﬂ:zoﬁ ad}, (& Q1) e = (p1@daw) (& Q0)e™,  r=0. (2.4)
]:

Initial value problem. On the one hand, in regard to (2.2), it follows

ddt eQ(t) _d_etLg tLy _L el’Lz tLl"l‘ethetLlL _L eQ(t)+eQ(t)L t=>0.

With the help of the above relation (2.4) we thus have
L2 eQ(t) + eQle = % eQ(t) = ((Pl(adQ(t)))(% Q(t)) eQ(” , t=0,

-Q(1)

Furthermore, by a multiplication from the right with e , making use of the fact that

=) g ad/(L) = (po(adx)) (L),
]:

we obtain the identity
L+ (polada))(L1) = (p1@daw)) (EQ®),  t=0.

Applying w1 (adq(s), the inverse of ((p1 (adg(t))) (under certain restrictions on the norm of Q(¢)),
and noting that ¢((z) = 1 + z ¢, (z) for z € C, yields

200 = (y1(adaw) (L2 + (poladaw) (L))
= (y1(ada)) (Ll +Ly+ (adQ(t)(p1(adQ(t)))(L1))
= (y1(adqen)) (L1 + L) + ad gy (L1)

=adog (L) + o (L1 + Lo) + Bradogy (L + L) + ) 4 B ad)y (L1 + Lo)
j=2

=L1+Ly+5 adQ(t) (L —Ly)+ Z i ,B] adé(t)(Ll +Ljy), r=0.
j=2
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Altogether, the initial value problem

&8 .
%Q(t):L1+L2+%adgm(L1—L2)+Zjﬁjadgm(LﬁLz), t=0, Q0)=0.
]:

results, see also (2.2).

Successive solution. Inserting relation (2.3) into the above initial value problem for Q(¢),
comparing like powers of , the linear operators 2 can be computed. In particular, noting that
Qo =Q(0) =0 due to (2.2), and, for instance

ad, (L + Lo) = |11+ 0(£2),[1Q1+6(), L1 + L] | = 0(#2),
this procedure yields

Qi +2t+0(1?) = £ (101 + £ Q, +@’(t3))
=Li+Ly+t3adg,(Li- L) +0(¢%), t20,

We conclude Q; =L;+Lyand Qy = L—lladg1 (L1—Ls) = }1 [L1+L2,L1 —L2] = —%adLl(Lg),whence

Qp=0, Q;=L+1L,y, QZZ—%adLl(Lg).

2.1.2. Local error expansion

Baker-Campbell-Hausdorff formula. The Baker-Campbell-Hausdorff formula implies the

expansion
elzelli=ehl  [=1;+L,-Lhady, (L) +0(hY). (2.5)

Local error expansion. An application of the above relation (2.5) to (1.13) yields
bihB (lihA —_ hLi — 1 2 5 — .
e’iC e =eti, Li=a;A+b;B—-3ha;b;ad(B)+0(h°), i=1,2;
moreover, we obtain the identity

q)A+B(h) — ebth eazhA eblhB edlhA — eth ehL1 — ehL’

L=(a1+az)A+ (b1 +b2)B—3 h(ai(by +b2) + az(by — by)) ada(B) + O (h?).
As a consequence, the requirement
D(h) = ®415(h) — Exrp(h) ="t — "D = g(nPH)
implies L — (A+ B) = 0(hP), that is, we have

(a1+az—1)A+ (b1 + by —1)B—3 h(a1(by + b) + ax(by — by)) ada(B) = G (hP).

17



In particular, for p = 1 or p = 2, respectively, we retain the first and second order condi-
tions (1.19).

2.1.3. Construction of a fourth-order splitting scheme
Situation. Consider a linear differential equation of the form
V(O =Ay®)+By), t=0. (2.6)

For the numerical solution of (2.6), apply a splitting method involving s stages
N
uip(t)=[JePie' =~ Epp=e™P, 120,
i=1

where A; =a;Aand B; = b;Bforl1<i=<s.

Adjoint method. The adjoint method of a splitting method for (2.6) is given by
Or (=D o (—1) = (e Pre As...e7Pre” IAI)_l =elMelBi . gldselBs - 1>

namely, using for instance that for Ez(£)EA(t) = e'Be!4 it follows (Eg E4) "' () = e *4e '8 and
(Eg Ep)~'(~1t) = e'e'B. Provided that the underlying method satisfies the local error relation

Da+p(8) = @a() — Earp() = tP 1 Cpu +@’(l‘p+2), =0,
the adjoint splitting method fulfills
Di () =@, 5(0) — Easp(t) = (1P tP 1 Carp +O(tP™?),  t=0.
Namely, noting that E; ! (1) = e~ "“*5 = E,_ 5(~1) and further

—DpyB(—1) Ea+ (1) = (Ea+B(—1) — Pa+B(—1)) Ea+p(2)
=1—Pu+p(—1)Ea+p(1)
= ®uip(—1) (P, 5(1) — Ea+p(1))
=®@a (=) Dy, (), 20,

due to the fact that E44p(1) = I + O (1) as well as @, (1) = I + O (1), the relation

D}y 5(8) = =@}, 5 (1) Dasn(=1) Easp(1)
=~ @, (1) (= 07 Carp + O (%)) Enrp(1)
= (-DP P Carp+O(tP*?),  t=20.
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Symmetry. A method is called symmetric if 7, , = ®44p for £ = 0, that is, it holds
@, p(1) =e'MeBi...glelBe = gtBsglhs .. gBrel Ml = @, p(1), t=0.

The above considerations imply Ca4p = (—1)” Ca4 g, that is, the order of a symmetric splitting
method is even.

Objective. Construct splitting methods of order p =4 and p = 3, respectively, involving s = 4
stages. For this purpose, employ the BCH formula to rewrite the splitting operator as

(DA+B(t) — etB4 etA4 e[BgetAg e[Bg e[Ag et31 e[Al _ etL4 etLg etLg e[L] — etKg e tKy etM’ > 0’
N N SN
—ells4 —ell3 —ell2 =etl1 —elK2 —e!K1 —e!M

and deduce the order conditions from the requirement
Dpyp(1) — Earp(t) =e™M—e'™ P =g(P*),  1=z0,
which is equivalent to the relation
M-(A+B)=0(t"), =0,

as seen from a taylor series expansion of the exponential.

BCH formula. The BCH formula yields the representation
o .
ellzeth — 00 Q) = Z ' Q;, t=>0.
In particular, the relation

4
ellzetl = gtt Z Qi +0(tY) = Q1+t Qe+ PQ3 + P+ O(tY),  £20,

Qy=Li+Ly, Q=-3%I[Ly,Ls,
Q= L ([L1, (L1, L)) + (Lo, Lo, L]}, Qa= 5 [La, [La, (L, La)] ],

follows.
BCH formula - Extension. In case that
Z Pral o (i) = o + 1) + P + Pof +6(t),  r=o0,

j=1
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the following expansion results

4
elrethr=e!l,  L=Y t71Q;+0(") = Q1+ tQp + PQ3+ P+ O(tY), 120,
j=1
_ oI, ol _ 0@, U2 _ 11o@) o)
o, =010 0,=0f"+0l? - Lo ol

0 = 0+l — } (101, 00 + (007 012
v ([0, 0,001] + [, 10, 0 1)),
Q=0+l - L, o1+ ", of?) + o, o))
+5 (100,107, 021] + [0, [0, 0] + [0, 1007, 0{"]
+Ho, 1007,0(V1] + [0, 10(,0(?1] + [0, 10{, )
&[0l [, 10, o).

Namely, an application of the BCH formula yields

e'lze =e't, L=01+tQ+ 203+ 204 +0(tY), 20,
Q=Li+L,, Q=-1[L,L,,

05 = 35 ([Lo, (Lo, Lol ] + [Lay (L2, Lal] ), Q= 3 [ Lo, [La, [Ly, Lo

Inserting the above representations for L; and L, gives
1{ L) (L2) 4
77 QY + Q) + o (e,

1
2

i J1tj2—2 Q(Ll) Q(LZ)]+@( )
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As a consequence, we obtain

4
i-1{ L) (Lz))_l =1L L)
L= Zt (% +a Ly ¢ i, ol

j=1 Jije=1
4
1 JitJj2tjs—1 (L1) (Ly) (Lz) (L2) (Lz) (Ly)
DI ([0, 10%,0(2)] + [0l 10, altV)])
J1j2,J3=1
4
1 +jo+j3+ja—11~(L2) (L1) (L) ~(Lo)
+ﬂ Z t]1]2]3]4 [QZ[QI ngz]”
J1,J2,J3,ja=1
+0(t").

Taking into account the indices

j=12,3,
(j1,j2) =(1,1),(1,2),(2,1),(1,3),(2,2),3,1),
(j1,J2,J3)=(1,1,1),(1,1,2),(1,2,1),(2,1,1),
(J1, 2, j3, ja) = (1,1,1,1),

we further have
L=(0 + o)

L) , o@2) _ 1
+t(£22 +Q,% =51

Qng)’Q(le)])
+ (0" +0f? - L (10, 0 + 104V, af!))
+ (910,011 + [, 107, 1))
+ 20 +of? - L (10, 0f?1 + 105, 0f?) + (0§, 0?)
e ([, 106, 0071] + [0, 002, 0] + [0, 0, 0]
(017,102, 0] +[0f, (00, 1)) + [0 10, 1)
- &[0, [, 1", 0]
+0(tY), t=0.

Construction. The construction of a fourth-order splitting method relies on the following
approach.

* Employ symmetry of splitting method
®A+B(t) — etB4 etA4 el’Bg el’A3 eth etAz el’Bl el’Al

— q);;—B(t) — e[Al et31 etAg e[Bz etAg eth etA4 e[B4 , t> 0’
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that is, employ for instance the symmetry requirements

a1=0, as=ay, by=by, b3=Db;.

¢ Deduce third-order conditions.

* Solve third-order conditions (real/complex case).

2.2. Quadrature formulas

Approach. In the following, we present an approach that is more involved than the Baker—
Campbell-Hausdorff formula but well suited for an extension to linear and nonlinear evo-
lutionary equations, see [26, 31, 33, 36, 44]. The basic idea is to expand the exact solution
operator by means of the variation-of-constants formula and to deduce a similar expansion
of the splitting operator by employing the standard exponential power series for terms of the
form e?"B; the expansion of the splitting operator is then considered as a quadrature formula
approximation of a multiple integral.

Variation-of-constants formula. The exact solution of the initial value problem (1.1) can
also be represented by means of the variation-of-constants formula

y(to+71) = (eTA +f0T eT~9)A g o (A+B) da) y(to), 0<st<T-1ly;
we thus obtain the following representation of the exact solution operator
Earp(m) =e™+ fo Tl 0A g I (D) g 2.7)
see also (1.4).

Expansion (Exact solution). A repeated application of the above relation (2.7) yields

h
EA+B(h) — el’lA +f (I’l—O’l)AB eUl(A+B) do.l

h g1
+f ol al)AB 01A+f oO1-0DA p (0o(A+B) dO'g) doy
0 0

h
hA +f e(h Ul)AB eO’]A do_l +f f (h 0'1)AB e(0’1 0'2)AB eO’g(A+B) d0.2 do,l
0

h
hA+f eh=0DA g (1A g7
0

h po; g2
+f f oU=0VA g (01 Ug)AB( 02A+f o@2-0)A p (03(A+B) d0'3) do,doy,
0o Jo 0
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and, moreover, we have

h h poy
Eqip(h) =4 +f e=A g e qq, +f f eh=0A B e01=0A p 0024 45, 4oy
0o Jo

0

h o1 (o)
+ f f f eh=0VA B ¢(01=0A p 0(02-09 A B 003(A+B) 450 4, d .
o Jo Jo

We thus obtain the following expansion of the exact solution operator with respect to h = hy

h h o1
elh=0DA g 0014 g +f f eh=0DA B o(@1-0)A g 0024 45 4y
0 0 JoO

+0(h®,C}, Ma, Mayp).

Epep(h) =™ +f

Expansion of exponential. Regarding a stepwise expansion of the splitting operator, it is
convenient to employ the following stepwise expansion of the exponential function; to capture
the remainder, we introduce the complex functions ¢; : C — C: z — ¢;(2), j = 0, defined
through
l .
Po(2) =€°, (pj(z):ﬁf o/ 1el"P%dg, j=1, zeC.
“Jo
Relation (1.11) for the exponential implies the bound

lpieBlx_x < 5", j=z0, TeR. (2.8)
By a partial integration, it is seen that the ¢-functions fulfill the recurrence relation

9j(2)=5+z¢ja(2), jz0, zeC. 2.9)
For instance, we obtain the following expansion

eZ:1+Z(p1(Z):1+Z+Z2(p2(Z): 1+z+%z2+z3(p3(z),

which correspond to a standard Taylor series expansion

1 1 1
eZ:1+zf e”zd0:1+z+zzf (1—0)e”d0z1+z+%22+23f %(l—a)ze”da.
0 0 0

Expansion (Splitting operator). As a first step, we expand the splitting operator ®4. p(h) by
means of the identity e B=I1+1B ¢1(1B), see also (2.9); more precisely, replacing ebihB gaihA
with e%"4 4+ b, hB ¢1(bihB)e% hA i =1,2, we obtain

(I)A+B(h) — ebth ethA eb]hB ealhA

= el@rahA 4 (pe®2hAB @, (b hB) e + by B, (byhB) el 42)h4)
+ h?b1byB @1 (b, hB) e®" B, (b hB)e“ "
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In order to discover the similarities between the expansion of the exact solution operator and
the expansion of the splitting operator, we henceforth denote

c=a, C2=a+ay,
and further require the order condition ¢, = a; + a» = 1 to be fulfilled. Consequently, it follows

Dy p(h) = e+ h(b1e" V"4 B, (b hB) e " + by B @ (b, hB) e"4)
+ h?b1byB @1 (bohB) e VA B g, (b hB) e,

Inserting the identity ¢, (t B) = I + 1B @2 (t B), we further obtain

®pip(h) = e + 1 (b1e V"B (1 4+ by hB @ (b1 hB)) e + b, B (1 + by hB @y (b2 hB)) ")
+h2b1baB (1 +bahB@a(byhB)) e VA B, (b hB) e "4
=e" 1+ h(be" V4B e 1 pyBel ) + h? (bZ e VAR, (b hB) e

+by1baBe "V By (b hB) e + b3 B2, (b2 hB) e) + 0 (K3, C3, Ma, M),

see also (2.9) and (2.8). We finally expand all terms involving h? by means of the recurrence
relation (2.9); in particular, inserting the identity ¢, (tB) = % I +1B@3(TB), it follows

®ypip(h) = "+ n(brel VM AB e 1 b, Be4)
+ h2 (% b% e(l—c1)hABZeclhA + bleB e(l—cl)hABeclhA + % b%BZ ehA)

+@(h3,C%,MA,MB) .

Expansion (Defect operator). Altogether, the above expansions yield the following relation
for the defect operator D = P45 — Ez+B

D) =Qi—I1+Q2—I,+6(h*,C3, Ma, Mp, Mas3),
h
Qi=h (ble(l_cl)hAB e "4 4 b, B ehA) ) I = f eh=A B enAqq
0
QZ — hz (% b% e(l—cl)hABZeclhA + blsz e(1—01)hABeC1hA + % b%Bz ehA) ,

h o1
I, = f f ei=00A B ¢(1-02A B 024 45, d gy .
o Jo

We next relate Q; and Q> to the integrals I, and I,. More precisely, we consider Q; as an
approximation to the single integral I;

glop=eh™MABend  0<og <h,

h
Qi1 =h(biglc1h) + b2 g(c2h), 11=f0 g(oy) doy,
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2

resulting from the application of a quadrature formula with weights and nodes (b;, ¢;);_;,

where s = 2. A standard Taylor series expansion of the integrand g about zero yields

g'lop =—e"ad,(B) e, g"(op ="V adi(B)e”4, 0<o1<h,
Q1= h(by+b2) g(0) + h* (bicy + b2c2) g'0) + O(%,8"),
L=hgO)+3h*g'0)+0(k,g").

In a similar manner, we interprete Q, as quadrature formula approximation to the double
integral I»
G(oy, o) = e170VA B 10 A p 024 0<oy<0,<h,

Q2 = W*(3 b G(c1h, c1h) + biba G(coh, ¢ h) + 3 b3 G(coh, 2 1),
I, = foh 001 G(o1,07) dosdo;.
Here, by a Taylor series expansion of the function G, it follows
G'(01,00) = — "4 (ad 4(B) €174 B, B 174 ad y(B)) €4,  0<oy<o1<h,
Q2 =3 h*(b1 +b2)*G(0,00+6(Kh*,G),  I,=3h*G(0,0)+G(h* G,
with G’ denoting the Jacobian of G. Provided that the bound
Jada(B) [y + Jad(B)| x _y = Cus

holds with some constant C,q > 0, see also (2.1) for the definition of the iterated commutators,
we finally have
D(h) = h(by +bs—1) g(0) + h? ((blcl +bacy— 1) g'0) + 1 ((by + b2)? 1) G(0,0))
+0(h*,C3, Ma, M, M+, Caq)
= (b1 +ba=1)e" B -1 ((brc + baco - 1) e ad a(B) + § (b + bo)* = 1) e B?]
+0(h*,C3, Ma, Mg, Ma1g, Cad) -

Note that the remainder does not depend on the quantity Cy4. As before, the requirement D (h) =
@ (hP*1) for p =1 or p = 2, respectively, yields the first and second order conditions (1.19).

2.3. Differential equations

Approach. Another approach that is particularly suited for evolutionary equations involving
critical parameters relies on the deduction of a differential equation for the splitting operator,
see also [20, 21]. As the general approach involves several rather technical arguments, we
restrict ourselves to the consideration of the Strang splitting method.

25



Integral relation for defect operator. We consider the second-order Strang splitting method
involving two compositions

$=S,8;,  S;j(t) =e'Bietdi =0,

where A; = a; A and B; = b; B for i = 1,2. In particular, the method coefficients fulfill the first
order conditions a; + a; =1 = b; + b,. Using that S;. =8; A; + B; S;, we determine the first time
derivative

S = (82 A+ By Sz) S1+S (Sl A+ B Sl)

and obtain the following initial value problem for the splitting operator

S'()=(A+B)S(r)+R(1), t=0, S0)=1.

On the other hand the corresponding initial value problem for the evolution operator is as
follows
E'(t)=(A+B)E(r), =0, EW0)=1.

Thus, by the variation-of-constants formula, the defect operator D = S — E fulfills the relation

t
D(1) :f E(t—1)R(1)dr, =0,
0
R= (SzAg+BzSz)Sl +3S, (SlAl +Blsl) —(A+B)S.
Remainder. We next rewrite the remaining term by using that A; + A» = Aand B; + B, = B as

well as
[S2S1,A1] = S2[S1,A1] +[S2, A1] S

We obtain the relation

R=S8A,5+S, (Sl A+ B Sl) — (Al +A2+Bl)8281
= [SZ,A2+Bl] N [Sl,Al] + [Sg,Al] S1
= [Sz,A] S1+bh [Sz,B] Si+a; S [Sl,A] .

This further implies the identity R = R; + R, with
Ri(t) = a1 S2(0) [P, Al e, Ry(t) = ([e'™2, Al e'2 + by e'P2 [e'42, B]) $1(1).

We aim at a suitable representation of the remainder such that R = S, J §;, that is, it holds
Ri=59,S and R, =S, (%1 +f]-22) S, with

a[e™, Al =Ti(ne™,  [e"2 Ale"™ =S50 Ta(), bi[e' B]=e"Tn().
For this purpose, we consider a single term of the form

r(t)=[e’* L] =e*L-LeX.
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Determining the first time derivative
r'(t)=Ke'®L-LKe™ =K (e’*L—Le'™) + (KL-LK)e'X,
we obtain following initial value problem
r'(=Kr(+[K,LleX, t=0, r@©=0.
Another application of the variation-of-constants formula yields
[eX, L] = foteTK[K,L] e ™Mdre® = ethote_TK[K,L] e’®dr, ¢=0.

Applying the above relation and using that [K, L] = —[L, K] yields

TiePr =a[e™, A] = alfoteTBl [B1, A]e ™Prdr e,

e (1) = by [e,B] = bletAszte_TA2 [Az, B] e™2dr.
Furthermore, we have

Sa(1) Ta1 (1) = [e'P2, A] e 2 = ethfOte_TB2 [By, A]e™2dr e’
= S(1) fote_TBZ [By, Al e™P2 dr —e'P2 [etAZ,fOte_TB2 (B2, A]e™ dr]

t t ot
=S, (1) ([0 e 7B [Ba, A] e'B2 dr—fofo e_TAZ[Az,e_UBZ[Bz,A] eUBZ] etz dadr).

Taylor series expansion. From the above considerations, we obtain the representation of the
defect operator

t
D(1) :f E(t—1)82(1) T (1) S (1) dr,
0

T T T
I (1) =f g(r1)dry +f f G(t1,T2)dT2dT,
0 0 Jo
involving the functions g: [0, 7] — X and G: [0, T] x [0, T] — X, defined by

gr) =—a;bie"P[A B]le P — bye B2 [ A, B] e P2 + ay by e 2| A, B] ™2,

G(11,72) = apbye "2 [ A,e ™22 A, B] e™2P2] e 2,

We next employ the Taylor series expansion

1
g(r) =g0) +1, fo gt dg,
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where

g0) = ((a2 — a1) by — b2) [A, B],
g'(t)=—abie™ P B, (A Bl|e P + b5e B2 [B,[A, Bl| e P2 — a5 by e 2| A, [A, B]| e 2.

Recall that the first order conditions a; + a; = 1 and by + b, =1 are fulfilled. Thus, provided
that the second order condition (1 —a;) b; = % is satisfied, it follows g(0) = 0.

Integral relation for defect operator. In particular, we finally obtain the following integral
representation for the defect operator associated with the Strang splitting method

t prT rl
D(If)=j;f0f0 T1E(t—1) S2(7) g'({71) S1(r)d{dr1dr
t rT T
+fff E(t—1)8S2(1)G(11,T2) S1(1)dT2dT 1 dT,
0 Jo Jo

g =—a b?e" P [B,[A Blle P + b5e " B2[B,[A, B]| e P2 — a5 by e 2| A, [A, B]| ™2,
G(11,72) = ay bye "2 [Ae ™22 A, B] e™2P2] e 2,

Clearly, the above identity implies D(h) = O (h?).
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3. Nonlinear problems

Situation. Let X = R?. Henceforth, we consider the following initial value problem for y :
[y, T] — X involving a nonlinear differential equation of the form

Yy =Aly®)+B(y®), to<st<T,  y(t) given. (3.1

Generalisation. It is straightforward to extend our considerations to the case where the
Euclidian space X = R4 is replaced with a Banach space (X, | - [ x).-

Assumption. We suppose the functions A: X — X and B : X — X to be sufficiently often
differentiable with bounded derivatives.

Exact solution. The exact solution of the initial value problem (3.1) is (formally) given by the
nonlinear exact solution operator E4, p, that is, it holds

y(to+7) = Eap(7, 00, y(0)), 0st1<T-1, (3.2a)
see also (0.3). Employing the compact, formally linear notation of Lie-derivatives, we have
PaBy(ty),  0<t<T—1ty, (3.2b)

yip+1)=¢€

see Section 3.1.

Numerical approximation. In accordance with the above relation for the exact solution, the
numerical approximation at time f; is given by

¥1=Darp(h, 1o, y0) = y(t1) = Earg(h, to, y(1)), h=hy,

with numerical solution operator @4 p.

3.1. Calculus of Lie derivatives

Approach. A most useful tool in the statement and the theoretical error analysis of high-
order exponential operator splitting methods for nonlinear evolution equations is the formal
calculus of Lie derivatives, which is suggestive of the less involved linear case, see also [30].
In the following, we review basic definitions and results needed in the derivation of our local
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error expansion; we note that the calculus of Lie derivatives is used as a formal means under
the tacit requirement that the arising (unbounded) operators and compositions thereof are
well-defined on suitably chosen domains and time intervals.

Evolution operator and Lie derivative. We consider an initial value problem of the form
u(t)=F(u(r), 0<r=<T, u(0) = up, (3.3)

where the unbounded nonlinear operator F: D(F) c X — X is defined on a non-empty subset
of the underlying Banach space (X, || - || x). Formally, the exact solution of the evolutionary
problem (3.3) is given by

u(r) = Ep(t, ugp), 0<t=<T, (3.4a)

with the evolution operator Er depending on the actual time and the initial value; as we restrict
ourselves to an autonomous differential equation, we may omit the dependence on the initial
time. Furthermore, it is most helpful to employ the formal notation

u(t)=ePfyy,, 0<t<T. (3.4b)

More precisely, the evolution operator (e tDry - ;<7 and the Lie derivative Dy associated with F
are given through the relations

etDFG MOZG(EF(K, u())), 0<t<T, DG uozG’(uo)F(uo), (3.4¢)

for any (unbounded) nonlinear operator G : D(G) c X — X (with suitable domain); if G =1
is the identity operator, we write e Pryy = Ep(t, up) and Dy uy = F(ug) for short. Using that
Er(0, ug) = ug as well as %E F(t, up) = F(Er(t, up)), an application of the chain rule yields

L _e™Guo=2],_ G(Er(t, up)) = G'(Ep(t, up)) F(EF(t, up))|,_, = G'(to) F(ug) = D G uo;

thus, in accordance with the identity L = %Itzo e'L, which holds true for instance for any
bounded linear operator L: X — X with the exponential function defined by the power series
el = e % t/ L7, we may also set

Dp=2|,_,e™r. (3.4d)

Then, the defining relation for the Lie derivative is a consequence of the first relation in (3.4c).

Basic manipulation rules. The evolution operator forms a local one-parameter group
eI = etDreslr = Dretlr - 0<t+s<T, e'PF|_ =1, (3.5a)

since Er(t+ s,ug) = E p(s, Er(t, uo)) by the local existence and uniqueness of the solution
and consequently e"*9PF G uy = G(Ep(t + s, up)) = G(EF(s, Er(t, up))) = e 'PF €5PF G uyp; in the
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context of parabolic evolution equations, the above relation is restricted to positive times
0<t,s<t+s<T.Inregard to the general scheme of an exponential operator splitting method,
it should also be noted that the composition of evolution operators acts in reversed order, i.e.,
it holds

e'Pr1eP% G ug = G(Er, (5, Ery (t,wo))),  0<t+s<T. (3.5b)

Moreover, the following linearity and scaling relations are valid
DF1+F2:DF1+DF2) DCF:CDF)
Dr (G1 +Gy) = Dr Gy + Dr Gy, Dr(cG)=cDrG,

ePF(G1+Gy) =ePPGy+e'P Gy, ePF(cG)=ce'G, 0<r<T,

g!Der = gCIDF 0<t<T,

for any complex scalar ¢, due to the fact that the evolution operator associated with an au-
tonomous problem satisfies E.r(t, ug) = Eg(ct, up) and thus

e!PeFGuyy = G(Ecr(t,up)) = G(EF(ct, up)) = e“'PFG uy.
In order to show (3.5c), we calculate

D.rG ug=cG'(up) Fug) =cDrGuy,  Dp(cG) uy=cG'(ug) F(ug) = ¢ Dr G uy,
D+, G ug = G'(up) (F1 (uo) + F2(uo)) = G'(uo) Fi (o) + G'(up) F2(ug) = Df, G g + Df, G uy,
Dr(Gy + G2) up = (G (uo) + G5 (uo)) F(up) = Gy (uo) F(up) + Gy (uo) F(ug) = Dr Gy up + Dp Go g,
e P (G + Go) ug = Gy (Er(t, up)) + Go(Er(t,up)) =e™r Gy ug +e ™ Gy ug,  0<t<T,

e (cG) ug = c G(Ep(t,up)) =ce Guy, 0<t<T.

But, in general, e DF G uy and Dr G ug are nonlinear with respect to uy.

Derivatives. Besides, we employ the formal relation

dePr=prer=efp;, 0=t=T, (3.5d)

which allows to rewrite the initial value problem (3.3) as

LePryy=Dreuy=e""Druy, 0<t=<T, e™F|,_ uo=uo. (3.5€)

The above identity is verified by the following calculation
Dr e'"PF G ug = G'(Ep(t, uo)) 02Er (1, ug) F(uo) = G'(Er(t, up)) %|s:o Er (1, Er (s, uo))

= G'(Er(t,u0)) |,y Er(t+s,up) = G'(Ep(t, ug)) F(EF(t, uo))
e DrGuy, 0s<t<T,
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or, in brief, Dp e 'PF = % o€ Pretr = % o €"9PF = e'DF D Here, we denote by 0, Er the

derivative of the evolution operator with respect to the initial value; we recall that Er and 0, Er
solve the initial value problems

%Ep(l‘, up) = F(EF(t, uo)), 0<t=<T, Er(t, u0)|t:0 = Up,

(3.50)
%OZEFU; uop) = F(Ep(t,ug)) 02Ep(t,up), 0<t<T,  02Ep(t,ug)|,.,=1.
To justify manipulations below, we further note that the identity
" t t
e'Pr=T1+e™¥| _ = 1+f 4 e™Prdr = I+f e’ Dpdr, 0=t<T, (3.58)
0 0
which is justified by the above considerations, implies the formal expansion
k-1
etDF:zb%t]D]i+fT e"Prpldr, o0s<tsT, k=1, (3.5h)
j= k

where we denote Ty = {7 = (11,72,...,7x) ER¥:0<7) <--- <7 < 79 = t} and, as common us-
age, set Dg = I. For the stepwise expansion of the splitting operator, it is useful to employ the
formal recurrence relation

(pj(tDp):%I+(pj+1(tDp) tDp, j=0, (3.51)

with @o(tDp) = e 'PF; in particular, for j = 0 we retain (3.5g).

Iterated Lie commutators. The Lie commutator of two nonlinear operators is given by
adr(G)v=[EG|(v) =F'(v)G(v)-G'(v) F(v);

in particular, whenever F and G are linear, the above relation reduces to adr(G) = FG—-GF
since F'(v) = F as well as G'(v) = G. In accordance with the above definition, we further set

adp,(Dg) v =[Dp,Dg| v=DpDg v—DgDrv, (3.5j)

whence adp,(Dg) = —adr(G). Moreover, higher iterated Lie commutators are defined by
induction .

adp, (Dg) = Dg,  ady, (Dg) = [DF,adDI{;_l (D), j=1; (3.5k)

they naturally arise in the local error expansion based on quadrature formulas.

Nonlinear variation-of-constants formula (Gri;2bner-Alekseev formula). An essential tool
in the derivation of the local error representation for high-order splitting methods is the non-
linear variation-of-constants formula. This result states that the solutions of the initial value
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problems
W) =F(u(r), 0<r<T, u(0) = up,

W) =F(u®)+R(u®), 0<t<T, u©)=u,

are related through the nonlinear variation-of-constants formula

t
Er+r(t, up) = Ep(t, up) +f 02Ep(t—1,Ep+r(T, uo)) R(Ep+r(T, Up)) dr, 0<t=<T,
0
which in formal notation takes the form

t
e PFeR o = e OF y + f e’ PR pp e D0F yodr, 0<t<T. (3.6)
0

Proof. With the help of basic definitions and manipulation rules, see (3.5), we obtain
dir eI DF+r o(1=T)DF ¢ U = d% G(EF(I —1,Epsr(1, uO)))
= G'(Ep(t -1, Er+r(1, Up))) ( — F(EF(t—1,Ep+r(1, up)))

+02Ep(t -7, Eps (T, up)) (F(Eps r(T, tg)) + R(Ep+p(T, uo))))
= G'(Ep(t— 71, Ep+r(7,u0))) 02Er(t — 7, Ep+r(7, o)) R(Ep+r (T, Up))

= "DF+r Dpg N Unileire uo,
which is in accordance with the formal calculation

dir eTDF+R e(t—T)DF — eTDF+R (DF+R _ DF) e(t—T)DF — eTDF+R Dpg e(l‘—T)DF )

As a consequence, using that
— t
PR G uy—e™F G ug = e™Prere IR Gy

t
_ d ,TDp+R o(t-T)DF
— ﬁ dr e e G uo dT (3'7)
t
:f e PrrppeIFGyodr,  0<t<T,
0

the desired result follows when setting G = I.

3.2. Splitting methods

Approach. Exponential operator splitting methods rely on a decomposition of the right-hand
side of the differential equation (3.1) into two (or more) parts and the presumption that the
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initial value problems

Z'()=A(z(), Hh=<t<T, z(tp) given,

51 = o (3.8)
Z'()=B(z(1), fHh<t<T, Z()given,

are solvable numerically in an accurate and efficient manner. The (approximate) solutions of
the initial value problems (3.8) are then composed in a suitable way; this yields an approxima-
tion @44 = E4p to the exact solution operator. For simplicity and in view of Gross—Pitaevskii
systems, we may assume that the exact solutions of (1.5)

z(to+71) = Ea(1,10,2(t9)), 0<71<T—1p,
E(IQ+T)=EB(T,[0,2(I())), O0<st<T-1,

are available.

General form of splitting method. Any exponential operator splitting method involving
several compositions can be cast into the following form

To = o, YOZyOr
Y; = Eg(bih,Ti-1+ aih,Ea(aih,7i-1,Yi-1)), Ti=Ti-1+ (@i +bh, I<i<s, (3.9a)
J/I = YS!

yielding an approximation to the exact solution value
y() = Ensp(h, 10, y(f0)),  h=ho.

Employing the compact notation of Lie-derivative, we have

N
y1=Parp(h, fo, yo) = [ | e%r1-1"Paebsri=ih Doy -y = g (3.9b)
i=1

as before, the product is defined downwards. In comparison with (1.6), the order of the
compositions is reversed.

Explanation. Recall that by definition (3.4c) it holds e"P7 G y (1) = G(EF(7, to, y(p))). Conse-
quently, setting G = e?"Ps e, G(z(1)) = Eg(bih, 7, 2(1)), it follows

ehPagbihDsy, | = G(Eq(aih,7i-1, Yi-1)) = Eg(bih, 7i—1 + a;h, Ea(a;h, i1, Yi_1)) = Y;.

By repetition we obtain (3.9b).

Examples. The first-order Lie-Trotter splitting method (1.7) and the second-order Strang
splitting method (1.8) can be cast into the general form (3.9). As well, methods of higher order
are included, see also Table 1.

34



3.3. Convergence analysis

Objective. In the following, we are concerned with deducing an estimate for the global
error yy — y(T) of an exponential operator splitting method (3.9) when applied to the initial
value problem (3.1) To this purpose, as in the linear case, we follow a standard approach based
on a Lady Windermere’s Fan argument.

Local error and order. In the present situation, the local error equals

dy = D(hn—ly tn—l;)’(tn—l))
= (I)A+B(hn—1; tn—l;)’(tn—l)) - EA+B(hn—ly tn—l»)’(tn—l))y l=n=N,

see also (0.4). Thus, the numerical method (3.9) is consistent of order p iff
dp=0(h"")).

Again, it suffices to consider the case n = 1.

Lady Windermere’s Fan. For nonlinear differential equations, similarly as in the linear case,
the global error fulfills the telescopic identity

N-1 N N-1
yN=Y(n) =[] Pars(h)) (yo—y(0)) + Y [] Passhj)dn, (3.10)
j=0 n=1 j=n

see also (1.10); here, we employ the short notation
m—1
[ ®asn(h)) z(tp) = ®A+B(hm—1, tm-1,Pa+8(--., Pas (e th, Z(tk)))) , m>kz=0.
j=k

In Section 3.3.1, we are concerned with extending the local error expansion of Section 1.2.2 to
nonlinear problems.

3.3.1. Local error expansion

Situation. For the following, to avoid technicalities, we consider exponential operator split-
ting methods (3.9) that involve two compositions only

V1= @asg(h, fo, y(tp)) = e@1 D4 e 1DB g@2hDa b2 1D g = g

Method examples that can be cast into this form are the Lie-Trotter splitting method (1.7) and
the Strang splitting method (1.8).
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Objective. We are concerned with deducing a suitable expansion of the defect

dy = ®arp(h, 1o, y(t0)) — Eas(h, to, y(10))
— ealhDA eb]hDB eathA ebz hDg y(tO) _ ehDA+B y(to)’ h= hO,

with respect to £, see also (3.2) and (3.9).

Approach. For the solution of an initial value problem of the form (0.2), we employ a Taylor
series expansion and further express the arising derivatives of y by means of the function F
defining the right-hand side of the differential equation; more precisely, using that y’= F(y)
and thus by the chain rule y” = F'(y) y'= F'(y) F(y), we obtain

Ep(t, 10, y(10)) = y(t0) + Ty (1) + 3 T° y"(10) + O (7°)

(3.11)
= y(t0) + TF(y(10)) + 3 T° F'(y(20)) F(y (1)) +©(7°), 720,

with remainder depending on y"’.

Remark. The above relation (3.11) corresponds to the formal expansion
e™PF y(ty) = (I+ TDp + %TZD}% + 6’(13)) y(t),
= y(to) + TDp y(to) + 3 T°Df (o) + O(7°).
Namely, applying definition (3.4c), it follows

G(z)=Dpz=F(z), G'(2=F'(2),
H(z) = Dfz=(DrG)(2) = G'(2) F(2) = F'(2) F(2).

Expansion (Exact solution). Expanding the exact solution value by means of (3.11), yields

Enc(h, to, y(10)) = y(to) + b (A(y(0)) + B(y(10))
+ 10 (A (y(a) + B (y(t0) ) (A(y() + B(y()) ) + 0 ()
=y(ty)+h (A(y(to)) +B(y (to)))
3P A/ (y(w) A(y(10)) + A’ (y(£0)) B(y(10)) + B'(y(10)) Ay (10))
+B'(y(1))B (y(l‘o)))'F@(hS)’

+

which corresponds to the formal expansion

ehDA+B y(to) =y(t) + ]’ZDA+By(t0) + % hZDj+By(t0) + @)U/Zs) .
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Expansion (Splitting solution, single composition). We first consider a single composition
e®hDa ebihDs 7(1) = Ep(b;h,7,2(1)),  T=t+aih, Z®) =Ea(aih7,2(1)).
The above relation (3.11) implies

Eg(bih,7,Z(D)) = Z(7) + G (h)
=Z([®+b;hB(Z®D)+0(h?)
=Z(® +b;hB(Z®)+ 1 b:h*B'(Z®) B(Z®) + 0 (1°).
In a similar manner, we have

Z(7) = Ea(aih, 1,2(1)) = 2(1) + O (h)
=z(1) + a;h A(z(1)) + G(h?)
= z(1) + aih A(z(0)) + S a?W* A'(2(1)) A(2(1)) + O(K°).

Consequently, by additional Taylor series expansions, it follows

B(Z(®) = B(z(1)) +0(h) = B(z(1)) + a;h B'(2(1)) A(z(1)) + G (h?),
B'(z@)=B'(z(1))+0(h),  B'(z@)B(z(@)=B'(2(1))B(z(1)) +O(h),

wherefore we finally obtain

Ep(bih, 7, 20) = 2(0) + h(a; A(2(0) + b; B(2(1)
+ 12 (3 a2 A (20) A(2(@)) + aibi B'(2() A(2(r)) + } bEB'(2(0)) B(2(0))
+0(h%).
Note that Dg(z) = F(z), D]% z = F'(z) F(z), and further
G(z)=Dpz=B(2), G'(2=B'(z2), DaDpz=G'(z) A(2) = B'(2) A(2);
we thus conclude that the formal expansion
e®i"Pa ebihDs z(1) = (I + a;h Da + % a>h?D3) (I + bih Dg + 1 b2h* D3) z(1) + O(h®)
= (I+ h(aiDa+ biDg) + h* (3 a2 D} + a;bi DaDs + 3 bD3) ) 2(x) + 0 (1)
= 2(1) + h(a;Da+ b;Dg) z(1) + h*(% a3 D} + a;b; DaDg + % b7 Dg) z(7)
+0(h°)
= 2(1) + h (@i A(2() + biB(2(1))
+h? (3 a4 (2(0) A(2(D) + aibiB'(2(r) A(z(r)) + } bB'(2(1) B(2(7))
+0(h°)
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is in accordance with the above relation deduced by Taylor series expansions.

Expansion (Splitting solution). We next apply the previously verified formal expansion to a
splitting method involving two compositions; this yields

(DA+B(h) to;)’(fo)) — ealhDA eblhDB eaghDA ebg hDp J/(to)

- (I +h(a1Da+b1Dg)+h? (L a?D? + aybyDaDy + beg))
(1+ h(azDa+ by D) + B (% a3 D} + azby DaDp + 3 b3DF)) y(1o) + 0(h?)
= y(to) + h((a1 + a2) Da + (b1 + b2) Dg) y(£o)
+ 12 (3@} + a3) D} + (@ by + azhy) DaDs + 3 (% + b3) D}
+(aDa+ by Dg) (a2Da + szB)) y(to) + G (1)
= y(to) + h((a1 + a2) Da + (b1 + b2) Dg) y(£o)
+ 2 (% (a1 + az)2 D2 + (ay(by + ba) + azby) DoDg + biaz Dy Dy

+ 1+ bz)ZDg) Y1) +6(h3).
Recalling the identities Dr z = F(z), Dlg z=F'(z) F(z), and DrDg z = G'(z) F(z), we finally have

Dpp(h t0, (1) = y(to) + h ((a1 +a) A(y(te)) + (by + bg)B(y(to)))
+ 2 (% (ar +a)? A’ (y(10)) A(y(10)) + L (b + b2)?B' (y(10)) B(y(10))
+bras A'(y(19)) B(y(1)) + (a1 (b1 + b2) + azbs) B'(y(to))A(y(to)))
+0(h%).

Expansion (Local error). Altogether, the above expansions of the exact and numerical solu-
tion value imply

dy = @ar5(h, 1o, y(to)) — Eass(h, to, y(10))
—h ((a1 +az-1)A(y(to) + (by + by — 1)B(y(t0)))
+h? (% ((a1+ a2)* = 1) A (y(10)) A(y(10)) + 1 ((b1 + b2)* = 1) B (y(10)) B(y(10))
+(braz - 3)A'(y(t)) B(y (o)) + (a1 (by + b2) + azby — %)B'(y(l‘o))A(y(l‘o)))
+0(h%),

and, as a consequence, we retain the first and second order conditions (1.19) from requiring
dy =G (hP*Y) for p =1 or p = 2, respectively.
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Part11.

Fourier and Hermite spectral methods
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Notation. Henceforth, we let N = {m € Z: m = 0}. Further, we employ the multi-index
notation m = (my,...,my) € 7% and the compact vector notation x = (xy,...,X4) € R4, We
denote by 6)’;,, 1 < i =< d, the partial derivatives of order k and by A = A, = 0)?1 +-o+02 -, the
d-dimensional Laplace operator. For a domain Q ¢ R?, the Lebesgue space L?(Q) = L*(Q, C) of
square integrable complex-valued functions is endowed with standard scalar product (-|-);2
and corresponding norm || - || ;2, defined by

(f|g)L2:fo(x)@dx’ £l = (£ )y FrEgEL* Q.

Objective. We are concerned with the efficient numerical solution of the linear partial differ-
ential equation
iow(x, ) =L(x)w(x, 1), xeQ, t=0, 3.12)

involving a second order differential operator «f. Regarding the spatial discretisation of non-
linear Schrodiger equations by Fourier and Hermite spectral methods, we focus on the cases
o =—Aand o = — A+ Uy, where U, denotes a scaled harmonic potential.

Approach. For solving (3.12), we make use of the fact that there exists a family (%,),,.. ,
which forms a complete orthonormal system of the function space L?(Q), i.e., for any element
¢ € L*(Q) the representation

Y= Z Pm PBm Qom:((P|e%m)L2;
me.

holds. Moreover, the basis functions (%,),,. , are eigenfunctions of the linear operator </;
more precisely, the eigenvalue relation

de%mzﬂ,mz%m, me'ﬂy

is valid with real eigenvalues (A,;)me.«. The above identity motivates the definition of a linear
operator F(«/) through

Fl)p= ) @mF(t)Bn=Y ®omFAm)Bn;
meH meH

for instance, the linear operator e“” is given by

co cA
e = Z Pme " By, .
meH

By Parseval’s identity, provided that the sequence (¢, F(A,)),, ,, is square-summable, the
above definition is well-defined; in particular, for c € iR it follows

le“ollz=lolz  oel@.
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As a consequence, the solution of (3.12) possesses the following representation

v, 0=e "y,00= Y yu0e MR, 20,  w(,00= Y wn0) By.
meH meH

For the numerical realisation of the above relation, the infinite sum is truncated and the
spectral coefficients v, (0) are approximated by means of a quadrature formula.
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4. Fourier spectral method

Objective. In the following, we are concerned with the numerical solution of the linear partial
differential equation (3.12) involving the d-dimensional Laplace operator

o =—A

on a bounded (symmetric) domain Q = (—ay, a;) x --- x (—ag, aq) < R% with a; >0 (sufficiently
large), 1 < i < d; furthermore, we impose periodic boundary conditions. We first restrict
ourselves to the case d = 1 and then extend our considerations to arbitrary space dimensions.

4.1. Approach in one space dimension

Notation. For a > 0we set Q) = (—a,a) <R and further .4 = 7.

Approach. For the construction of the Fourier basis functions (%,)mc.« and the derivation of
basic relations we refer to [46]. Combining the theories of Sobolev spaces and selfadjoint linear
operators on Hilbert spaces, it is shown that the linear differential operator </ = — 092, subject
to periodic boundary conditions, is selfadjoint on a suitably chosen domain D (/) c L*(Q).
Further, the corresponding eigenfunctions (%;,;)me.«, which form a complete orthonormal
system of the function space [2(Q), and the eigenvalues (A,,) e« are determined.

4.1.1. Basic relations

Fourier basis functions. The Fourier basis functions (%) me_« are given by

. 1
97m(x):\/%e‘”m(ﬁx“), xXeQ, me..

In particular, they fulfill the orthonormality relation
(Fk | Fm) 2 = 6km»  kome . 4.1)

Fourier series expansion. The family (%,,),c« is complete in [2(Q), i.e., for any function
¢ € L*>(Q) the representation

@Y= Z Pm Fm, Pm = ((P | gm)Lz ) (4.2)
meH
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holds with spectral coefficients (¢;;)me.«; the convergence of the infinite sum versus ¢ is
ensured in L?(Q).

Parseval’s identity. The above relations (4.1) and (4.2) imply

lolz= X lonl’,  per’@. (4.3)
med
Eigenvalue relation. The differential operator o = —d2 fulfills the following eigenvalue

relation with eigenfunctions (%,)me.« and associated eigenvalues (A ;) me.«

Explanations. The orthononality relation (4.1) also follows from a straightforward calculation

(gk|gm)L2 = _agk(X) Fm(x)dx = i‘[

—a

a . 1, k=m,
gl mk=m) (5+1) dx = k,me 4.

0, k#m,

Moreover, in an easy manner, the eigenvalues are obtained by differentiation

6x97m:iémn9m, dﬁézm:—ﬁmzﬂze%n, me ..

4.1.2. Discretisation

Notations. For an even integer number M >0 we set /= {meZ:-iM<m=<4M-1} and
further #={jezZ:0<j<M-1}.

Approach. We first consider areal-valued regular periodic function f : Q@ — Rwith continuous
extension to Q; in particular, it holds f(—a) = f(a). For the quadrature approximation of the

integral
f f(x)dx
Q

we apply the trapezoidal rule with equidistant nodes and corresponding weights (x;j, w;) je ¢

ijf(xj):fgf(x)dx, xji=—a+34j, wj=3%, jeg. 4.5)
jes

The above quadrature approximation extends to complex-valued function f : Q — C by consid-
ering the real and imaginary part of f.

Approximation of spectral coefficients. Note that

Fmlxp) =25, medly, jeg. (4.6)
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An application of the trapezoidal rule (4.5) yields

Om = (| Fm);2 = fﬂq)(x) Fm(X)dx~ 323 o(x) Fm(x),  me My,
jes

see also (4.2); we thus obtain the following approximations to the Fourier spectral coefficients

(pm:% Y @(xf) e 2T medy. (4.7)
jes

Approximation of function values. On the other hand, from the Fourier spectral coeffi-
cients (@m)me.«,, approximations to the values of ¢ at the grid points (x;);e y are retained
through

PO~ = Y, gme?TH,  jeg, (4.8)

me.y

see also (4.2) and (4.6).

4.1.3. Implementation

Notations. As before, for an even integer M > 0 we set .4 = {m €eZ: —%M <m<im- 1}
and further #={jezZ:0<j<M-1}.

Implementation. The efficient implementation of the Fourier spectral method relies on
Fast Fourier Techniques. In the following, we discuss the realisation of the pseudo-spectral
transformations (4.7) and (4.8) in MATLAB. For notational simplicity, we do not employ differ-
ent notations for the exact spectral coefficients and the numerical approximations obtained
through (4.7); similarly, we do not distinguish between the function values and the numerical
approximations (4.8). Tilded letters correspond to quantities in MATLAB.

Grid points. For the Fourier pseudo-spectral transformations, we employ a collocation at the
trapezoidal quadrature nodes

3C'j+15x]', JEZL.

Real to spectral. For given function values

¢j+1 E(p(x])y jejy
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approximations to the spectral coefficients (¢;)me.«,, are computed through (4.7)

on =G Y gLy e 1T

jef
M .
_ V2a —joptlm
= L vlg)e M
j=1
M .
~ V2a ~ —jogUzhm
=37 Z )j € Mo me My .
j=1

Note that the periodicity of the Fourier basis functions and the (tacitly assumed) periodicity
of ¢ implies ¢,;,+¢pr = @, for any £ € Z. In MATLAB, an application of the command f£t results
in

® &0 UmeD

fft(@l, ,(PM) ((Pl ye ,(PM) ~(S) Z(P] ~iz2m , l<k<M.

A comparison of the above relations shows that

(@27 831 = 2 (900 Py 1010 01)

Altogether, with the help of the command fftshift which swaps the left and right halves of a
vector, we obtain approximations to the spectral coefficients through

Y24 g eeshift (££5(Py,..., Pu)) = Y28 £Etshife(@Y,...,3)
= £1t8hift (o, Ly Pty P-1)
= (@_1ap- - P10, 1y )

Spectral toreal. On the other hand, starting with given spectral coefficients

((P_%M,---y(P—l;(PO;---;(P%M_l) = ((le)---)(pM—l)(pOJ---r(le 1)

(s) ~(8) ~(s) ~(s)
=@ B P B),

an application of the command ifft results in

- 1)(k ]

M
1t56(3 0 @y)) = (@1 BM),  Br=3p ) B C lsk<=M.
j=1

Moreover, making use of the fact that
(j— 1)(k 1)

~ 1 & ~(S)
= Z
j=1

ﬁ\i
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and thus

M .
. (j—D(k-1)
M ~ ~ 1 . 127 ~—5—
Vi PR = T L pme T
j=1
1 i2 Jjk=1)
ez A
jef
_ 1 Z jon k1)
= — Pm e M
V2
am€./ﬂM

and that the command ifftshift swaps the left and right halves of a vector, approximations
to the function values are obtained through

= 1fft (AffEshift(@ 1. 0-1,00,- @1y y)

~ M - . . ~(s) 7)) =(s) 7(8)
= \/T_a lfft (lfftshlft((p%M+1; . .,(pM ’(pl "..,(p%M)

__M . ~(s) ~(s)
= 5o 1Tt (@7, Gy

3 G )
= ((p(xo),...,(pM-l(xM—l))'

4.2. Approach in several space dimensions

Notation. Fora;>0,1<i<d, wesetQ=(—aj,a;) x---x (—ag, ag) < R? and further .« = 7°.

Approach. The considerations for one space dimensions are extended to the general case.

4.2.1. Basicrelations

Fourier basis functions. In d space dimensions, the Fourier basis functions (%) e« are
given by
Fm(X) = Gy (x1) -+ Py (Xa), xeQ, medH,
crms (L oy
Fn(xi) = e (& xi1) ,  ls<is<d.

In particular, the orthonormality relation (4.1) holds.

Fourier series expansion. The family (%,,),c« is complete in [2(Q), i.e., for any function
¢ € L?(Q) the representation (4.2) holds with spectral coefficients (¢,,)me.« -

Parseval’s identity. Relations (4.1) and (4.2) imply (4.3).
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Eigenvalue relation. The Laplace operator «/(x) = — A fulfills the following eigenvalue rela-
tion with eigenfunctions (%,,)me.« and associated eigenvalues (A,,)me_«

d da
ATy =AnFm, Am=) Am,=n") Hmi,  me.. 4.9)

i=1 i=1 4

Explanation. Due to the fact that

~ APy =Ty Fny 0% Fony —+— P

mg ¥x

s Ty 02 Finyg = Ay +++ + Amy) Fm,

1 mg-1 Yxy4

the above relation follows by means of (4.4).

4.2.2. Discretisation
Notations. For M € N¢ with M; > 0 an even integer number for 1 < i < d, we set

My ={mez®:—IM;<m;i<iM;-1,1<i<d},
F={jez?:0=j;=M;-1,1=i=<d}.

Further, we employ the short notation

j-m d Iimy
ecjﬁ = CZ’ 1 M

, ceC, je g, medy.

Approach. We consider a complex-valued regular periodic function f: Q — C? with con-
tinuous extension to Q, i.e. it holds f(—a) = f(a). For the quadrature approximation of the
multiple integral

ff(x)dx
Q

we apply the trapezoidal rule with equidistant nodes and corresponding weights (x;, w;)je ¢,
which are given by the quadrature nodes and weights of the one-dimensional trapezoidal rule

ijf(xj):fgf(x)dx, Xj= (X, Xj,), Wj=wj -, jEL,

jes (4.10)
Xj,=—a; + ij’]l, wj, = ijl 1<j;<M;, l<i<d.
Approximation of spectral coefficients. Note that
da . jm
Fm(xj) = e 27T, mey, jeEZ. (4.11)
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An application of the trapezoidal rule (4.10) yields the following approximations to the Fourier
spectral coefficients

d . j-m
~[]R4Y g e 275, me.dy, (4.12)
i=1 ' jeg

see also (4.2).

Approximation of function values. On the other hand, from the Fourier spectral coeffi-
cients (¢Ym)me.«,, approximations to the values of ¢ at the grid points (x;)je g are retained
through

Y gmel?M, ey, (4.13)

mE./ﬂM

d
P(xj) = H

see also (4.2) and (4.11).

4.2.3. Implementation
Notations. As before, for M € N with M; > 0 an even integer number for 1 < i < d, we set

My ={mez%:-iM;<sm;<IM;-1,1<i=<d},
F={jez*:0=jisM;-11=<isd}.

Implementation. It is straightforward to extend the considerations of Section 4.1.3 to several
space dimensions; again, the pseudo-spectral transformations (4.12) and (4.13) are realised by
Fast Fourier Techniques.

Real to spectral. In several space dimensions, approximations to the spectral coefficients are
obtained through

d
USER V]@T fftshift (fftn(p(x)))).
i=1

Spectral to real. In several space dimensions, approximations to the function values are
obtained through

QU

(p(xp) = (ifftshift(pm))-
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5. Hermite spectral method

Objective. In the following, we are concerned with the numerical solution of the linear partial
differential equation (3.12) involving the second order differential operator

d
Ax)=-A+Uy(x), Upx)=) y'x?, %>0, l<i=d, (5.1)
i=1

i

on the unbounded domain Q = RY; furthermore, we impose asymptotic boundary conditions.
We first restrict ourselves to the case d = 1 and then extend our considerations to arbitrary
space dimensions.

5.1. Approach in one space dimension

Notation. We set Q =R and .« =N further, we denote by y > 0 a positive weight.

Approach. As before, we also refer to [46] for the construction of the Hermite basis func-
tions (Jt,”,’,/l)mE .« and the derivation of basic relations. Combining the theories of Sobolev
spaces and selfadjoint linear operators on Hilbert spaces, it is shown that the linear differential
operator «/(x) = —02 +y*x?, subject to asymptotic boundary conditions, is selfadjoint on a
suitably chosen domain D(«/) L2(Q). Further, the corresponding eigenfunctions (Jf,,’;)me >
which form a complete orthonormal system of the function space L?(Q2), and the eigenval-
ues (A,;)me.« are determined.

5.1.1. Hermite basis functions

Objective. In the following, we are concerned with constructing the orthonormal Hermite
basis functions (#,) . , which fulfill the eigenvalue relation

A = A FE), me M, (5.2)

with associated eigenvalues (A ;) me_« -

Ladder operators. The construction of the Hermite basis functions is based on the approach
of ladder operators. The algebraic identity a? — b? = (a — b)(a + b) motivates the consideration
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of the differential operators
,Qf(x):—65+y4x2, ,@(x):ax+)/2x, Q(x):—6x+y2x.

Although the operators 22 and £ do not commute, that is, it holds of # 2 2 and «f # 22, we
may take advantage of the fact that the product of 22 and 2 is close to «/; more precisely, we

have
QP =of -y, PL=o+y%I,

and, as a consequence, we further obtain

P =(d +2y*1) P, 24 =(od-2y*1)2.

Explanations. For a regular function y, it follows

2(x)P(x) y(x) = (=0, +7%x) (0xy(x) + Y x y(x))

=-0Zy(x) -y (y(x) £ x0xy(x)) + Y x2y(x) = A (x) y(x) - y*y(x),
P(x)2(x) y(x) = (0x +y2x) (= 0xy(x) +)/2xy(x))

= —dﬁy(x) +y2(y(x) + xdxy(x)) +y4x2y(x) =of(x) y(x) +y2y(x).

Hence, using that o = 2% +y%1 = 222 — yI we obtain

PA =P (2P +y?]) = (P2 +y*1) P = (o +2y*]) P,
24 =2(P2-y)=(22-y*1)2= (o4 -27y*1)2.

First Hermite basis function. The first Hermite basis function th is related to the weight
function w(x) =e” 2 7’2x2; namely, using that Zw = 0 it follows o/ w = (22 + y*I) w = y*w.

Due to the fact that
wlia= [ e ax= /2,

itis seen that the first normalised Hermite basis function th)y is given by

aly2 _1,2.2
Jfoy(x):\/%e 2V X xeQ,

with associated eigenvalue Ay = y2.

Preliminaries. We first note that by partial integration the relation

fQ (0,76)(x))" dx = - fQ FE)(x) 0276 (x) dx
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follows. Thus, the eigenvalue relation (5.2) and the normalisation condition || #,| ;> = 1 imply
fQ (0, 75(x)) +y* x2(A)(x)) dx = fQanZ(x) (- 0276)(x) +y* x2.760(x)) dx
= fQanZ(x).Qf(x) F00(x) dx = Amfg (F5(x))* dx = Am;
in a similar manner, by partial integration it follows
fo FEy(x) 0 FEp(x) dx = —1.

Altogether, we obtain the following identities

|27, ||i2 = fQ (- 0, 760(x) + 7% x 760(x))* dx

- fQ (0.765(x))° = 2y x FE4(x) 0, TE0(x) + ' x2(FE(x))? dx = A + 72,
|27}, ||ig = fQ (0x760(x) + 12 x an’;(x))z dx

— f (Gxif,%(x))z +2Y2X JEN(X) 0 AE)(X) +y4x2(ifn7;(x))2 dx=A, -2
Q

Up. We consider the eigenvalue relation (5.2) for the m-th Hermite basis function /), with
corresponding eigenvalue A,,. Applying the operator £ and making use of the previously
derived relation 2 o = (of —2y21) 2, we obtain

ALY = (Am +277) AE);

that is, 2 %), is also an eigenfunction of </ with associated eigenvalue A, = A, +2y2. Due
to the fact that Ay = y?2, it follows

Am=72(1+2m), me.l.

. . . Y2 _ 2 Y _ 1 Y .
The above considerations imply | 2.7%,,|;. =2 (m+1)y? and thus ) , | = EEAP 276), ie.

FE) (x) = m (= 0 760(x) + Y2 x H0(x)),  x€Q. (5.3)

Down. We consider the eigenvalue relation (5.2). Applying the operator &2 and employing
the relation 2o = (of +2y21) 2, we obtain

APTE) = (Am—27%) PIEY;
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that is, 2.7}, is also eigenfunction of =« With associated eigenvalue A,, —2y?2. Due to the fact
Y12 _ 2 Y Y

that ||3”%”m ||L2 =2my“and A, _, m P A, we thus have

F0(x) = \/z_;my (0xT60(x) +y2x FEN(X)),  xeQ. (5.4)

Recall that ?}’Jt{ =0,i.e. Jﬁ)y is indeed the first eigenfunction of <.

Recurrence relation. The identities (5.3) and (5.4) yield the recurrence relation

_1 4[4+6 _1,2.2
fﬂm YEe e, g =L xe i, (5.5)

nyﬂ(x) +1 (\/ny%,};(x)—\/ﬁifgl_l(x)), m=1, xeQ.

Note that %) (x) is of the form
anZ(x):H,Z;(x)e_%yzxz, xeQ, me.,

with H}), a polynomial of degree m. Clearly, the Hermite polynomials (Hp, Y) ¢ so fulfill the
recurrence relation in (5.5).

5.1.2. Basicrelations
Hermite basis functions. The Hermite basis functions (#),) _ , are given by

A x)=HL(x) e 2V xeQ, me; (5.6a)
here, we denote by H,, the m-th Hermite polynomial which fulfills the recurrence relation

2 6
Hlx) =\, H(=Tx, (5.6b)

Hy o (0) = == (V2yx Hy() - Vm Hy_(x)),  mz1, xeQ,

see also (5.5). The Hermite basis functions satisfy the orthonormality relation

()| 760)12 = Okm,  kome . (5.7)

Hermite series expansion. The family (ny) ¢y 18 complete in L?(Q), i.e., for any function
¢ € L*>(Q) the representation

0= omHy,  om=(p| 702 (5.8)
meH
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holds with spectral coefficients (¢;,;)me.«; the convergence of the infinite series versus ¢ is
ensured in L?(Q).

Parseval’s identity. The above relations (5.7) and (5.8) imply (4.3).

Eigenvalue relation. The space dependent differential operator «/(x) = —92 + y*x? fulfills
the following eigenvalue relation with eigenfunctions (Jz,”,%) mey and eigenvalues (A ) me.u

(- 65*‘7/4352) JON(X) = A FEN(x), Am=73(1+2m), xeQ, me.

5.1.3. Discretisation
Notations. For a positive integers M, K > 0 we set .4, = {m eN:0<sm=M- 1} and further

F={jeN:0=j<K-1}.

Approach. We first consider a real-valued regular function f : Q — R. For the quadrature
approximation of an integral of the form

f fx) e V" dx
Q

we apply the Gaull-Hermite quadrature formula with nodes and weights (x;, w;)je ¢

Y wifxp)= | fx)e” Y qx. (5.9)
Q
jes

The above quadrature approximation extends to complex-valued function f : Q — C by consid-
ering the real and imaginary part of f.

Approximation of spectral coefficients. An application of the Gaul3-Hermite quadrature
formula (5.9) yields

om = (| 7n);2 :f w(x)if,,y,(x)dx:[ 37 () Y (x) eV dx
Q Q

372 Y
= Z wje?’ T (xj) Hy(x)), me My,
jes

see also (5.8); we thus obtain the following approximations to the Hermite spectral coefficients

1
Om = Z wj eﬂzxfg(p(xj) H,%(xj), me . (5.10)
jes
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Approximation of function values. On the other hand, from the Hermite spectral coeffi-
cients (@m)me.«,, approximations to the values of ¢ at the grid points (x;);e # are retained
through

P = Y PmIn(x),  jEZ, (5.11)

mey

see also (5.8).

5.1.4. GauR-Hermite quadrature formula

Order. We recall that a quadrature formula is said to be of order p iff the quadrature ap-
proximation yields the exact result for any polynomial f with deg f < p—1. In particular, the
Gaull-Hermite quadrature formula (x;,w;)je ¢ is said to be of order p iff

Z w; f(x;) = fo(x) w(x)dx, degf<p-1, (5.12)
jes

with weight function w(x) = eV’ xeQ.

Approach. The construction of the Gaull-Hermite quadrature formula (x;, ;) je ¢ is in the
lines of the construction of the Gaul§ quadrature formula. For the Gaul-Hermite quadrature
formula, the associated orthogonal polynomials are the Hermite polynomials (H,L) meny 1€ it
holds

(wH] | H})2 = (F6) | 760)12 = 6km»  komeN,

see also (5.7). The Gaull-Hermite quadrature nodes (x;) e g are the roots of Hg ; the correspond-
ing weights (wj) e ¢ are obtained through the order conditions for order K. By construction,
the Gaul3-Hermite quadrature formula is of order 2K.

Computation of quadrature nodes. The GaulB-Hermite quadrature nodes (x;);e y are com-
puted numerically through the solution of an eigenvalue problem; this approach is closely
related to Sturm's chains. Namely, we make use of the fact that the characteristic polynomial
associated with a symmetric tridiagonal matrix

a) bl
by ax b
Ay = ) e RMxm (5.13a)
bp-1 am

fulfills a three-term recurrence relation. More precisely, we consider the polynomial

Ym:R—=R:x— y(x) =c, det(Ay — xI), m=1,
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with leading coefficient c¢,,. Expanding the determinant of A,, — xI with respect to the last row
and with respect to the last column, respectively, yields

a)— X bl
bl ar — X bg

det(Am+1 —xI) = det
bn-2 am-1—x bm-
b, Am+1 — X

a)— X b1

= (@m+1 — x) det (A, — xI) — by, det
bm—Z aAm-—1—X

= (@m+1 — X) det(Ap, — xI) — b2, det (Ap—1 — xI),
and, as a consequence, the recurrence relation

Xo(x) =co, x1(x)=c(ag —x),

Am+1(x) = dm+1 ((am+1 —X) Ym(x)— dm b;%)(m—l(x))» m=1,

follows, where d,,, = Cfn’f - for m = 1. Comparing the above relation with the recurrence rela-

tion (5.6b) for the Hermite polynomials, we conclude that y,, = H), provided that

2
6024%’ am:O, bm:)l/\/%, m=1. (513b)

Thus, the Gaull-Hermite quadrature nodes (x;)jc ¢, that is, the roots of the K-th Hermite
polynomial, coincide with the eigenvalues of the associated matrix Ag, see (5.13a). Note that
for any x;, j € _¢, the function values (Hg(x]-), ety Hg_l (x]-)) T form an eigenvector of Ax with
associated eigenvalue x;.

Computation of quadrature weights. Inserting the Hermite polynomials (H,;Yl)m€ Y into the
order conditions (5.12) and applying the orthonormality relation (5.7), yields the following
system of linear equations for the Gaus-Hermite quadrature weights (w;)je #

Hw:,‘l/%el,
Hl(xo) ... H(xk-1)

H= : ’ w:(wO;---»wK—l)Tr 81:(1)07---)0)
Hl (xo) ... H}  (xx-1)
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Recall that the vectors [Hg(xj), ceey Hg_l(xj))T, J € _#, form an orthogonal eigenbasis of Ag.
Therefore, due to the fact that

H'H = D =diag(do,...,dx1), dj= Y (Hhxp), je g,
me_¢

H'e, = (H] (x0),..., H) (xx-1))" = @(1,...,1)? D71, 1) = (4, 7))

it follows w = & )% D 'HTe,, thatis

T
w:(dio,...,d[(l_l) )

Interpolation. The above considerations further imply

Y HYxp)HL () =26k, ke f.
me_¢ !

As a consequence, for any (regular) function of the form

0= Qn)
meH

the following interpolatory relation at the quadrature nodes

1,22
PR =Y PmIpxK),  Pm= Y wje? o) Hy(x), me g,
me 7 jer

follows. Namely, a short argument shows that

1.2,,2 .2
Y G A= Y Y wie? YT o) HY () HY ()

me_¢ megje g
1,202 .2
=Y w; e YT o) Y HY o) H () = o(x).
jesg me g

5.1.5. Implementation

Notations. As before, for integers M, K > 0 we set 4 = {m eN:0=sm=sM- 1} as well as
F={jeN:0=<j<K-1}.

Approach. The implementation of the Hermite spectral transformations (5.10) and (5.11) in
MATLAB relies on matrix-matrix multiplications. For notational simplicity, we do not employ
different notations for the exact spectral coefficients or function values and the numerical
approximations.
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Preliminaries. Clearly, the multiplication of a full matrix A by a diagonal matrix D yields

an a2 a3\ (dy dran dyarp dsais
AD=\|az axp a3 d> =|diax doaz diax|,

az dazy ass d3 dvaz) draz dszass

dy an  ap as diany diap dias

DA= dy a1 dpp Gp3|=|drax draz draps

d3) \as1 az asz dzaz) dzaz dszasz

Real to spectral. For given function values ¢ = (¢(xo), ..., ¢(xk-1)) g approximations to the
spectral coefficients ¢ = (¢o, ..., Prp-1) T are computed through

(s) —

Y Tr2s P, Ir2s = H Dy,
Hg(xo) Hg(xK—l) wo eaV’x;
H= y  Drps= T )
H) [(xo) ... H)  (xk-1) wx_y €37

see also (5.10).

Spectral toreal. On the other hand, for given spectral coefficients ¢® approximations to the
function values v are computed through

T
¢ =Isor (P(s) ) Tsor=Dspr H
e %sz(z]
DsZr = T y

e 3Y2ag
see also (5.11).
5.2. Approach in several space dimensions
Notation. We set Q = R? and further .4 = N¢.

Approach. The considerations for one space dimensions are extended to the general case.

5.2.1. Basic relations

Hermite basis functions. In d space dimensions, the Hermite basis functions (%)), _ , are
given by
FEN(x) = Top(x1) -+ Fopd(xa),  x€Q, meM,
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see also (5.6). In particular, the orthonormality relation (5.7) holds.

Hermite series expansion. The family (7)) _ , is complete in L?(Q), i.e., for any function
¢ € L?(Q) the representation (5.8) holds with spectral coefficients (¢,,)me.« -

Parseval’s identity. Relations (5.7) and (5.8) imply (4.3).

Eigenvalue relation. The differential operator &« = — A + Uy, see also (5.1), fulfills the follow-
ing eigenvalue relation with eigenfunctions (Jf,,};)me _,, and associated eigenvalues (A ) me.«

d d
(- A+Uy) Hh=Am o, Am=3 Am =Y ¥ 1+2m;), me.d. (5.14)
i=1 i=1

5.2.2. Discretisation

Notations. For M, K € N% with M;, K; >0 for 1 < i < d we set
My={meN?:0sm;<M;-1,1<i<d}, F={jeN®:0<ji<K;-1,1<i<d}.

Further, we employ the short notation

2,2 d 2.2
efr X :eczi:ﬂ’ixi, ceR, )fEIR{d, xeQ.

Approach. We consider a complex-valued regular function f : Q — C%. For the quadrature
approximation of a multiple integral of the form

f f(x) eV dx
Q

we apply the GauB-Hermite quadrature formula with nodes and weights (x;, w;)je # given by
the quadrature nodes and weights of the one-dimensional Gaul-Hermite quadrature formula

ijf(xj):Lf(x)e_Yz'xzdx, Xj =X, Xj,), Wj=wj i, je€f. (5.15)
jes

Approximation of spectral coefficients. An application of the Gaull-Hermite quadrature
formula (5.15) yields the following approximations to the Hermite spectral coefficients

1
Pm = Z wj eﬂz'xfch(xj) H,L(xj), me My, (5.16)
jet

see also (5.8).
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Approximation of function values. On the other hand, from the Hermite spectral coeffi-
cients (@m)me.«,, approximations to the values of ¢ at the grid points (x;);e # are retained
through (5.11), see also (5.8).

5.2.3. Approximation result

Approximation result. A result on the accuracy of the Hermite spectral method is found in
the recent work [26]. For M € N? with M; > 0for 1 <i < d, we set

Mmax =max{M;:1<i=<d},
My ={meN":0=sm;<M;-1,1<i<d}, g={jeN?:0<j<M;-1,1<i=<d}.

Moreover, we employ the notations

~ ~ ~ 1,2,
Q= Z Om ,](,0,3;, Pm = Z wWj e27’2 xz(p(x]') H,},;(x]'), me My .
mey JjeZ

Then, the following spatial error estimate is valid

(p-a-%)

|* (=) 2= CMmax > |2 ]l .

5.2.4. Implementation

Approach. Especially, for two space dimensions an efficient implementation of the Hermite
spectral transformations (5.16) and (5.11) relies on matrix-matrix multiplications.
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6. Laguerre-Fourier-Hermite spectral
method

Objective. In the following, we are concerned with the numerical solution of the linear partial
differential equation (3.12) involving the second order differential operator

A(x,y,2) =—A+Uy(x,y,2) +iwL(x, y), 6.1)
Uy(x,y,2) =7¢ (x* +y?) +y/2%, L(x,y)=x0y—yox, (x,y,2) € R3; '

furthermore, we impose asymptotic boundary conditions on the unbounded domain.

6.1. Preliminaries

6.1.1. Cylindric coordinates

In the following, we consider cylindric coordinates
@ :Rogx (—7,7) x R— (R2\{0}) xR: (1,9,2) — (x,5,2)7 = 9(r,9,2) = (rcosd, rsind,z)" .

By means of the rule for the first derivative of the inverse function, we have

or,9) (a(x,y))‘l
ox,y) o9/ ’

(Oxr ayr) 3 (Orx Oax) ! 3 (cos{) - rsim‘))_1 3 ( cosd sind

0,y O0gy sind rcosd B —%sinﬁ %cosﬁ'

3,9 0,0

Applying the chain rule to f(r,9) = f(r(x,y),9(x,y)), it thus follows

O f(r,9) = (Oxrar + 0,10 aﬁ)f(r,{)) = (COS{) 3, — % sin® 619) 9,
Oy f (r,9) = (9yr 3, +03yD 09) (1, 9) = (sind 0, ++ cos§ 9p) f (r, D).
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Furthermore, we obtain the relations

02f(r,0) = (cos 90, — L sin®dp)° f(r,0)

= (cos®90; — 1 sin(29) 8,9+ L sin” 0 05 + L sin® 9 8, + 5 sin(29) dg) f(r,9)
aﬁf(r, = (sin9 0, + l cos?d Gg)zf(r,z‘))

= (sin®98;7 + 1 sin(29) 0,9+ 2 cos’ 905 +1 cos®9a, - 2 sin(29) d9) f(r,9).

As a consequence, in cylindric coordinates the Laplace operator A = 02 + 6)% +02 and the
operator L(x, y) = xdy — y0x, which is related to the angular momentum, take the form

A=07+30,+50;+0;=10,(r0,)+50;+07, L=0y.

Moreover, due to the fact that | det¢'(r,9, z)| = r, the transformation rule for multiple integrals
implies the relation

ng fx,y,2)d(x,y,2) =f rfe(r,9,2)d(r,9,2).

Rsox (= 7,m) xR

6.1.2. Generalised Laguerre polynomials
Notations. We set Q = (0,00) and .# = N; further, we denote by x > —1 a certain weight.

Generalised Laguerre polynomials. The generalised Laguerre polynomials (:?Z.(K)) e ATe
defined through the following relations. They fulfill the relation

AL =0, jed, e,
with second order differential operator
g?(é):fd?+(1<+l—é)65+j1, jed, E€Q.

Further, the generalised Laguerre polynomials are orthonormal with respect to the weight
function w (&) = & e~ ¢, i.e., it holds

(02| L) =07, Jie .

Explicit representation. Inserting the representations

J
7 ®) _ Ll
L; (é)—Zalé,
-1

0L (¢) = Zzaé” Z(z+1)al+1<f’ 0L = Zl(i+1)“z’+1f"_l»

i=1
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into the eigenvalue relation yields
0=/ L@ = (§0% + 0+ DO~ 0+ T) I (©)
i ((+DK+i+Dan+ (- a;) &+ &+ Day + jag,
which implies
i , -
Z](.K)(E):Zaig”, ai+1:mai, 0<i<j-1, ag given.

By the normalisation condition, we therefore obtain the following representation for the
generalised Laguerre polynomials

N J ' .
2].(")(6)=(mg(’”@)%}m(a’ jed.

Recurrence relation. The generalised Laguerre polynomials can also be constructed by
means of the recurrence relation

Wo=1, IPEO=x+1-¢,

L9 =g ((c+2j +1-0 IV @ - e+ NI, @), j=1, ceq.

Namely, by the normalisation condition it follows

1
ZPG = (el ) TP@, e

6.1.3. Scaled generalised Laguerre polynomials

Notations. As before, we set Q2 = (0,00) and .4 =N; further, we denoteby y >0andx >—-1a
certain weight.

Scaled generalised Laguerre polynomials. We further introduce the scaled generalised La-
guerre polynomials (.5,”].(’()) je.u through

L) =vV2yTixte 2y LX), jed, xeq,
Then, the orthonormality relation

w,Sf(") |$(K) L 6]]~’ j,fE M,
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with weight function w(x) = x follows. Namely, it holds
(wfﬁj(’() |££7(1<))L2 _ 2Y2(K+1)f9x21<+1 e z(x) (szz)g%(x) (r2x?) dx
= f et LM 2 dé
Q J J

= (g,gz_(x) | g}x))LZ =65 je.

Eigenvalue relation. We consider the second order differential operator
d(x):—éi—%6x+[’;—z+y4x2)l, xeQ.
A straightforward calculation shows that the first and second derivative of $j(’<) is given by
axsfj(K) (x) — \/E,}/K+l xK e % szz (2,}/2x af + (1§ _sz) I) §}(K) (,)/ZxZ) ,
65%(10()6) — \/E,}/K+l xKe_%szz (4)/4)620? +4Y2 (K_szz + %)65
+(y'x? - 2x+ 1)y + XG0 I) 2 (r?x?).
As a consequence, this yields
(0% +40x) LV (x) = V2y T 1 e 27 (4 Y'x?07 +4y? (k+1-y"x?)0;
2 2 x? 7] 2.2
+(y'x* -2+ 1y +%)I)££j('<)(y x°),
and, furthermore, due to the fact that o EEJ.(K) =0, it follows
2
() L (x) = (— 07— 3 0x+ (fz +7"x?) I) £ (x)
= V2. 4y KT a (szzag +(k+1-y*x?)0: -3 (k+1) I) 2 (y*x?)
= V2. 4y KT a (,J(yzxz) ~1ejrx+1) 1) ZP(y*x?)
=272 (2j+x+1) £ (),
We thus obtain the following eigenvalue relation for the scaled Laguerre polynomials

,Qf(x),sejm(x) =272 (2j+1<+1)$j“<)(x), jed, xeq.

Generalised Laguerre functions. The scaled generalised Laguerre functions (L}‘(x)) jeu Are

given by L;? (x) =vx Zj(’() (x) for j € 4 and x € Q; they fulfill the orthonormality relation
(L} |L;§)L2 = 6,7 forall j, je.
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6.2. Laguerre-Fourier-Hermite spectral method

Notation. WeletQ={(r,9,2) eR3:r>0,-7w<9<n}.

Objective. We are concerned with the efficient numerical solution of the linear partial differ-
ential equationid;y = o/ v, t = 0, involving the second order differential operator

Ax,y,2)=—A+ Uy(x,y,2) +iwL(x,y),
Uy(x,y,2) =7¢ (x*+y?) +y/2%, L(x,y)=x0y—yox, (x,y,2) e R3;

furthermore, we impose asymptotic boundary conditions on the unbounded domain.

Cylindric coordinates. Employing cylindric coordinates, by means of the previous consider-
ations, we obtain

A(r,0,2) =—07 - %05— 02— %6r+iw6,9+yfr21+yz4z21, (r,9,2) €Q.

6.2.1. Laguerre-Fourier-Hermite spectral decomposition

Notation. We set.# ={m=(j, k,¢) eNxZ xN}.

Objective. In the following, we are concerned with constructing orthonormal basis func-
tions (B, , which fulfill the eigenvalue relation

A By =Ay B, MeM, (6.2)
with associated eigenvalues (A,;) e« - Then, the solution of i0;¥ = &/ v is given by

v, 0=e "y,00= Y yu0e "B, 20,  w(00= Y wn0) By.
meH meH

Approach. We employ the following representation
PBon(1,0,2) = LIV (1 T (0) ) (), med, (1,9,2)€Q, 6.3)

involving the scaled generalised Laguerre polynomials, the Fourier basis functions which are
given by Z(0) = \/% (-D*ei*? for —1 < 9 < 7w and k € Z, and further the Hermite basis

functions. We note that the basis functions (%;,) fulfill the orthonormality relation

meH

(w‘%m|'%ﬁ1)L2:6mm) m,ﬁ;lE./%,
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involving the weight function w(r, 9, z) = r. Inserting (6.3) into (6.2) and using that the eigen-
value relations

(—arz—%6r+lr€—21+yfr21)$j(lk“(r):2y3(2j+|k|+1)§€j(lk|)(r), jeEN, kez, r>0,
09 F(0) =1k F(9), 0;F(0)=-k*F(9), kezZ, -m<d<m,
(_az2+7’z4221)=7@7z(z)=YZ2(1+2€)J€;YZ(Z), leN, zeR,

are satisfied, we find that
A1,0,2) B (1,0,2) = (- 02 = 0% - 02— 10, +1wdg + 1 T2 [+ 7. 221) B (1,0, 2)
= F(9) (— 02+k —02-1p, - kw+y§r21+yz4z21) £ 7] (2)
= Fi0) ]2 (- 0F - Lo, + K+ ylr21) 2 ()
+ T £ (r) (- 02 + 7, 22 ) A (D)~ kw B (1,0,2)
= (2}/)62 (2j+Ikl+1)+y7(1+20) - kw) By (1,9,2).
We therefore have that

A B = A B, Am=2Y22j+1kl+1)+y2(1+20)- ko, m=(jkOeH.

Spectral decomposition. For any function ¢ € L?(Q), the spectral coefficients (¢,,,) e With
respect to (Bm),,. , are given by

@Y= Z (me%my
meA

Om=(we|Bnm)2 :f ro(r,9,z) Bm(r,9,2)d(r,9,2).

Rsox (—7m,m) xR

6.3. Discretisation

Notation. Forintegers M; >0and J; >0,1<1i <3, we set

./%M:{m:(j,k,[)ENXZXNijSMl,kSMz,[SMg},
I={ji=(njnjeN>:0=ji <] -1}

Approach. The generalised Gaul3-Laguerre quadrature formula (with ¥ = 0) is used for the
quadrature approximation of an integral of the form

J-1
Y wif(r)) zf e " f(r)dr,
j=0 R>0
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where f : R,¢9 — C is a regular function; the quadrature nodes and weights (r],w])]

computed in a similar manner as the Gaull-Hermite quadrature nodes and weights.

are

Approximation of spectral coefficients. In the following, we let (rjl,w(l))] "1 denote the

!
(2))52 _o the trapezoid quadrature nodes

the Gau3-Hermite quadrature nodes and weights. Then, for

GauB-Laguerre quadrature nodes and weights, (9;,, w

(3))]3 5
J3

¢ € L*(Q) approximations to the spectral coefficients (¢,,;)me« With respect to (%) me.y are
given by

and weights, and (zjs,w

1,22
1 2 3 i a2 Yz &
Z 1(1) ) w] )rh e’ e? s @13, 9y, 2j3) B (151, D)5, 2j5) me M.

Approximation of function values. From the spectral coefficients (¢;;,)me.«,, approximations
to the values of ¢ at the grid points (rj,,9},, zj,) j;<J;-1,1<i<3 are retained through

0,05, 2) = Y Pm B (15,955, 253), JEZ.

meMy

6.3.1. GaulR-Laguerre quadrature formula

Approach. The GauB-Laguerre quadrature formula is used for the quadrature approximation
of an integral of the form

J-1
NGO f e " f(r)dr,
j=0 R>0

where f : R,o — C is a regular function; the quadrature nodes and weights (’fj,&“)j)] ~1are

Jj=0
computed in a similar manner as the GaulR-Hermite quadrature nodes and weights, i.e. the
roots of £ ©) are obtained through the numerical solution of an associated eigenvalue problem.
The Gaull-Laguerre quadrature formula (7, ])5 is of order 2J, i.e, the quadrature formula

approximation is exact for any polynomial f of degree degf<2j-1.

Modification. Let

rj:l wj= 12w] 7 0<j=<J-1.

Y i
Then, it holds with w(¢&) =¢&

J-1
Y0, [ 200 = (wf | 2= [ er0 200 a
j=0 >
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and in particular for f = fff(’() (equalitity in quadrature approximation)
J-1 _
Y 0 L L) = (wL | L) =05, jied.
j=0

Namely, using that

2~

gj(x)(x):\/iyﬁlxxe—%wx Q%j(K)(,}/ZXZ), jed, xeQ,

Q?gj(x)(y):ﬁy—éxe%y%(m(%ﬁ), jed, yeQ,

and employing the transformation ¢ = % r,r=7%2,dr =2y*¢&, we obtain

~ L -1, 5 a7 p(L )
N\/EYwae rze f(yﬁ)f‘ (r)ydr
—_1 1 (x)(1
=g | FFVT) 2P GV ar
= f EFOLPE

R>0
:(wfl"%j(K))Lz

with weight function w(¢) =¢.

Numerical approximation of spectral coefficients. Furthermore, an application of the Gauss—
Laguerre formula and the trapezoidal rule yields

®=> OmBm, @m(r,ﬁ)=$,(,|l'f”|)(r)9mz(ﬁ), 0<r<oo, —-n<d<m,

meH
Om=(we|%Bm), :f r@(r,9) By (r,9) d(r,9)
R0 x (—7,7)

TSl (moh o Y79

= ) Y wj@pp(ry,9,) Ly (1)) Fm, (),),
j1=0 j>=0

_1 /= 1 o~ F _ 27 ; _2 - :
=5/ T wjl—ﬁwherfl, jy=-n+jo, wj,=%, 0spsh-1, 0sjos/-1.
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Part II1.

Time integration of
Gross—Pitaevskii systems
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7. Gross-Pitaevskii systems

7.1. Original formulation

Gross-Pitaevskii systems. In certain respects, a multi-component Bose-Einstein condensate
is well described by a system of J coupled Gross-Pitaevskii equations

J
i1 0,%;(x, 1) = (— A+ Vi) +72 Y gk | Wi, t)|2) Wi (x, 1),
i i (7.1)

|90 =N;, xeR?, t=0, 1<j<]J.

Here, we denote by ¥, : R%x Rsg — C: (x, 1) — ¥ (x, r) the order parameters (wave functions),
by 7 = 1.054571628 - 1034 Planck’s constant, by m; the masses of the atomic species, and by N;
their total particle numbers, 1 < j < J. In the most relevant case of three space dimensions, the
intra-species coupling constants g;; and the inter-species coupling constants gj are given

by gjx = 27 0k mngnzz * with scattering lengths Ojk, where oji = 0y, 1 < j, k < J. The external

trapping potentials are described by real-valued functions V; : R?Y - R, 1 < j < J. Further,
the partial differential equations in (7.1) are subject to asymptotic boundary conditions and
certain initial conditions.

External potentials. In many cases, the external trapping potentials are modelled by scaled
harmonic potentials

- d
Vi) =3 Y o i-G)?,  xeR?, 1sjs<],
i=1

with positive weights w;; > 0 and center displacements (j; €R, 1<i<d,1<j<].

7.2. Normalised formulation

Normalisation. Employing a linear transformation of the spatial variable

E=Vex,  c=3y/m-my,
v D=3, C=Vel, U©=ivix), Op=hClgr, 1<jk<]J,
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we obtain the following normalised formulation of the Gross—Pitaevskii system (7.1)

J
10y S, t):(—ch+le(<f)+ Y Dk |wr(E, r)|2) w0, ¢=LE0
k=1 / (7.2)
lwi 0|5 =N;, ¢er?, 20, 1<j<]J.

In accordance with (7.1), the partial differential equations in (7.2) are subject to asymptotic
boundary conditions and certain initial conditions. The constant C is chosen such that the
total particle numbers are conserved.

Explanation. Multiplying the partial differential equation in (7.1) with % yields

J
10,960 = (- - A+} Vj(x)+h;1gjk|\yk(x, 0I?) ¥ x, .

Note that dy, = /¢ 0¢;, 1 =i =d, and thus A, = cA¢; therefore, substituting W;(x, 1) = Cy;(S, ©)
as well as V;(x) = h U;($) gives

J
iCoyjE,0=C(- 2L A+ U;©+nC? Y. gielwe@ 0l wi €. 0.
k=1

Multiplying with % and using that ic = {/my-—my and 9 = h C? 8jk» yields the partial differ-
ential equation in (7.2). Further, due to d¢ = Veddx = C? dx, it follows

w0l = [ lw@ora= [ ol ae= 6ol

7.3. Special case

Special case. As an illustration, we specify a Gross—Pitaevskii system in three space dimen-
sions involving two coupled equations, that is, we set / =2 and d = 3 in (7.1) and obtain

ihat\Pl(x,t):(—%A+V1(x)+h2gn|\I’1(x,t)|2+h2g12|‘I’2(x,t)|2)‘I’l(x,t),
P10 (06, 1) = (= £o A Vo) + 2 gaa |94 (x, D] + W | Wa x, ) W, ),
1605 =N, 0|5 =N,  xeR®, 20;
the scaled harmonic potentials are of the form

Vilx) =2 (0%, (x1 = {11)% + 07, (X2 — (12)* + w5 (X3 — (13)?), xeR®,

Va(x) = 22 (w3, (x1 — {21) + 5, (2 — {22)* + w34 (x3 — {23)%),  x€eR’.
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In compact vector and matrix notation, we have

=(m,mp) €ER?,  N=(N;,Ny)eR?,

g= (gu 812) cRP2, o= (wu w12 wls) e RYS, (= ((11 (12 (13) € R2<3

a1 22 (o3

812 822 w1 W2 W23

In the present situation, the linear transformation

m;m
=vcx, c=Y7-2,

& n=1¥xn, Cc=Ve, U©=ivix), j=12, 9=hC%,

yields the following normalised system

1016, 0 =~ 2 A+ U1 @) + 01 [11 € 0 + 012 [ =&, 0P w16, 0,
1026, 1) = (= Yur® A+ Un(@) + 02 [y €, 0 + 02 [r2&, 0P w8, 1),
||u/1(-,0)||Lz:N1, lv2(, 0|22 = N2, E€R®, £20.
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8. Ground state solution

8.1. Energy functional

Energy functional. For a nonlinear Schrédinger equation such as (7.2), the energy func-
tional E is given by

J
E(@) =Y Ej@),
=1

. 8.1)
@)= ((-ga+U)) ;| 0i),, +%kéﬁfk (oePoy| @), 1=i=1,

where ¢ = (¢1,...,¢7) with g :R? - Cfor 1< j <.

Notations. In accordance with the eigenvalue relation (5.14) for the Hermite basis functions,
we henceforth denote

Gi(p) = (o + B @) 0y, Gip) = () + B () g
J _ J
Bi(@9) =B + ) 9 B ), B@)=B"+5 ) 05 B @), (8.2)
k=1 k=1
dj=ci(-A+Uy), BY=Uj-cUy, B @)=lpl®, 1<j<J.

With these abbrevitaions, the partial differential equations in (7.2) and the associated energies
are written in compact form

0y &n0=94(vEn), E@=(G|e), 1<j<J,

see also (8.1).

Energy conservation. For the solution of the normalised Gross—Pitaevskii system (7.2) the
total energy (8.1) is a conserved quantity, that is, it holds

E(w(,0)=E(w(,0), ¢=0. (8.3)
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8.2. Ground state solution

Ground state solution. The ground state solution of the normalised Gross—Pitaevskii sys-
tem (7.2) is a solution of the special form

yiE,0=e M), ¢eRY, t=z0, l=j=],
that minimises the energy functional E, see (8.1). Hereby, the chemical potentials y; € R,

1 < j <], are given by

N e T B R M Y

8.3. A single Gross-Pitaevskii equation

Gross-Pitaevskii equation. For simplicity, we meanwhile consider a single Gross—Pitaevskii
equation of the form

100 =(- 1A+ U@ +0 |y 0 ) w0,

2 4 (8.4)
lvC,0|.=N, ¢&eR? =0,
see also (7.2); in accordance with (8.2), we denote

G(p)= (A +BP)p, Gp)=(d+BP)g,
Blp) =B +9BV), Blp)=389+1928V ),
d=1(-a+0,), BY=U-1U,, BV =9l

Particle number conservation. With the help of the eigenvalue relation (5.14) and Parseval’s
identity (4.3), it it seen that

(v 0|9 n)) , er.

As a consequence, for the solution of (8.4) we further obtain

O |w& D7 = (0w @, 0| wE, )+ (WE D|dwE D), =2R(WE, 0| 0w E D),
=2%(-i(w(, 0 )eg(u/(., t)))LZ) ~0, t20,

which shows that the total particle number is conserved.

Energy conservation. In the present situation, the energy functional is given by

78



We note that d,|¢/?> =@ (-) + ¢ (-) and further

19(@oO)+9* (V@) =39(10Pp| ()2 +39(O) | lplPe),..

Thus, making use of the fact that the Laplacian is a selfadjoint operator and that the potential U
is real-valued, the Fréchet derivative of E equals

0, E(p) = ((—%A+ U+19|<p|2)<p( (-))L2 + ((—%A+ U+91912) () ‘(p) 2R (9(@) | ()2

L2:

As a consequence, the energy conservation (8.3) follows; namely, for the solution of (8.4), we
obtain

O E(y(, 1) =0, E(w(, D)0y, 1) =2R (4 (w(, ) | oy, n) , =2 (- il9(ve,0)|%)
=0, t>0.

Generalisation. Similar considerations apply to Gross—Pitaevskii systems (7.2) showing that
the total particle numbers and the total energy is conserved; more precisely, it follows

0y, E@) =2R(9;(0) | )2, 0:]lw; (0] 2 =0,
OE(W(,0)=0,E(w(,0)0w(,t)=0, =0, 1<j<].

8.3.1. Groundstate solution

We next determine the ground state solution of the Gross—Pitaevskii equation (8.4) for the
limiting cases 9 = 0 and 9 >> 1; in particular, we consider a scaled harmonic potential

da
U@ =3) wiél, wi>0, {eR?.
i=1

These special solutions will serve as suitable initial values in the ground state computation by
the imaginary time method and a minimisation approach, respectively.

Linear Schriodinger equations

For 9 = 0, problem (8.4) simplifies to a linear Schrédinger equation. In the above situation, the
ground state solution is given by the first Hermite basis function. More precisely, it holds

W(é} t):\/ﬁe_i“t(P(f), €€Rd7 tEO,

d
p=H, vi=vw;, l<i<d, u:%Zwi.
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Namely, inserting into (8.4) yields (due to Ag =" +---+ Y7 = w1 + -+ wq)
pyE 0 =10y 0= (-3A+U©O)yE 0 =3VNe " (- A+ U &) 7] ©)

. d
=3VNe W A () =3 Yo,
1=
see also (5.14). Note that this is consistent with

d
,u:%(%(_A+U}/)w("t)‘w('7t))L2:%(AO%YL%)Y)LZ:%AO:% _1(1)i.

]

Thomas-Fermi approximation

For large values of 9, neglecting the Laplace operator in (8.4), the Thomas—Fermi approximation
yields an approximate ground state through

w(E,n=VNe "opE),
(p(g):{ 5 (-U©), U@ <p,

, lelz=1, ¢&eR?, t=o0.
otherwise,

This is seen by inserting the above relation into the differential equation
pyE 0 =10y 0= (U +9|yE o) we&,n

which yields u=U() +9 |1,I/(€ , 1) |2. In particular, for a scaled harmonic potential Uy, due to
the normalisation condition

1=l%, = 55 ~U@©®)d
loll72 = g U(é)w(u ) d¢

the chemical potential yu is given by

V18 (N9w,)%, d=1,

H= @%Nﬁwlwg, d=2,
2
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9. Time-splitting pseudo-spectral methods

9.1. Abstract formulation

Abstract evolutionary problem. For the specification of the time integration method as
well as for theoretical considerations, it is convenient to formulate a nonlinear Schrodinger
equation as an abstract ordinary differential equation on a function space by formally omitting
the spatial variable. In particular, for the normalised Gross—Pitaevskii system (7.2) this yields
the following abstract initial value problem for u(¢) =w(-, £) = (Y10, ),...,w;(, 1)

id'(0)=Au®)+B(u®))u(r), =0, u(0) given. 9.1)

Approach. In the following, we apply time-splitting spectral methods for discretising Gross—
Pitaevskii systems in space and time. More precisely, the time integration of (7.2) and (9.1),
respectively, relies on high-order exponential operator splitting methods, see Part 1. For the
numerical solution of the associated initial value problems

iv'()=Au(r), r=0,  u(0)given, (9.2a)
id'(0)=B(u®)u(), t=0, u(0) given, (9.2b)

we make use of Hermite and Fourier spectral methods, see Part II. In the subsequent Sec-
tions 9.2 and 9.3, we specify the definition of the unbounded operators A: D(A) c X — X
and B(v) : D(B) c X — X, v e V, which is closely related to the choice of the spectral method.
Moreover, we briefly discuss the numerical solution of the initial value problems (9.2).

9.2. Time-splitting Fourier pseudo-spectral method

For the Fourier spectral method, the numerical solution of the associated initial value prob-
lem (9.2a) relies on techniques that were the content of Section 4.2. Due to the fact that
Gross—Pitaevskii systems fulfill a certain invariance properties, the exact solution of (9.2b) is
available.

9.2.1. First part

Initial value problem. Regarding (9.2a), we consider the following initial value problem

0y, 0=ey(, 1), t=0, w(,0)given, (9.3a)
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where the application of the Fourier spectral method suggests the choice
A

of = . dj=—ciA, =
<y

mlu.-m]
ij ’

lsj=<]J. (9.3b)

We are thus concerned with the componentwise numerical solution of the above problem, i.e.,
we consider

10p;(,0 =Ljwj(, 1), t=0, (0 given, 1<j<]. (9.3¢)

Exact solution. It is straightforward to extend the approach of Section 4.2. The eigenvalue
relation (4.9) for the differential operator — A with corresponding eigenfunctions (%) me.«
and eigenvalues (A,;)me_« implies

A Fm = CiAm Fm, me ., l<j<].

Employing a spectral decomposition of the initial value into Fourier basis functions, we thus
obtain the following representation

it = Y e 9y 0 Fm,  wi0= Y Ym0 F,, 1<js<], (9.4)
meH me.H

see also (4.2) and (9.3).

Numerical solution. The numerical realisation of (9.4) relies on techniques that were dis-
cussed in Section 4.2.2.

9.2.2. Second part
Initial value problem. Regarding (9.2b), we consider the initial value problem
10w, =By, 0w, =0,  w(,0)given, (9.5a)
where the application of the Fourier spectral method for the first part (9.3) suggests the follow-
ing choice
B (p(, 1)

%(W() t)) = ‘. ’
By (w(,1) (9.5b)

J
Bi(w,0)=U;+ Y OpclwC,0|*,  1sj=J.
k=1
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We are thus concerned with the numerical solution of the initial value problem

10y, 1) =Bi(w(, 0)w;i(,0),  wi(,0) given, l<j<]. (9.5¢)

Invariance and exact solution. Noting that the exact solution of (9.5) fulfills
2 —_— . 2
Oy, 0| =2R (w,-(-, 1) 0,y (-, t)) =2R ( —iBi(y(,0) |y, 0| ) =0,
we conclude that the following invariance property holds
Bi(w(,0)=%Bi(y(-0), =0, 1=sj=<]. (9.6)

Consequently, the exact solution of the initial value problem (9.5) is obtained by a pointwise
multiplication '
v, D =e AVENy £ 0), e, t=0. 9.7

Numerical solution. The numerical realisation of (9.7) relies on collocation at the trapezoid
quadrature nodes, see also Section 4.2.2.

9.3. Time-splitting Hermite pseudo-spectral method

For the Hermite spectral method, the numerical solution of the associated initial value prob-
lem (9.2a) relies on techniques that were the content of Section 5.2, see also Section 8.1. Due to
the fact that Gross—Pitaevskii systems fulfill a certain invariance properties, the exact solution
of (9.2b) is available. We recall the definition of the scaled harmonic potential

i’

d
Uy(g):z)/l.‘* 2 Yi >0, cfeled, l=<i=<d,
i=1

see also (5.1).

9.3.1. First part

Initial value problem. Regarding (9.2a), we consider the initial value problem (9.3a), where
the application of the Hermite spectral method suggests the choice

o
of = , Ai==c(A-Ty), ¢=
Ay

mlm]
. )
2m;

1=sj=].

In the same way as for the Fourier spectral method, we are thus concerned with the numerical
solution of (9.3c).
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Exact solution. It is straightforward to extend the approach of Section 5.2. The eigenvalue
relation (5.14) for the differential operator — A + U, with eigenfunctions (A me.w and eigen-
values (A;;)me_« implies

oA FOh = Ccihm FEY,  med, 1=j<].

Employing a spectral decomposition of the initial value into Hermite basis functions, we thus
obtain the following representation

yit, =Y e lilmly, 0 A, wit,0= Y yimO A,  1<j<], (9.8
me.H me.H

see also (5.8) and (9.3¢).

Numerical solution. The numerical realisation of (9.8) relies on techniques that were dis-
cussed in Section 5.2.2.

9.3.2. Second part

Initial value problem. Regarding (9.2b), we consider the initial value problem (9.5a), where
the application of the Hermite spectral method for the first part suggests the choice

B (w(, 1)
%(W(U t)) = T »
B (y(, 1)

J
Bi(w(,0)=Uj— iU+ Y. |y, 0|*,  1=j=<]J.
k=1

Similarly to before, due to the validity of the invariance property (9.6), the numerical solu-
tion of (9.5c¢) is realised by a pointwise multiplication and collocation at the Gaul3—Hermite
quadrature nodes, see also Section 5.2.2.

9.4. Numerical illustrations
In the following, we illustrate the favourable behaviour of time-splitting Fourier and Hermite

pseudo-spectral methods for systems of coupled Gross-Pitaevskii equations (7.1). A detailed
description of the numerical examples is found in [13], see also [36, 44].

9.4.1. Computation time

A comparison of the computation time of the Fourier and Hermite spectral method in one and
two space dimensions is given in Figure 1.
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-2|| O Fourier 1D

O Hermite 2D |:
O Fourier 2D

Hermite 1D

CPU seconds

CPU seconds

degree of freedom

degree of freedom

Figure 1.: Computation time of the Fourier and Hermite spectral methods in one (left picture)

and two (right picture) space dimensions.

9.4.2. Spatial error

The accuracy of the Fourier and Hermite spectral methods is illustrated in Figure 2.

9.4.3. Temporal convergence order

The numerical convergence orders of various exponential operator splitting methods applied
to a two-dimensional Gross-Pitaevskii equation with external harmonic potential and coupling
constant J = 1 and 9 = 100, respectively, are given in Figures 3 and 4.

error

error

10 25 50

degree of freedom

25 50 100 250 500

degree of freedom

Figure 2.: Spatial error of the Fourier (left picture) and Hermite (right picture) spectral method.
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Figure 3.: Temporal orders of various time-splitting Fourier (first row) and Hermite (second
row) spectral methods when applied to a Gross—Pitaevskii equation with 9 = 1.

9.4.4. Long-term integration

The long-term behaviour of time-splitting Fourier and Hermite spectral methods for a two-
dimensional Gross-Pitaevskii equation with external harmonic potential and coupling con-
stant J = 1 is illustrated in Table 1. For the time integration, the second-order Strang splitting
method, fourth- and sixth-order splitting methods proposed by BLANES & MOAN, and fourth-
order explicit Runge-Kutta methods are applied, see also Table 1. For a certain prescribed
tolerance, the required number of basis functions, the number of spectral transformations, the
particle number conservation error Ap, = | ||1,l/(-, 0) || ig - || v(,T) ||i2 |, and the energy conserva-
tion error Ap = |E(1//(-, 0)) — E(w(, T))| are displayed.
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Figure 4.: Temporal orders of various time-splitting Fourier (first row) and Hermite (second
row) spectral methods when applied to a Gross-Pitaevskii equation with 9 = 100.
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tol. method d.o.f. #transf. Apn Ag

<1072 || Hermite 2 32 x 32 16384 || 2.6-10711 | 4.2.107
<1072 || Fourier 2 64 x 64 32768 || 3.6-10713 | 1.6-107°
<1072 || Hermite 4 32 x 32 6144 || 9.7-10712 | 1.1-107°
<1072 || Fourier 4 64 x 64 12288 || 1.7-10713 | 9.1-1077
<1072 || Hermite 6 32 x 32 14337 || 2.3-10711 | 3.2.1078
<1072 || Fourier 6 64 x 64 7169 || 1.1-10713 | 6.8-107°
<1072 || Hermite rk4 32 %32 65532 || 2.1-10™° | 1.2-107*
<1072 || Fourier rk4 64 x 64 524284 || 6.4-10719 | 3.7-107°

<1072 || Hermite ode45 || 32x32 208376 || 2.6-107% | 1.5-1077
<1072 || Fourier ode45 64x64 | 1132436 || 5.6-10712 | 3.1-1071!

<1078 || Hermite 4 64 x 64 24576 || 1.0-1071° | 1.1-1071°
<1078 || Fourier 4 128 x 128 49152 || 6.7-10712 | 1.2-107!!
<107% || Hermite 6 64 x 64 28673 || 1.2-1078 | 2.1-1071°
<107% || Fourier 6 128 x 128 28673 || 4.2-10712 | 8.7-10712
<107% | Hermite rk4 64 x 64 524284 || 6.4-10719 | 3.7-107°
<107% || Fourier rk4 128 x 128 | 524284 || 6.4-1071° | 3.7-107°

<107% || Hermite ode45 || 64 x 64 509816 || 3.6-1071° | 2.1.107°
<1078 || Fourier ode45 | 128x128 | 1411448 || 2.2-10712 | 1.1-1071!

Table 1.: Time integration of a two-dimensional Gross—Pitaevskii equation up to 7 =400. For a
tolerance (tol.), the degree of freedom (d.o.f.), the number of spectral transformations
(#transf.), the particle number conservation error Ay, and the energy conservation
error Ag are displayed.
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