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Summary

In this lecture, I address the issue of efficient numerical methods for the time integration of
nonlinear Schrödinger equations. As model problems, I consider systems of coupled Gross–
Pitaevskii equations that arise in quantum physics for the description of multi-component
Bose–Einstein condensates. My concern is to study the quantitative and qualitative behaviour
of high-accuracy space and time discretisations that rely on time-splitting Fourier and Hermite
spectral methods. In particular, this includes a stability and convergence analysis of high-order
exponential operator splitting methods for evolutionary Schrödinger equations. Numerical
examples illustrate the theoretical results.
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Figure 1.: Ground state solution of the Gross–Pitaevskii equation (1) with κ= 25 and ϑ= 400.

Preface

The actual research activities on efficient space and time discretisations for time-independent
as well as time-dependent nonlinear Schrödinger equations is reflected in various contribu-
tions [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 16, 18, 22, 23, 24, 26, 27, 28, 31, 33, 38, 42, 43, 45, 48, 49].
The present manuscript shall provide an introduction to advanced integration methods for
nonlinear Schrödinger equations that rely on high-order time-splitting Hermite and Fourier
spectral methods.

Part I is dedicated to exponential operator splitting methods [11, 30, 32, 34, 35, 41, 50] for
ordinary differential equations. In particular, a result on the convergence behaviour of splitting
methods is deduced. To avoid technicalities, the focus is on a splitting scheme involving two
compositions applied to non-stiff linear differential equations. Extensions to splitting methods
of arbitrarily high order and nonlinear evolutionary problems of parabolic or Schrödinger
type, respectively, are indicated, see also [10, 17, 19, 20, 21, 25, 26, 31, 33, 36, 37, 44]. In
Part II, Fourier and Hermite spectral methods and their numerical realisations are discussed,
see [12, 46]. Part III is concerned with high-order time-splitting Fourier and Hermite pseudo-
spectral methods for the space and time discretisation of Gross–Pitaevskii systems [29, 39] that
arise in the description of multi-component Bose–Einstein condensates. In an appendix, the
works [13, 14, 36, 44] are included.
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As an illustration, the ground state of the two-dimensional Gross–Pitaevskii equation

i ∂tψ(ξ, t ) =
(
− 1

2 ∆+U (ξ)+ϑ ∣∣ψ(ξ, t )
∣∣2

)
ψ(ξ, t ) , ξ ∈R2 , t ≥ 0,∥∥ψ(·,0)

∥∥
L2 = 1, U (ξ) =U (ξ1,ξ2) = 1

2

2∑
i=1

(
ξ2

i +κsin2(π
4 ξi

))
,

(1)

describing a Bose-Einstein condensate in a lattice under an external harmonic potential is
displayed in Figure 1. The ground state solution is computed by means of the imaginary
time method; hereby, the space and time discretisation relies on the Fourier spectral method
with 256 basis functions in each space direction and a linearly implicit Euler method with
constant time step 10−3. A MATLAB code for the ground state computation and the time
evolution of Gross–Pitaevskii systems in one, two, and three space dimensions is available on
request.
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Part I.

Exponential operator splitting methods
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Situation. Let X = Rd . We consider the following initial value problem for y : [t0,T ] → X
involving a nonlinear autonomous differential equation

y ′(t ) = F
(
y(t )

)
, t0 ≤ t ≤ T , y(t0) given. (0.2)

Assumption. Throughout, we suppose the function F : D ⊂ X → X defining the right-hand
side of the differential equation in (0.2) to be sufficiently often differentiable with bounded
derivatives. For simplicity, we further assume D = X .

Generalisation. It is straightforward to extend our considerations to the case where the
Euclidian space X =Rd is replaced with a Banach space

(
X ,‖ ·‖X

)
.

Exact solution. For the following, it is useful to introduce the exact solution operator EF

associated with the initial value problem (0.2) through

y(t0 +τ) = EF
(
τ, t0, y(t0)

)
, 0 ≤ τ≤ T − t0 . (0.3a)

A standard existence and uniqueness result for (0.2) implies the identity

EF
(
σ+τ, t0, y(t0)

)= EF
(
τ, t0 +σ, y(t0 +σ)

)
, 0 ≤σ+τ≤ T − t0 . (0.3b)

Numerical approximation. For an initial approximation y0 ≈ y(t0) and a time grid with
associated time stepsizes

t0 < t1 < ·· · < tN = T , hn−1 = tn − tn−1 , 1 ≤ n ≤ N ,

numerical approximations yn to the exact solution values at time tn are determined through a
reccurrence relation of the form

yn =ΦF (hn−1, tn−1, yn−1) , 1 ≤ n ≤ N , y0 given;

this is in accordance with the identity

y(tn) = EF
(
hn−1, tn−1, y(tn−1)

)
, 1 ≤ n ≤ N , y(t0) given,

see also (0.3). A numerical method is said to be consistent of order p iff the local error fulfills

dn =ΦF
(
hn−1, tn−1, y(tn−1)

)−EF
(
hn−1, tn−1, y(tn−1)

)=O
(
hp+1

n−1

)
, (0.4)

provided that the exact solution of (0.2) and the nonlinear function F defining the differential
equation are sufficiently regular. It suffices to specify the first step of the numerical scheme

y1 =ΦF (h, t0, y0) ≈ y(t1) = EF
(
h, t0, y(t0)

)
, h = h0 .
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1. Linear problems

Situation. Let X = Rd . Henceforth, we consider the following initial value problem for a
function y : [t0,T ] → X involving a linear differential equation of the form

y ′(t ) = A y(t )+B y(t ) , t0 ≤ t ≤ T , y(t0) given. (1.1)

Generalisation. It is straightforward to extend our considerations to the case where the
Euclidian space X =Rd is replaced with a Banach space

(
X ,‖ ·‖X

)
.

Assumption. We suppose the matrices A,B ∈Rd×d or linear operators A,B : X → X , respec-
tively, to be bounded, that is, there exist (moderate) constants CA,CB ≥ 0 such that∥∥A

∥∥
X←X ≤CA ,

∥∥B
∥∥

X←X ≤CB ; (1.2)

we tacitly assume CA,CB ≥ 1. Consequently, also A+B is bounded∥∥A+B
∥∥

X←X ≤CA +CB .

In general, the linear operators A and B do not commute, that is, it holds AB 6= B A.

Exact solution. In the present situation, the exact solution of the initial value problem (1.1)
is given by

y(t0 +τ) = eτ (A+B) y(t0) , 0 ≤ τ≤ T − t0 .

Here, for any matrix L ∈Rd×d or bounded linear operator L : X → X , respectively, the exponen-
tial function is well defined through

eτL =
∞∑

j=0

1
j ! τ

j L j , τ ∈R . (1.3)

Noting that the exact solution operator EA+B is linear with respect to the initial value, we write
EA+B (τ) y(t0) = EA+B

(
τ, t0, y(t0)

)
for short, that is, we have

y(t0 +τ) = EA+B (τ) y(t0) = eτ (A+B) y(t0) , 0 ≤ τ≤ T − t0 . (1.4)

5



Numerical approximation. In regard to relation (1.4), we require the numerical solution
operatorΦA+B to be linear with respect to the initial value

y1 =ΦA+B (h) y0 ≈ y(t1) = EA+B (h) y(t0) , h = h0 .

1.1. Splitting methods

Approach. Exponential operator splitting methods rely on a decomposition of the right-hand
side of the differential equation in (1.1) into two (or more) parts and the presumption that the
initial value problems

z ′(t ) = A z(t ) , t0 ≤ t ≤ T , z(t0) given,

z̃ ′(t ) = B z̃(t ) , t0 ≤ t ≤ T , z̃(t0) given,
(1.5)

are solvable numerically in an accurate and efficient manner. The (approximate) solutions of
the initial value problems (1.5) are then composed in a suitable way; this yields an approxima-
tionΦA+B ≈ EA+B to the exact solution operator. For simplicity and in view of Gross–Pitaevskii
systems, we may assume that the exact solutions of (1.5)

z(t0 +τ) = EA(τ) z(t0) = eτA z(t0) , 0 ≤ τ≤ T − t0 ,

z̃(t0 +τ) = EB (τ) z̃(t0) = eτB z̃(t0) , 0 ≤ τ≤ T − t0 ,

are available.

General form of splitting methods. Any exponential operator splitting method involving
several compositions can be cast into the following form

y1 =ΦA+B (h) y0 =
s∏

i=1
EB (bi h)EA(ai h) y0 =

s∏
i=1

ebi hB eai h A y0 , h = h0 , (1.6)

yielding an approximation to the exact solution value

y(t1) = EA+B (h) y(t0) = eh (A+B) y(t0) , h = h0 .

In (1.6), the product is defined downwards, i.e., for linear operators (L i ) j≤i≤k we set

k∏
i= j

L i = Lk · · · Lj+1 Lj , j ≤ k ,
k∏

i= j
L i = I , j > k .

Example (Lie–Trotter splitting method). The Lie–Trotter splitting method for (1.1) can be
cast into the general form (1.6) with

s = 1, a1 = 1, b1 = 1, or s = 2, a1 = 0, a 2 = 1 b1 = 1, b 2 = 0, (1.7a)

6



method order #comp.

McLachlan MCLACHLAN [30, V.3.1, (3.3), pp. 138–139] p = 2 s = 3

Strang STRANG (1.8) p = 2 s = 2

BM4-1 BLANES & MOAN [11, Table 2, PRKS6] p = 4 s = 7

BM4-2 BLANES & MOAN [11, Table 3, SRKNb
6 ] p = 4 s = 7

M4 MCLACHLAN [30, V.3.1, (3.6), pp. 140] p = 4 s = 6

S4 SUZUKI [30, II.4, (4.5), pp. 41] p = 4 s = 6

Y4 YOSHIDA [30, II.4, (4.4), pp. 40] p = 4 s = 4

BM6-1 BLANES & MOAN [11, Table 2, PRKS10] p = 6 s = 11

BM6-2 BLANES & MOAN [11, Table 3, SRKNb
11] p = 6 s = 12

BM6-3 BLANES & MOAN [11, Table 3, SRKNa
14] p = 6 s = 15

KL6 KAHAN & LI [30, V.3.2, (3.12), pp. 144] p = 6 s = 10

S6 SUZUKI [30, II.4, (4.5), pp. 41] p = 6 s = 26

Y6 YOSHIDA [30, V.3.2, (3.11), pp. 144] p = 6 s = 8

Table 1.: Exponential operator splitting methods of order p involving s compositions.

respectively, that is, the first numerical solution value is given by

y1 = ehB eh A y0 , or y1 = eh A ehB y0 , (1.7b)

respectively. In Section 1.2 it is verified that the Lie–Trotter splitting method is of (classical)
order one.

Example (Strang splitting method). The symmetric Lie–Trotter splitting method or Strang
splitting method [40, 47] can be cast into the general form (1.6) with

s = 2, a1 = a 2 = 1
2 , b1 = 1, b 2 = 0, or s = 2, a1 = 0, a 2 = 1, b1 = b 2 = 1

2 , (1.8a)

respectively, that is, the first numerical solution value is given by

y1 = e
1
2h A ehB e

1
2h A y0 , or y1 = e

1
2hB eh A e

1
2hB y0 , (1.8b)

respectively. The computational effort of the Strang splitting method is essentially that of the
Lie–Trotter splitting method. In Section 1.2 it is verified that the Strang splitting method is of
(classical) order two.

Higher order splitting methods. Exponential operator splitting methods of order four and
six are given in [11, 30], e.g., see also Table 1.

7



1.2. Convergence analysis

Objective. In the following, we are concerned with deducing an estimate for the global error
yN − y(T ) of an exponential operator splitting method (1.6) when applied to the initial value
problem (1.1); to this purpose, we follow a standard approach based on a Lady Windermere’s
Fan argument.

Local error and order. In the present situation, the local error equals

dn = D(hn−1) y(tn−1) = (
ΦA+B (hn−1)−EA+B (hn−1)

)
y(tn−1) , 1 ≤ n ≤ N ,

see also (0.4). Therefore, the numerical method (1.6) is consistent of order p, see also (0.4),
whenever the defect operator D fulfills

D(h) =O
(
hp+1) . (1.9)

Lady Windermere’s Fan. In order to relate the global and the local error, we employ the
telescopic identity

yN − y(tN ) =
N−1∏
j=0

ΦA+B (h j )
(
y0 − y(t0)

)+ N∑
n=1

N−1∏
j=n

ΦA+B (h j )dn . (1.10)

In Sections 1.2.1 and 1.2.2, we are concerned with deriving a bound for the splitting opera-
torΦA+B and a suitable expansion of the defect operator D .

Explanation. The validity of relation (1.10) is verified by a short calculation

N−1∏
j=0

ΦA+B (h j )
(
y0 − y(t0)

)+ N∑
n=1

N−1∏
j=n

ΦA+B (h j )dn

=
N−1∏
j=0

ΦA+B (h j )
(
y0 − y(t0)

)+ N∑
n=1

N−1∏
j=n

ΦA+B (h j )
(
ΦA+B (hn−1)−EA+B (hn−1)

)
y(tn−1)

=
N−1∏
j=0

ΦA+B (h j ) y0 −
N−1∏
j=0

ΦA+B (h j ) y(t0)

+
N∑

n=1

N−1∏
j=n−1

ΦA+B (h j ) y(tn−1)−
N∑

n=1

N−1∏
j=n

ΦA+B (h j ) y(tn)

= yN −
N−1∏
j=0

ΦA+B (h j ) y(t0)+
N−1∑
n=0

N−1∏
j=n

ΦA+B (h j ) y(tn)−
N∑

n=1

N−1∏
j=n

ΦA+B (h j ) y(tn)

= yN −
N−1∏
j=0

ΦA+B (h j ) y(t0)+
N−1∏
j=0

ΦA+B (h j ) y(t0)− y(tN )

= yN − y(tN ) .

8



1.2.1. Stability

Assumption. In order to prove the desired stability result for exponential operator splitting
methods, we employ the bounds∥∥eτA

∥∥
X←X ≤ eMA |τ| ,

∥∥eτB
∥∥

X←X ≤ eMB |τ| , τ ∈R , (1.11)

involving certain positive constants MA, MB ≥ 0.

Remark. In the present situation, for bounded linear operators A,B : X → X relation (1.11)
holds with MA = CA and MB = CB , see (1.2). Namely, a straightforward estimation of the
exponential series (1.3) yields∥∥eτL

∥∥
X←X ≤ e‖L‖X←X |τ| , τ ∈R .

Stability result. Under assumption (1.11), the estimate

∥∥ΦA+B (h j )
∥∥

X←X ≤
s∏

i=1

∥∥ebi h j B
∥∥

X←X

∥∥eai h j A
∥∥

X←X ≤ eCΦh j ,

follows, see also (1.6), which further implies the stability bound

∥∥∥m−1∏
j=k

ΦA+B (h j )
∥∥∥

X←X
≤ eCΦ(tm−tk ) , CΦ = MA

s∑
i=1

|ai |+MB

s∑
i=1

|bi | , m > k ≥ 0. (1.12)

Extension (Evolutionary Schrï¿½dinger equations). The above stability estimate (1.12) can
also be established in the context of abstract evolution problems. For instance, for evolutionary
Schrï¿½dinger equations of the form (1.1), we require that the unbounded linear operators
A : D(A) ⊂ X → X and B : D(B) ⊂ X → X generate C0-groups

(
eτA

)
τ∈R and

(
eτB

)
τ∈R such that∥∥eτA

∥∥
X←X ≤ eMA |τ| ,

∥∥eτB
∥∥

X←X ≤ eMB |τ| , τ ∈R .

In this case, exponential operator splitting methods that involve negative coefficients are
permitted.

Extension (Parabolic evolution equations) . For evolution equations (1.1) of parabolic type,
we require the unbounded linear operators A : D(A) ⊂ X → X and B : D(B) ⊂ X → X to generate
C0-semigroups

(
eτA

)
τ≥0 and

(
eτB

)
τ≥0 such that∥∥eτA

∥∥
X←X ≤ eMA τ ,

∥∥eτB
∥∥

X←X ≤ eMB τ , τ≥ 0.

In this case, exponential operator splitting methods that involve complex coefficients with
positive real part are permitted.
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1.2.2. Local error expansion

Situation. For the following, to avoid technicalities, we consider exponential operator split-
ting methods (1.6) that involve two compositions only

y1 = eb 2hB ea 2h A eb1hB ea1h A y0 , h = h0 . (1.13)

Method examples that can be cast into this form are the Lie–Trotter splitting method (1.7) and
the Strang splitting method (1.8).

Objective. We are concerned with deducing a suitable expansion of the defect operator

D(h) =ΦA+B (h)−EA+B (h) = eb 2hB ea 2h A eb1hB ea1h A − eh (A+B) , (1.14)

with respect to h, see also (1.4) and (1.6).

Approach. We employ the power series expansion (1.3) for the matrix exponential; more
precisely, performing a stepwise Taylor series expansion of eτL , we obtain

eτL = I +eστL
∣∣∣1

σ=0

= I +τL
∫ 1

0
eστL dσ

= I +τL+τ2L2
∫ 1

0
(1−σ) eστL dσ

= I +τL+ 1
2 τ

2L2 +τ3L3
∫ 1

0

1
2 (1−σ)2 eστL dσ , τ≥ 0.

With the help of the bounds (1.2) and (1.11), we thus have

eτL = I +O (τ,CL , ML)

= I +τL+O
(
τ2,C 2

L , ML
)

= I +τL+ 1
2 τ

2 L2 +O
(
τ3,C 3

L , ML
)

, τ≥ 0.

(1.15)

Expansion (Exact solution operator). By means of (1.15), we obtain the following expansion
of the exact solution operator

EA+B (h) = eh (A+B)

= I +h (A+B)+ 1
2 h2(A2 + AB +B A+B 2)+O

(
h3,C 3

A+B , MA+B
)

;
(1.16)

here, we assume that the following estimate is valid∥∥eτ (A+B)
∥∥

X←X ≤ eMA+B |τ| , τ ∈R .
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Expansion (Splitting operator). By means of relation (1.15), we next employ a stepwise
expansion of the splitting operator

ΦA+B (h) = eb 2hB ea 2h A eb1hB ea1h A

= (
I +b 2hB + 1

2 b2
2h2B 2) ea 2h A eb1hB ea1h A +O

(
h3,C 3

B , MA, MB
)

= ea 2h A eb1hB ea1h A +b 2hB ea 2h A eb1hB ea1h A + 1
2 b2

2h2B 2 ea 2h A eb1hB ea1h A

+O
(
h3,C 3

B , MA, MB
)

= (
I +a 2h A+ 1

2 a2
2h2 A2) eb1hB ea1h A +b 2hB

(
I +a 2h A

)
eb1hB ea1h A

+ 1
2 b2

2h2B 2 eb1hB ea1h A +O
(
h3,C 3

A,C 3
B , MA, MB

)
= eb1hB ea1h A +h

(
a 2 A+b 2B

)
eb1hB ea1h A

+h2 (1
2 a2

2 A2 +a 2 b 2B A+ 1
2 b2

2B 2) eb1hB ea1h A +O
(
h3,C 3

A,C 3
B , MA, MB

)
and, furthermore, we have

ΦA+B (h) = (
I +b1hB + 1

2 b2
1h2B 2) ea1h A +h

(
a 2 A+b 2B

)(
I +b1hB

)
ea1h A

+h2 (1
2 a2

2 A2 +a 2 b 2B A+ 1
2 b2

2B 2) ea1h A +O
(
h3,C 3

A,C 3
B , MA, MB

)
= ea1h A +h

(
a 2 A+ (b1 +b 2)B

)
ea1h A

+h2 (1
2 a2

2 A2 +a 2b1 A B +a 2 b 2B A+ 1
2 (b1 +b 2)2B 2) ea1h A

+O
(
h3,C 3

A,C 3
B , MA, MB

)
= I +a1h A+ 1

2 a2
1h2 A2 +h

(
a 2 A+ (b1 +b 2)B

)(
I +a1h A

)
+h2 (1

2 a2
2 A2 +a 2b1 A B +a 2 b 2B A+ 1

2 (b1 +b 2)2B 2)
+O

(
h3,C 3

A,C 3
B , MA, MB

)
.

This finally yields the following expansion

ΦA+B (h) = I +h
(
(a1 +a 2)A+ (b1 +b 2)B

)
+h2 (1

2 (a1 +a 2)2 A2 +a 2b1 A B + (
a1(b1 +b 2)+a 2 b 2

)
B A

+ 1
2 (b1 +b 2)2B 2)+O

(
h3,C 3

A,C 3
B , MA, MB

)
.

(1.17)

Expansion (Defect operator). Altogether, the above relations (1.16) and (1.17) imply the
following expansion of the defect operator D =ΦA+B −EA+B with respect to h

D(h) = h
(
(a1 +a 2 −1)A+ (b1 +b 2 −1)B

)
+h2

(
1
2

(
(a1 +a 2)2 −1

)
A2 + (

a 2b1 − 1
2

)
A B + (

a1(b1 +b 2)+a 2 b 2 − 1
2

)
B A

+ 1
2

(
(b1 +b 2)2 −1

)
B 2

)
+O

(
h3,C 3

A,C 3
B , MA, MB , MA+B

)
.

(1.18)
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Order conditions. Employing the above expansion (1.18) of the defect operator D and re-
quiring (1.9) to be valid with p = 1 for arbitrary matrices or bounded linear operators A and B ,
respectively, the (classical) first order conditions

a1 +a 2 = 1, b1 +b 2 = 1, (1.19a)

follow. For (classical) order two, that is, setting p = 2, the additional conditions are a 2b1 = 1
2

and a1 +a 2 b 2 = 1
2 , or, equivalently,

(1−a1)b1 = 1
2 . (1.19b)

Obviously, the Lie–Trotter splitting method (1.7) has (classical) order one; the second-order
Strang splitting method (1.8) is retained from the order conditions (1.19) under the symmetry
requirement b 2 = 0 and a1 = a 2 or a1 = 0 and b1 = b 2, respectively.

Local error estimate. The above consideration imply the local error estimate∥∥D(h)
∥∥

X←X ≤C hp+1 (1.20)

with constant C depending on C p+1
A ,C p+1

B , MA, MB , MA+B , and further on the method coef-
ficients. In particular, the above bound holds true with p = 1 for the Lie–Trotter splitting
method (1.7) and with p = 2 for the Strang splitting method (1.8).

1.2.3. Convergence result

Convergence estimate. Assume that the exponential operator splitting method (1.6) applied
to the linear problem (1.1) fulfills the (classical) order conditions for order p ≥ 1. Then, the
following global error estimate

∥∥yN − y(tN )
∥∥

X ≤C
(∥∥y0 − y(t0)

∥∥
X +

N−1∑
n=0

hp+1
n

)
holds with constant C depending in particular on CA,CB , MA+B , MA, MB ,T , and y(t0). Namely,
estimating the global error relation (1.10) by means of the stability bound (1.12) and the local
error estimate (1.20), the desired result follows. Especially, for constant stepsizes, that is, it
holds hn = h for 0 ≤ n ≤ N −1, the expected convergence bound∥∥yn − y(tn)

∥∥
X ≤C

(∥∥y0 − y(0)
∥∥

X +hp
)

, 0 ≤ n ≤ N ,

follows.
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2. Alternative local error expansions

Situation. As before, we focus on exponential operator splitting methods (1.6) for linear
initial value problems of the form (1.1) that involve two compositions only, see (1.13).

Objective. Regarding possible extensions of the convergence analysis given in Section 1.2
to evolutionary Schrï¿½dinger equations or parabolic evolution equations, respectively, we
next investigate alternative approaches for deducing a suitable expansion of the defect opera-
tor (1.14) with respect to h.

Notation. For matrices L1,L 2 ∈Rd×d or bounded linear operators L1,L 2 : X → X , respectively,
the iterated commutators are defined by

ad j+1
L1

(L 2) = [
L1,ad j

L1
(L 2)

]= L1 ad j
L1

(L 2)−ad j
L1

(L 2)L1 , j ≥ 0, (2.1)

where ad0
L1

(L 2) = L 2, see [30]. Note that for the first commutator adL1(L 2) = L1L 2 −L 2L1 it
follows adL1(L1) = 0 and adL 2(L1) =− adL1(L 2).

2.1. Baker–Campbell–Hausdorff formula

Approach. The Baker–Campbell–Hausdorff formula considerably facilitates the expansion of
compositions involving the matrix exponential, see for example [30]. However, as for the power
series expansion (1.3), it is not evident to extend this approach to evolutionary equations (1.1)
with unbounded linear operators A and B ; in particular, it is difficult to obtain error estimates
that are optimal with respect to the regularity properties of the exact solution.

2.1.1. Derivation of the Baker–Campbell–Hausdorff formula

Objective. The objective is to determine a time-dependent linear operator Ω(t) : X → X ,
t ≥ 0, such that the identity

et L 2 et L1 = eΩ(t ) , t ≥ 0, (2.2)

holds for (non-commuting) bounded linear operators L1,L 2 : X → X . More precisely, the aim is
to calculate the time-independent linear operatorsΩ j : X → X arising in the expansion ofΩ(t )

Ω(t ) =
∞∑

j=0
t j Ω j . (2.3)
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The derivation of the Baker–Campbell–Hausdorff formula relies on the following auxiliary
results.

Notation. The (analytic) exponential functions ϕ0,ϕ1 :C→C are given by

ϕ0(z) =
∞∑

j=0

1
j ! z j = ez , z ∈C ,

ϕ1(z) =
∞∑

j=0

1
( j+1)! z j =

{
ez−1

z , 0 6= z ∈C ,

1 , z = 0.

Furthermore, we introduce the complex function ψ1 :
{

z ∈C : |z| <π}→C, defined by

ψ1(z) =
∞∑

j=0

1
j ! β j z j ,

with Bernoulli numbers β0 = 1, β1 = − 1
2 , etc. Note that ϕ1(z)ψ1(z) = 1 = ψ1(z)ϕ1(z) for all

z ∈Cwith |z| <π.

Fréchet derivative. A function f : X → Y between Banach spaces (X ,‖ ·‖X ) and (Y ,‖ ·‖Y ) is
called Fréchet differentiable at x ∈ X with Fréchet derivative f ′(x) = L if there exists a bounded
linear operator L = L(x) : X → Y such that

f (x + z)− f (x) = Lz +o(‖z‖X ) .

Auxiliary relation. The Fréchet derivative of Ωk , k ≥ 0, with Ω : X → X a bounded linear
operator, can be rewritten as

d
dΩΩ

k =
k−1∑
j=0

( k
j+1

)
ad j

Ω(·)Ωk−( j+1) , k ≥ 0.

Clearly, the above identity holds for the trivial cases

k = 0 : d
dΩ I = 0, k = 1 : d

dΩΩ= I .

Furthermore, by means of the product rule and the relation

ΩX =ΩX ∓XΩ= XΩ+adΩ(X ) ,

we have
k = 2 : d

dΩΩ
2 = d

dΩΩΩ= (·)Ω+Ω (·) = 2(·)Ω+adΩ(·) ,
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as well as

k = 3 : d
dΩΩ

3 = d
dΩΩΩ

2

= (·)Ω2 +Ω(
2(·)Ω+adΩ(·))

= (·)Ω2 +2 Ω (·)︸︷︷︸
=(·)Ω+adΩ(·)

Ω+ Ω adΩ(·)︸ ︷︷ ︸
adΩ(·)Ω+ad2

Ω(·)
= 3(·)Ω2 +3 adΩ(·)Ω+ad2

Ω(·) .

In general, proceeding by induction and using that(
k

j

)
+

(
k

j +1

)
=

(
k +1

j +1

)
,

we obtain

k → k +1 : d
dΩΩ

k+1 = d
dΩΩΩ

k

= (·)Ωk +Ω
k−1∑
j=0

( k
j+1

)
ad j

Ω(·)Ωk−( j+1)

= (·)Ωk +
k−1∑
j=0

( k
j+1

)
Ω ad j

Ω(·)︸ ︷︷ ︸
=ad

j
Ω

(·)Ω+ad
j+1
Ω

(·)

Ωk−( j+1)

= (k +1)(·)Ωk +
k−1∑
j=1

(( k
j+1

)+ (k
j

))
ad j

Ω(·)Ωk+1−( j+1) +adk
Ω(·)

=
k∑

j=0

(k+1
j+1

)
ad j

Ω(·)Ωk+1−( j+1) .

Derivative of exponential. For a bounded linear operatorΩ : X → X , the first derivative of eΩ

with respect toΩ is given by

d
dΩ eΩ =

∞∑
j=0

1
( j+1)! ad j

Ω(·)eΩ = (
ϕ1(adΩ)

)
(·)eΩ .

Namely, employing the exponential series and the previously deduced identity for d
dΩΩ

k and
exchanging the order of summation, it follows

d
dΩ eΩ =

∞∑
k=0

1
k !

d
dΩΩ

k

=
∞∑

k=0

1
k !

k−1∑
j=0

( k
j+1

)
ad j

Ω(·)Ωk−( j+1)
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and furthermore

d
dΩ eΩ =

∞∑
j=0

1
( j+1)! ad j

Ω(·)
∞∑

k= j+1

1
(k− j−1)! Ω

k− j−1

=
∞∑

j=0

1
( j+1)! ad j

Ω(·)
∞∑
`=0

1
`! Ω

`

=
∞∑

j=0

1
( j+1)! ad j

Ω(·) eΩ .

As a consequence, taking the first time derivative of eΩ(t ) yields

d
dt eΩ(t ) =

∞∑
j=0

1
( j+1)! ad j

Ω(t )

( d
dt Ω(t )

)
eΩ(t ) = (

ϕ1(adΩ(t ))
)( d

dt Ω(t )
)

eΩ(t ) , t ≥ 0. (2.4)

Initial value problem. On the one hand, in regard to (2.2), it follows

d
dt eΩ(t ) = d

dt et L 2 et L1 = L 2 et L 2 et L1 +et L 2 et L1 L1 = L 2 eΩ(t ) +eΩ(t )L1 , t ≥ 0.

With the help of the above relation (2.4) we thus have

L 2 eΩ(t ) +eΩ(t )L1 = d
dt eΩ(t ) = (

ϕ1(adΩ(t ))
)( d

dt Ω(t )
)

eΩ(t ) , t ≥ 0,

Furthermore, by a multiplication from the right with e−Ω(t ), making use of the fact that

eK L e−K =
∞∑

j=0

1
j ! ad j

K(L) = (
ϕ0(adK )

)
(L) ,

we obtain the identity

L 2 +
(
ϕ0(adΩ(t ))

)
(L1) = (

ϕ1(adΩ(t ))
)( d

dt Ω(t )
)

, t ≥ 0.

Applyingψ1(adΩ(t )), the inverse of
(
ϕ1(adΩ(t ))

)
(under certain restrictions on the norm ofΩ(t )),

and noting that ϕ0(z) = 1+ zϕ1(z) for z ∈C, yields

d
dt Ω(t ) = (

ψ1(adΩ(t ))
)(

L 2 +
(
ϕ0(adΩ(t ))

)
(L1)

)
= (

ψ1(adΩ(t ))
)(

L1 +L 2 +
(
adΩ(t )ϕ1(adΩ(t ))

)
(L1)

)
= (

ψ1(adΩ(t ))
)

(L1 +L 2)+adΩ(t )(L1)

= adΩ(t )(L1)+β0 (L1 +L 2)+β1 adΩ(t )(L1 +L 2)+
∞∑

j=2

1
j ! β j ad j

Ω(t )(L1 +L 2)

= L1 +L 2 + 1
2 adΩ(t )(L1 −L 2)+

∞∑
j=2

1
j ! β j ad j

Ω(t )(L1 +L 2) , t ≥ 0.

16



Altogether, the initial value problem

d
dt Ω(t ) = L1 +L 2 + 1

2 adΩ(t )(L1 −L 2)+
∞∑

j=2

1
j ! β j ad j

Ω(t )(L1 +L 2) , t ≥ 0, Ω(0) = 0.

results, see also (2.2).

Successive solution. Inserting relation (2.3) into the above initial value problem for Ω(t),
comparing like powers of t , the linear operatorsΩ j can be computed. In particular, noting that
Ω0 =Ω(0) = 0 due to (2.2), and, for instance

ad2
Ω(t )(L1 +L 2) =

[
tΩ1 +O

(
t 2),

[
tΩ1 +O

(
t 2),L1 +L 2

]]=O
(
t 2) ,

this procedure yields

Ω1 +2tΩ2 +O
(
t 2)= d

dt

(
tΩ1 + t 2Ω2 +O

(
t 3))

= L1 +L 2 + t 1
2 adΩ1 (L1 −L 2)+O

(
t 2) , t ≥ 0,

We concludeΩ1 = L1+L 2 andΩ2 = 1
4 adΩ1 (L1−L 2) = 1

4

[
L1+L 2,L1−L 2

]=− 1
2 adL1(L 2), whence

Ω0 = 0, Ω1 = L1 +L 2 , Ω2 =− 1
2 adL1(L 2) .

2.1.2. Local error expansion

Baker–Campbell–Hausdorff formula. The Baker–Campbell–Hausdorff formula implies the
expansion

eh L 2 eh L1 = eh L , L = L1 +L 2 − 1
2 h adL1(L 2)+O

(
h2) . (2.5)

Local error expansion. An application of the above relation (2.5) to (1.13) yields

ebi hB eai h A = eh L i , L i = ai A+bi B − 1
2 h ai bi adA(B)+O

(
h2) , i = 1,2;

moreover, we obtain the identity

ΦA+B (h) = eb 2hB ea 2h A eb1hB ea1h A = eh L 2 eh L1 = eh L ,

L = (a1 +a 2)A+ (b1 +b 2)B − 1
2 h

(
a1(b1 +b 2)+a 2(b 2 −b1)

)
adA(B)+O

(
h2) .

As a consequence, the requirement

D(h) =ΦA+B (h)−EA+B (h) = eh L − eh (A+B) =O
(
hp+1)

implies L − (A+B) =O
(
hp

)
, that is, we have

(a1 +a 2 −1)A+ (b1 +b 2 −1)B − 1
2 h

(
a1(b1 +b 2)+a 2(b 2 −b1)

)
adA(B) =O

(
hp)

.
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In particular, for p = 1 or p = 2, respectively, we retain the first and second order condi-
tions (1.19).

2.1.3. Construction of a fourth-order splitting scheme

Situation. Consider a linear differential equation of the form

y ′(t ) = A y(t )+B y(t ) , t ≥ 0. (2.6)

For the numerical solution of (2.6), apply a splitting method involving s stages

ΦA+B (t ) =
s∏

i=1
etBi et Ai ≈ EA+B (t ) = et (A+B) , t ≥ 0,

where Ai = ai A and Bi = bi B for 1 ≤ i ≤ s.

Adjoint method. The adjoint method of a splitting method for (2.6) is given by

Φ∗
A+B (t ) =Φ−1

A+B (−t ) = (
e− tBs e− t As · · ·e− tB1 e− t A1

)−1 = et A1 etB1 · · ·et As etBs , t ≥ 0;

namely, using for instance that for EB (t )E A(t ) = etB et A it follows (EB E A)−1(t ) = e−t A e−tB and
(EB E A)−1(−t ) = et A etB . Provided that the underlying method satisfies the local error relation

DA+B (t ) =ΦA+B (t )−EA+B (t ) = t p+1CA+B +O
(
t p+2) , t ≥ 0,

the adjoint splitting method fulfills

D∗
A+B (t ) =Φ∗

A+B (t )−EA+B (t ) = (−1)p t p+1CA+B +O
(
t p+2) , t ≥ 0.

Namely, noting that E−1
A+B (t ) = e−t (A+B) = EA+B (−t ) and further

−DA+B (−t )EA+B (t ) = (EA+B (−t )−ΦA+B (−t )) EA+B (t )

= I −ΦA+B (−t )E A+B (t )

=ΦA+B (−t )
(
Φ∗

A+B (t )−E A+B (t )
)

=ΦA+B (−t )D∗
A+B (t ) , t ≥ 0,

due to the fact that EA+B (t ) = I +O (t ) as well asΦ∗
A+B (t ) = I +O (t ), the relation

D∗
A+B (t ) =−Φ∗

A+B (t )DA+B (−t )EA+B (t )

=−Φ∗
A+B (t )

(
(− t )p+1CA+B +O

(
t p+2))EA+B (t )

= (−1)p t p+1CA+B +O
(
t p+2) , t ≥ 0.
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Symmetry. A method is called symmetric ifΦ∗
A+B =ΦA+B for t ≥ 0, that is, it holds

Φ∗
A+B (t ) = et A1 etB1 · · ·et As etBs = etBs et As · · ·etB1 et A1 =ΦA+B (t ) , t ≥ 0.

The above considerations imply CA+B = (−1)pCA+B , that is, the order of a symmetric splitting
method is even.

Objective. Construct splitting methods of order p = 4 and p = 3, respectively, involving s = 4
stages. For this purpose, employ the BCH formula to rewrite the splitting operator as

ΦA+B (t ) = etB4 et A4︸ ︷︷ ︸
=etL4

etB3 et A3︸ ︷︷ ︸
=etL3

etB2 et A2︸ ︷︷ ︸
=etL2

etB1 et A1︸ ︷︷ ︸
=etL1

= etL4 etL3︸ ︷︷ ︸
=etK2

etL2 etL1︸ ︷︷ ︸
=etK1

= etK2 etK1︸ ︷︷ ︸
=et M

= et M , t ≥ 0,

and deduce the order conditions from the requirement

ΦA+B (t )−EA+B (t ) = et M −et (A+B) =O
(
t p+1) , t ≥ 0,

which is equivalent to the relation

M − (A+B) =O
(
t p)

, t ≥ 0,

as seen from a taylor series expansion of the exponential.

BCH formula. The BCH formula yields the representation

etL2 etL1 = eΩ(t ) , Ω(t ) =
∞∑

i=1
t i Ωi , t ≥ 0.

In particular, the relation

etL2 etL1 = etL , L =
4∑

j=1
t j−1Ω j +O

(
t 4)=Ω1 + tΩ2 + t 2Ω3 + t 3Ω4 +O

(
t 4) , t ≥ 0,

Ω1 = L1 +L2 , Ω2 =− 1
2 [L1,L2] ,

Ω3 = 1
12

([
L1, [L1,L2]

]+ [
L2, [L2,L1]

])
, Ω4 = 1

24

[
L2,

[
L1, [L1,L2]

]]
,

follows.

BCH formula – Extension. In case that

Li =
4∑

j=1
t j−1Ω

(Li )
j +O

(
t 4)=Ω(Li )

1 + tΩ(Li )
2 + t 2Ω

(Li )
3 + t 3Ω

(Li )
4 +O

(
t 4) , t ≥ 0,
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the following expansion results

etL2 etL1 = etL , L =
4∑

j=1
t j−1Ω j +O

(
t 4)=Ω1 + tΩ2 + t 2Ω3 + t 3Ω4 +O

(
t 4) , t ≥ 0,

Ω1 =Ω(L1)
1 +Ω(L2)

1 , Ω2 =Ω(L1)
2 +Ω(L2)

2 − 1
2 [Ω(L1)

1 ,Ω(L2)
1 ] ,

Ω3 =Ω(L1)
3 +Ω(L2)

3 − 1
2

(
[Ω(L1)

1 ,Ω(L2)
2 ]+ [Ω(L1)

2 ,Ω(L2)
1 ]

)
+ 1

12

([
Ω

(L1)
1 , [Ω(L1)

1 ,Ω(L2)
1 ]

]+ [
Ω

(L2)
1 , [Ω(L2)

1 ,Ω(L1)
1 ]

])
,

Ω4 =Ω(L1)
4 +Ω(L2)

4 − 1
2

(
[Ω(L1)

1 ,Ω(L2)
3 ]+ [Ω(L1)

2 ,Ω(L2)
2 ]+ [Ω(L1)

3 ,Ω(L2)
1 ]

)
+ 1

12

([
Ω

(L1)
1 , [Ω(L1)

1 ,Ω(L2)
2 ]

]+ [
Ω

(L2)
1 , [Ω(L2)

1 ,Ω(L1)
2 ]

]+ [
Ω

(L1)
1 , [Ω(L1)

2 ,Ω(L2)
1 ]

]
+[
Ω

(L2)
1 , [Ω(L2)

2 ,Ω(L1)
1 ]

]+ [
Ω

(L1)
2 , [Ω(L1)

1 ,Ω(L2)
1 ]

]+ [
Ω

(L2)
2 , [Ω(L2)

1 ,Ω(L1)
1 ]

])
+ 1

24

[
Ω

(L2)
1 ,

[
Ω

(L1)
1 , [Ω(L1)

1 ,Ω(L2)
1 ]

]]
.

Namely, an application of the BCH formula yields

etL2 etL1 = etL , L = Ω̃1 + t Ω̃2 + t 2Ω̃3 + t 3Ω̃4 +O
(
t 4) , t ≥ 0,

Ω̃1 = L1 +L2 , Ω̃2 =− 1
2 [L1,L2] ,

Ω̃3 = 1
12

([
L1, [L1,L2]

]+ [
L2, [L2,L1]

])
, Ω̃4 = 1

24

[
L2,

[
L1, [L1,L2]

]]
.

Inserting the above representations for L1 and L2 gives

Ω̃1 =
4∑

j=1
t j−1

(
Ω

(L1)
j +Ω(L2)

j

)
+O

(
t 4) ,

Ω̃2 =− 1
2

4∑
j1=1

4∑
j2=1

t j1+ j2−2[Ω(L1)
j1

,Ω(L2)
j2

]+O
(
t 4) ,

Ω̃3 = 1
12

4∑
j1=1

4∑
j2=1

4∑
j3=1

t j1+ j2+ j3−3
([
Ω

(L1)
j1

, [Ω(L1)
j2

,Ω(L2)
j3

]
]+ [

Ω
(L2)
j1

, [Ω(L2)
j2

,Ω(L1)
j3

]
])+O

(
t 4) ,

Ω̃4 = 1
24

4∑
j1=1

4∑
j2=1

4∑
j3=1

4∑
j4=1

t j1+ j2+ j3+ j4−4[Ω(L2)
j1

,
[
Ω

(L1)
j2

, [Ω(L1)
j3

,Ω(L2)
j4

]
]]+O

(
t 4) .

20



As a consequence, we obtain

L =
4∑

j=1
t j−1

(
Ω

(L1)
j +Ω(L2)

j

)
− 1

2

4∑
j1, j2=1

t j1+ j2−1[Ω(L1)
j1

,Ω(L2)
j2

]

+ 1
12

4∑
j1, j2, j3=1

t j1+ j2+ j3−1
([
Ω

(L1)
j1

, [Ω(L1)
j2

,Ω(L2)
j3

]
]+ [

Ω
(L2)
j1

, [Ω(L2)
j2

,Ω(L1)
j3

]
])

+ 1
24

4∑
j1, j2, j3, j4=1

t j1+ j2+ j3+ j4−1[Ω(L2)
j1

,
[
Ω

(L1)
j2

, [Ω(L1)
j3

,Ω(L2)
j4

]
]]

+O
(
t 4) .

Taking into account the indices

j = 1,2,3,

( j1, j2) = (1,1), (1,2), (2,1), (1,3), (2,2), (3,1),

( j1, j2, j3) = (1,1,1), (1,1,2), (1,2,1), (2,1,1),

( j1, j2, j3, j4) = (1,1,1,1) ,

we further have

L =
(
Ω

(L1)
1 +Ω(L2)

1

)
+ t

(
Ω

(L1)
2 +Ω(L2)

2 − 1
2 [Ω(L1)

1 ,Ω(L2)
1 ]

)
+ t 2

(
Ω

(L1)
3 +Ω(L2)

3 − 1
2

(
[Ω(L1)

1 ,Ω(L2)
2 ]+ [Ω(L1)

2 ,Ω(L2)
1 ]

)
+ 1

12

([
Ω

(L1)
1 , [Ω(L1)

1 ,Ω(L2)
1 ]

]+ [
Ω

(L2)
1 , [Ω(L2)

1 ,Ω(L1)
1 ]

]))
+ t 3

(
Ω

(L1)
4 +Ω(L2)

4 − 1
2

(
[Ω(L1)

1 ,Ω(L2)
3 ]+ [Ω(L1)

2 ,Ω(L2)
2 ]+ [Ω(L1)

3 ,Ω(L2)
1 ]

)
+ 1

12

([
Ω

(L1)
1 , [Ω(L1)

1 ,Ω(L2)
2 ]

]+ [
Ω

(L2)
1 , [Ω(L2)

1 ,Ω(L1)
2 ]

]+ [
Ω

(L1)
1 , [Ω(L1)

2 ,Ω(L2)
1 ]

]
+ [
Ω

(L2)
1 , [Ω(L2)

2 ,Ω(L1)
1 ]

]+ [
Ω

(L1)
2 , [Ω(L1)

1 ,Ω(L2)
1 ]

]+ [
Ω

(L2)
2 , [Ω(L2)

1 ,Ω(L1)
1 ]

])
+ 1

24

[
Ω

(L2)
1 ,

[
Ω

(L1)
1 , [Ω(L1)

1 ,Ω(L2)
1 ]

]])
+O

(
t 4) , t ≥ 0.

Construction. The construction of a fourth-order splitting method relies on the following
approach.

• Employ symmetry of splitting method

ΦA+B (t ) = etB4 et A4 etB3 et A3 etB2 et A2 etB1 et A1

=Φ∗
A+B (t ) = et A1 etB1 et A2 etB2 et A3 etB3 et A4 etB4 , t ≥ 0,
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that is, employ for instance the symmetry requirements

a1 = 0, a4 = a2 , b4 = b1 , b3 = b2 .

• Deduce third-order conditions.

• Solve third-order conditions (real/complex case).

2.2. Quadrature formulas

Approach. In the following, we present an approach that is more involved than the Baker–
Campbell–Hausdorff formula but well suited for an extension to linear and nonlinear evo-
lutionary equations, see [26, 31, 33, 36, 44]. The basic idea is to expand the exact solution
operator by means of the variation-of-constants formula and to deduce a similar expansion
of the splitting operator by employing the standard exponential power series for terms of the
form ebi hB ; the expansion of the splitting operator is then considered as a quadrature formula
approximation of a multiple integral.

Variation-of-constants formula. The exact solution of the initial value problem (1.1) can
also be represented by means of the variation-of-constants formula

y(t0 +τ) =
(
eτA +

∫ τ

0
e(τ−σ)A B eσ (A+B) dσ

)
y(t0) , 0 ≤ τ≤ T − t0 ;

we thus obtain the following representation of the exact solution operator

EA+B (τ) = eτA +
∫ τ

0
e(τ−σ)A B eσ (A+B) dσ , (2.7)

see also (1.4).

Expansion (Exact solution). A repeated application of the above relation (2.7) yields

EA+B (h) = eh A +
∫ h

0
e(h−σ1)A B eσ1(A+B) dσ1

= eh A +
∫ h

0
e(h−σ1)A B

(
eσ1A +

∫ σ1

0
e(σ1−σ2)A B eσ2(A+B) dσ2

)
dσ1

= eh A +
∫ h

0
e(h−σ1)A B eσ1A dσ1+

∫ h

0

∫ σ1

0
e(h−σ1)A B e(σ1−σ2)A B eσ2(A+B) dσ2 dσ1

= eh A +
∫ h

0
e(h−σ1)A B eσ1A dσ1

+
∫ h

0

∫ σ1

0
e(h−σ1)A B e(σ1−σ2)A B

(
eσ2A +

∫ σ2

0
e(σ2−σ3)A B eσ3(A+B) dσ3

)
dσ2 dσ1,
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and, moreover, we have

EA+B (h) = eh A +
∫ h

0
e(h−σ1)A B eσ1A dσ1+

∫ h

0

∫ σ1

0
e(h−σ1)A B e(σ1−σ2)A B eσ2A dσ2 dσ1

+
∫ h

0

∫ σ1

0

∫ σ2

0
e(h−σ1)A B e(σ1−σ2)A B e(σ2−σ3)A B eσ3(A+B) dσ3 dσ2 dσ1.

We thus obtain the following expansion of the exact solution operator with respect to h = h0

EA+B (h) = eh A +
∫ h

0
e(h−σ1)A B eσ1A dσ1+

∫ h

0

∫ σ1

0
e(h−σ1)A B e(σ1−σ2)A B eσ2A dσ2 dσ1

+O
(
h3,C 3

B , MA, MA+B
)

.

Expansion of exponential. Regarding a stepwise expansion of the splitting operator, it is
convenient to employ the following stepwise expansion of the exponential function; to capture
the remainder, we introduce the complex functions ϕj : C→ C : z 7→ ϕj (z), j ≥ 0, defined
through

ϕ0(z) = ez , ϕj (z) = 1
( j−1)!

∫ 1

0
σ j−1 e(1−σ)z dσ , j ≥ 1, z ∈C .

Relation (1.11) for the exponential implies the bound∥∥ϕj (τB)
∥∥

X←X ≤ 1
j ! eMB |τ| , j ≥ 0, τ ∈R . (2.8)

By a partial integration, it is seen that the ϕ-functions fulfill the recurrence relation

ϕj (z) = 1
j ! + zϕj+1(z) , j ≥ 0, z ∈C . (2.9)

For instance, we obtain the following expansion

ez = 1+ zϕ1(z) = 1+ z + z2ϕ2(z) = 1+ z + 1
2 z2 + z3ϕ3(z) ,

which correspond to a standard Taylor series expansion

ez = 1+ z
∫ 1

0
eσz dσ= 1+ z + z2

∫ 1

0
(1−σ) eσz dσ= 1+ z + 1

2 z2 + z3
∫ 1

0

1
2 (1−σ)2 eσz dσ .

Expansion (Splitting operator). As a first step, we expand the splitting operatorΦA+B (h) by
means of the identity eτB = I +τBϕ1(τB), see also (2.9); more precisely, replacing ebi hB eai h A

with eai h A +bi hBϕ1(bi hB)eai h A, i = 1,2, we obtain

ΦA+B (h) = eb 2hB ea 2h A eb1hB ea1h A

= e(a1+a 2)h A +h
(
b1ea 2h ABϕ1(b1hB)ea1h A +b 2Bϕ1(b 2hB)e(a1+a 2)h A)

+h2b1b 2Bϕ1(b 2hB)ea 2h A Bϕ1(b1hB)ea1h A .
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In order to discover the similarities between the expansion of the exact solution operator and
the expansion of the splitting operator, we henceforth denote

c1 = a1 , c2 = a1 +a 2 ,

and further require the order condition c2 = a1 +a 2 = 1 to be fulfilled. Consequently, it follows

ΦA+B (h) = eh A +h
(
b1e(1−c1)h ABϕ1(b1hB)ec1h A +b 2Bϕ1(b 2hB)eh A)

+h2b1b 2Bϕ1(b 2hB)e(1−c1)h A Bϕ1(b1hB)ec1h A .

Inserting the identity ϕ1(τB) = I +τBϕ2(τB), we further obtain

ΦA+B (h) = eh A +h
(
b1e(1−c1)h AB

(
I +b1hBϕ2(b1hB)

)
ec1h A +b 2B

(
I +b 2hBϕ2(b 2hB)

)
eh A)

+h2b1b 2B
(
I +b 2hBϕ2(b 2hB)

)
e(1−c1)h A Bϕ1(b1hB)ec1h A

= eh A +h
(
b1e(1−c1)h AB ec1h A +b 2B eh A)+h2 (

b2
1 e(1−c1)h AB 2ϕ2(b1hB)ec1h A

+b1b 2B e(1−c1)h A Bϕ1(b1hB)ec1h A +b2
2B 2ϕ2(b 2hB)eh A)+O

(
h3,C 3

B , MA, MB
)

,

see also (2.9) and (2.8). We finally expand all terms involving h2 by means of the recurrence
relation (2.9); in particular, inserting the identity ϕ2(τB) = 1

2 I +τBϕ3(τB), it follows

ΦA+B (h) = eh A +h
(
b1e(1−c1)h AB ec1h A +b 2B eh A)

+h2 (1
2 b2

1 e(1−c1)h AB 2ec1h A +b1b 2B e(1−c1)h A B ec1h A + 1
2 b2

2B 2 eh A)
+O

(
h3,C 3

B , MA, MB
)

.

Expansion (Defect operator). Altogether, the above expansions yield the following relation
for the defect operator D =ΦA+B −EA+B

D(h) =Q1 − I1 +Q 2 − I 2 +O
(
h3,C 3

B , MA, MB , MA+B
)

,

Q1 = h
(
b1e(1−c1)h AB ec1h A +b 2B eh A)

, I1 =
∫ h

0
e(h−σ1)A B eσ1A dσ1,

Q 2 = h2 (1
2 b2

1 e(1−c1)h AB 2ec1h A +b1b 2B e(1−c1)h A B ec1h A + 1
2 b2

2B 2 eh A)
,

I 2 =
∫ h

0

∫ σ1

0
e(h−σ1)A B e(σ1−σ2)A B eσ2A dσ2 dσ1.

We next relate Q1 and Q 2 to the integrals I1 and I 2. More precisely, we consider Q1 as an
approximation to the single integral I1

g (σ1) = e(h−σ1)A B eσ1A , 0 ≤σ1≤ h ,

Q1 = h
(
b1 g (c1h)+b 2 g (c2h)

)
, I1 =

∫ h

0
g (σ1) dσ1,
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resulting from the application of a quadrature formula with weights and nodes (bi ,ci )2
i=1,

where s = 2. A standard Taylor series expansion of the integrand g about zero yields

g ′(σ1) =− e(h−σ1)A adA(B) eσ1A , g ′′(σ1) = e(h−σ1)A ad2
A(B) eσ1A , 0 ≤σ1≤ h ,

Q1 = h (b1 +b 2) g (0)+h2 (b1c1 +b 2c2) g ′(0)+O
(
h3, g ′′) ,

I1 = h g (0)+ 1
2 h2 g ′(0)+O

(
h3, g ′′) .

In a similar manner, we interprete Q 2 as quadrature formula approximation to the double
integral I 2

G(σ1,σ2) = e(h−σ1)A B e(σ1−σ2)A B eσ2A , 0 ≤σ2≤σ1≤ h ,

Q 2 = h2(1
2 b2

1 G(c1h,c1h)+b1b 2 G(c2h,c1h)+ 1
2 b2

2 G(c2h,c2h)
)

,

I 2 =
∫ h

0

∫ σ1

0
G(σ1,σ2) dσ2dσ1.

Here, by a Taylor series expansion of the function G , it follows

G ′(σ1,σ2) =− e(h−σ1)A (
adA(B) e(σ1−σ2)A B ,B e(σ1−σ2)A adA(B)

)
eσ2A , 0 ≤σ2≤σ1≤ h ,

Q 2 = 1
2 h2(b1 +b 2)2 G(0,0)+O

(
h3,G ′) , I 2 = 1

2 h2 G(0,0)+O
(
h3,G ′) ,

with G ′ denoting the Jacobian of G . Provided that the bound∥∥adA(B)
∥∥

X←X +∥∥ad2
A(B)

∥∥
X←X ≤Cad

holds with some constant Cad > 0, see also (2.1) for the definition of the iterated commutators,
we finally have

D(h) = h (b1 +b 2 −1) g (0)+h2
((

b1c1 +b 2c2 − 1
2

)
g ′(0)+ 1

2

(
(b1 +b 2)2 −1

)
G(0,0)

)
+O

(
h3,C 3

B , MA, MB , MA+B ,Cad
)

= h (b1 +b 2 −1)eh AB −h2
((

b1c1 +b 2c2 − 1
2

)
eh A adA(B)+ 1

2

(
(b1 +b 2)2 −1

)
eh A B 2

)
+O

(
h3,C 3

B , MA, MB , MA+B ,Cad
)

.

Note that the remainder does not depend on the quantity CA. As before, the requirement D(h) =
O

(
hp+1

)
for p = 1 or p = 2, respectively, yields the first and second order conditions (1.19).

2.3. Differential equations

Approach. Another approach that is particularly suited for evolutionary equations involving
critical parameters relies on the deduction of a differential equation for the splitting operator,
see also [20, 21]. As the general approach involves several rather technical arguments, we
restrict ourselves to the consideration of the Strang splitting method.

25



Integral relation for defect operator. We consider the second-order Strang splitting method
involving two compositions

S = S2 S1 , Si (t ) = etBi et Ai , t ≥ 0,

where Ai = ai A and Bi = bi B for i = 1,2. In particular, the method coefficients fulfill the first
order conditions a1 +a1 = 1 = b1 +b2. Using that S′

i = Si Ai +Bi Si , we determine the first time
derivative

S′ = (
S2 A2 +B2 S2

)
S1 +S2

(
S1 A1 +B1 S1

)
and obtain the following initial value problem for the splitting operator

S′(t ) = (A+B)S(t )+R(t ) , t ≥ 0, S(0) = I .

On the other hand the corresponding initial value problem for the evolution operator is as
follows

E ′(t ) = (A+B)E(t ) , t ≥ 0, E(0) = I .

Thus, by the variation-of-constants formula, the defect operator D = S −E fulfills the relation

D(t ) =
∫ t

0
E(t −τ)R(τ)dτ , t ≥ 0,

R = (
S2 A2 +B2 S2

)
S1 +S2

(
S1 A1 +B1 S1

)− (A+B)S .

Remainder. We next rewrite the remaining term by using that A1 + A2 = A and B1 +B2 = B as
well as [

S2 S1, A1
]= S2

[
S1, A1

]+ [
S2, A1

]
S1 .

We obtain the relation

R = S2 A2 S1 +S2
(
S1 A1 +B1 S1

)− (
A1 + A2 +B1

)
S2 S1

= [
S2, A2 +B1

]
S1 +S2

[
S1, A1

]+ [
S2, A1

]
S1

= [
S2, A

]
S1 +b1

[
S2,B

]
S1 +a1 S2

[
S1, A

]
.

This further implies the identity R = R1 +R2 with

R1(t ) = a1 S2(t )
[
etB1 , A

]
et A1 , R2(t ) = ([

etB2 , A
]

et A2 +b1 etB2
[
et A2 ,B

])
S1(t ) .

We aim at a suitable representation of the remainder such that R = S2 T S1, that is, it holds
R1 = S2 T1 S1 and R2 = S2

(
T21 +T22

)
S1 with

a1
[
etB1 , A

]=T1(t )etB1 ,
[
etB2 , A

]
et A2 = S2(t )T21(t ) , b1

[
et A2 ,B

]= et A2 T22(t ) .

For this purpose, we consider a single term of the form

r (t ) = [
etK ,L

]= etK L−L etK .
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Determining the first time derivative

r ′(t ) = K etK L−L K etK = K
(
etK L−L etK )+ (

K L−L K
)

etK ,

we obtain following initial value problem

r ′(t ) = K r (t )+ [
K ,L

]
etK , t ≥ 0, r (0) = 0.

Another application of the variation-of-constants formula yields

[
etK ,L

]= ∫ t

0
eτK [

K ,L
]

e−τK dτ etK = etK
∫ t

0
e−τK [

K ,L
]

eτK dτ , t ≥ 0.

Applying the above relation and using that
[
K ,L

]=−[
L,K

]
yields

T1(t )etB1 = a1
[
etB1 , A

]= a1

∫ t

0
eτB1

[
B1, A

]
e−τB1 dτ etB1 ,

et A2 T22(t ) = b1
[
et A2 ,B

]= b1et A2

∫ t

0
e−τA2

[
A2,B

]
eτA2 dτ .

Furthermore, we have

S2(t )T21(t ) = [
etB2 , A

]
et A2 = etB2

∫ t

0
e−τB2

[
B2, A

]
eτB2 dτet A2

= S2(t )
∫ t

0
e−τB2

[
B2, A

]
eτB2 dτ−etB2

[
et A2 ,

∫ t

0
e−τB2

[
B2, A

]
eτB2 dτ

]
= S2(t )

(∫ t

0
e−τB2

[
B2, A

]
eτB2 dτ−

∫ t

0

∫ t

0
e−τA2

[
A2,e−σB2

[
B2, A

]
eσB2

]
eτA2 dσdτ

)
.

Taylor series expansion. From the above considerations, we obtain the representation of the
defect operator

D(t ) =
∫ t

0
E(t −τ)S2(τ)T (τ)S1(τ)dτ ,

T (τ) =
∫ τ

0
g (τ1)dτ1 +

∫ τ

0

∫ τ

0
G(τ1,τ2)dτ2 dτ1 ,

involving the functions g : [0,T ] → X and G : [0,T ]× [0,T ] → X , defined by

g (τ1) =−a1 b1 eτ1B1
[

A,B
]

e−τ1B1 − b2 e−τ1B2
[

A,B
]

eτ1B2 +a2 b1 e−τ1 A2
[

A,B
]

eτ1 A2 ,

G(τ1,τ2) = a2 b2 e−τ1 A2
[

A,e−τ2B2
[

A,B
]

eτ2B2
]

eτ1 A2 .

We next employ the Taylor series expansion

g (τ1) = g (0)+τ1

∫ 1

0
g ′(ζτ1)dζ ,
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where

g (0) = (
(a2 − a1)b1 − b2

)[
A,B

]
,

g ′(τ1) =−a1 b2
1 eτ1B1

[
B , [A,B ]

]
e−τ1B1 +b2

2 e−τ1B2
[
B , [A,B ]

]
eτ1B2 −a2

2 b1 e−τ1 A2
[

A, [A,B ]
]

eτ1 A2 .

Recall that the first order conditions a1 +a1 = 1 and b1 +b2 = 1 are fulfilled. Thus, provided
that the second order condition (1−a1)b1 = 1

2 is satisfied, it follows g (0) = 0.

Integral relation for defect operator. In particular, we finally obtain the following integral
representation for the defect operator associated with the Strang splitting method

D(t ) =
∫ t

0

∫ τ

0

∫ 1

0
τ1 E(t −τ)S2(τ) g ′(ζτ1)S1(τ)dζdτ1 dτ

+
∫ t

0

∫ τ

0

∫ τ

0
E(t −τ)S2(τ)G(τ1,τ2)S1(τ)dτ2 dτ1 dτ ,

g ′(τ1) =−a1 b2
1 eτ1B1

[
B , [A,B ]

]
e−τ1B1 +b2

2 e−τ1B2
[
B , [A,B ]

]
eτ1B2 −a2

2 b1 e−τ1 A2
[

A, [A,B ]
]

eτ1 A2 ,

G(τ1,τ2) = a2 b2 e−τ1 A2
[

A,e−τ2B2
[

A,B
]

eτ2B2
]

eτ1 A2 .

Clearly, the above identity implies D(h) =O (h3).
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3. Nonlinear problems

Situation. Let X = Rd . Henceforth, we consider the following initial value problem for y :
[t0,T ] → X involving a nonlinear differential equation of the form

y ′(t ) = A
(
y(t )

)+B
(
y(t )

)
, t0 ≤ t ≤ T , y(t0) given. (3.1)

Generalisation. It is straightforward to extend our considerations to the case where the
Euclidian space X =Rd is replaced with a Banach space (X ,‖ ·‖X ).

Assumption. We suppose the functions A : X → X and B : X → X to be sufficiently often
differentiable with bounded derivatives.

Exact solution. The exact solution of the initial value problem (3.1) is (formally) given by the
nonlinear exact solution operator EA+B , that is, it holds

y(t0 +τ) = EA+B
(
τ, t0, y(t0)

)
, 0 ≤ τ≤ T − t0 , (3.2a)

see also (0.3). Employing the compact, formally linear notation of Lie-derivatives, we have

y(t0 +τ) = eτD A+B y(t0) , 0 ≤ τ≤ T − t0 , (3.2b)

see Section 3.1.

Numerical approximation. In accordance with the above relation for the exact solution, the
numerical approximation at time t1 is given by

y1 =ΦA+B (h, t0, y0) ≈ y(t1) = EA+B
(
h, t0, y(t0)

)
, h = h0 ,

with numerical solution operatorΦA+B .

3.1. Calculus of Lie derivatives

Approach. A most useful tool in the statement and the theoretical error analysis of high-
order exponential operator splitting methods for nonlinear evolution equations is the formal
calculus of Lie derivatives, which is suggestive of the less involved linear case, see also [30].
In the following, we review basic definitions and results needed in the derivation of our local
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error expansion; we note that the calculus of Lie derivatives is used as a formal means under
the tacit requirement that the arising (unbounded) operators and compositions thereof are
well-defined on suitably chosen domains and time intervals.

Evolution operator and Lie derivative. We consider an initial value problem of the form

u′(t ) = F
(
u(t )

)
, 0 ≤ t ≤ T , u(0) = u0 , (3.3)

where the unbounded nonlinear operator F : D(F ) ⊂ X → X is defined on a non-empty subset
of the underlying Banach space (X ,‖ · ‖X ). Formally, the exact solution of the evolutionary
problem (3.3) is given by

u(t ) = EF (t ,u0) , 0 ≤ t ≤ T , (3.4a)

with the evolution operator EF depending on the actual time and the initial value; as we restrict
ourselves to an autonomous differential equation, we may omit the dependence on the initial
time. Furthermore, it is most helpful to employ the formal notation

u(t ) = e tDF u0 , 0 ≤ t ≤ T . (3.4b)

More precisely, the evolution operator (e tDF )0≤t≤T and the Lie derivative DF associated with F
are given through the relations

e tDF G u0 =G
(
EF (t ,u0)

)
, 0 ≤ t ≤ T , DF G u0 =G ′(u0)F (u0) , (3.4c)

for any (unbounded) nonlinear operator G : D(G) ⊂ X → X (with suitable domain); if G = I
is the identity operator, we write e tDF u0 = EF (t ,u0) and DF u0 = F (u0) for short. Using that
EF (0,u0) = u0 as well as d

dt EF (t ,u0) = F
(
EF (t ,u0)

)
, an application of the chain rule yields

d
dt

∣∣
t=0 e tDF G u0 = d

dt

∣∣
t=0 G

(
EF (t ,u0)

)=G ′(EF (t ,u0)
)

F
(
EF (t ,u0)

)∣∣
t=0 =G ′(u0)F (u0) = DF G u0 ;

thus, in accordance with the identity L = d
dt |t=0 e tL, which holds true for instance for any

bounded linear operator L : X → X with the exponential function defined by the power series
e tL =∑∞

j=0
1
j ! t j L j , we may also set

DF = d
dt

∣∣
t=0 e tDF . (3.4d)

Then, the defining relation for the Lie derivative is a consequence of the first relation in (3.4c).

Basic manipulation rules. The evolution operator forms a local one-parameter group

e(t+s)DF = e tDF e sDF = e sDF e tDF , 0 ≤ t + s ≤ T , e tDF
∣∣

t=0 = I , (3.5a)

since EF (t + s,u0) = EF
(
s,EF (t ,u0)

)
by the local existence and uniqueness of the solution

and consequently e(t+s)DF G u0 =G
(
EF (t + s,u0)

) =G
(
EF

(
s,EF (t ,u0)

)) = e tDF e sDF G u0; in the
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context of parabolic evolution equations, the above relation is restricted to positive times
0 ≤ t , s ≤ t +s ≤ T . In regard to the general scheme of an exponential operator splitting method,
it should also be noted that the composition of evolution operators acts in reversed order, i.e.,
it holds

e tDF1 e sDF2 G u0 =G
(
EF2

(
s,EF1 (t ,u0)

))
, 0 ≤ t + s ≤ T . (3.5b)

Moreover, the following linearity and scaling relations are valid

DF1+F2 = DF1 +DF2 , DcF = c DF ,

DF (G1 +G2) = DF G1 +DF G2 , DF (c G) = c DF G ,

e tDF (G1 +G2) = e tDF G1 +e tDF G2 , e tDF (c G) = c e tDF G , 0 ≤ t ≤ T ,

e tDcF = ectDF , 0 ≤ t ≤ T ,

(3.5c)

for any complex scalar c, due to the fact that the evolution operator associated with an au-
tonomous problem satisfies EcF (t ,u0) = EF (ct ,u0) and thus

e tDcF G u0 =G
(
EcF (t ,u0)

)=G
(
EF (ct ,u0)

)= ectDF G u0 .

In order to show (3.5c), we calculate

DcF G u0 = c G ′(u0)F (u0) = c DF G u0 , DF (c G) u0 = c G ′(u0)F (u0) = c DF G u0 ,

DF1+F2 G u0 =G ′(u0)
(
F1(u0)+F2(u0)

)=G ′(u0)F1(u0)+G ′(u0)F2(u0) = DF1 G u0 +DF2 G u0 ,

DF (G1 +G2) u0 =
(
G ′

1(u0)+G ′
2(u0)

)
F (u0) =G ′

1(u0)F (u0)+G ′
2(u0)F (u0) = DF G1 u0 +DF G2 u0 ,

e tDF (G1 +G2) u0 =G1
(
EF (t ,u0)

)+G2
(
EF (t ,u0)

)= e tDF G1 u0 +e tDF G2 u0 , 0 ≤ t ≤ T ,

e tDF (c G) u0 = c G
(
EF (t ,u0)

)= c e tDF G u0 , 0 ≤ t ≤ T .

But, in general, e tDF G u0 and DF G u0 are nonlinear with respect to u0.

Derivatives. Besides, we employ the formal relation

d
dt e tDF = DF e tDF = e tDF DF , 0 ≤ t ≤ T , (3.5d)

which allows to rewrite the initial value problem (3.3) as

d
dt e tDF u0 = DF e tDF u0 = e tDF DF u0 , 0 ≤ t ≤ T , e tDF

∣∣
t=0 u0 = u0 . (3.5e)

The above identity is verified by the following calculation

DF e tDF G u0 =G ′(EF (t ,u0)
)
∂2EF (t ,u0) F (u0) =G ′(EF (t ,u0)

) d
ds

∣∣
s=0 EF

(
t ,EF (s,u0)

)
=G ′(EF (t ,u0)

) d
ds

∣∣
s=0 EF (t + s,u0) =G ′(EF (t ,u0)

)
F

(
EF (t ,u0)

)
= e tDF DF G u0 , 0 ≤ t ≤ T ,
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or, in brief, DF e tDF = d
ds

∣∣
s=0 e sDF e tDF = d

ds

∣∣
s=0 e(t+s)DF = e tDF DF . Here, we denote by ∂2EF the

derivative of the evolution operator with respect to the initial value; we recall that EF and ∂2EF

solve the initial value problems

d
dt EF (t ,u0) = F

(
EF (t ,u0)

)
, 0 ≤ t ≤ T , EF (t ,u0)

∣∣
t=0 = u0 ,

d
dt ∂2EF (t ,u0) = F ′(EF (t ,u0)

)
∂2EF (t ,u0) , 0 ≤ t ≤ T , ∂2EF (t ,u0)

∣∣
t=0 = I .

(3.5f)

To justify manipulations below, we further note that the identity

e tDF = I +eτDF
∣∣t
τ=0 = I +

∫ t

0

d
dτ eτDF dτ= I +

∫ t

0
eτDF DF dτ , 0 ≤ t ≤ T , (3.5g)

which is justified by the above considerations, implies the formal expansion

e tDF =
k−1∑
j=0

1
j ! t j D j

F +
∫

Tk

eτk DF D k
F dτ , 0 ≤ t ≤ T , k ≥ 1, (3.5h)

where we denote Tk = {
τ= (τ1,τ2, . . . ,τk ) ∈Rk : 0 ≤ τk ≤ ·· · ≤ τ1 ≤ τ0 = t

}
and, as common us-

age, set D 0
F = I . For the stepwise expansion of the splitting operator, it is useful to employ the

formal recurrence relation

ϕ j (tDF ) = 1
j ! I +ϕ j+1(tDF ) tDF , j ≥ 0, (3.5i)

with ϕ0(tDF ) = e tDF ; in particular, for j = 0 we retain (3.5g).

Iterated Lie commutators. The Lie commutator of two nonlinear operators is given by

adF (G) v = [
F,G

]
(v) = F ′(v)G(v)−G ′(v)F (v) ;

in particular, whenever F and G are linear, the above relation reduces to adF (G) = F G −G F
since F ′(v) = F as well as G ′(v) =G . In accordance with the above definition, we further set

adDF (DG ) v = [
DF ,DG

]
v = DF DG v −DG DF v , (3.5j)

whence adDF (DG ) = −adF (G). Moreover, higher iterated Lie commutators are defined by
induction

ad0
DF

(DG ) = DG , ad j
DF

(DG ) = [
DF ,ad

D
j−1

F
(DG )

]
, j ≥ 1; (3.5k)

they naturally arise in the local error expansion based on quadrature formulas.

Nonlinear variation-of-constants formula (Grï¿½bner–Alekseev formula). An essential tool
in the derivation of the local error representation for high-order splitting methods is the non-
linear variation-of-constants formula. This result states that the solutions of the initial value
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problems
u′(t ) = F

(
u(t )

)
, 0 ≤ t ≤ T , u(0) = u0 ,

u′(t ) = F
(
u(t )

)+R
(
u(t )

)
, 0 ≤ t ≤ T , u(0) = u0 ,

are related through the nonlinear variation-of-constants formula

EF+R (t ,u0) = EF (t ,u0)+
∫ t

0
∂2EF

(
t −τ,EF+R (τ,u0)

)
R

(
EF+R (τ,u0)

)
dτ , 0 ≤ t ≤ T ,

which in formal notation takes the form

e tDF+R u0 = e tDF u0 +
∫ t

0
eτDF+R DR e(t−τ)DF u0 dτ , 0 ≤ t ≤ T . (3.6)

Proof. With the help of basic definitions and manipulation rules, see (3.5), we obtain

d
dτ eτDF+R e(t−τ)DF G u0 = d

dτ G
(
EF

(
t −τ,EF+R (τ,u0)

))
=G ′(EF

(
t −τ,EF+R (τ,u0)

))(− F
(
EF

(
t −τ,EF+R (τ,u0)

))
+∂2EF

(
t −τ,EF+R (τ,u0)

)(
F
(
EF+R (τ,u0)

)+R
(
EF+R (τ,u0)

)))
=G ′(EF

(
t −τ,EF+R (τ,u0)

))
∂2EF

(
t −τ,EF+R (τ,u0)

)
R

(
EF+R (τ,u0)

)
= eτDF+R DR e(t−τ)DF G u0 ,

which is in accordance with the formal calculation

d
dτ eτDF+R e(t−τ)DF = eτDF+R

(
DF+R −DF

)
e(t−τ)DF = eτDF+R DR e(t−τ)DF .

As a consequence, using that

e tDF+R G u0 −e tDF G u0 = eτDF+R e(t−τ)DF G u0
∣∣t
τ=0

=
∫ t

0

d
dτ eτDF+R e(t−τ)DF G u0 dτ

=
∫ t

0
eτDF+R DR e(t−τ)DF G u0 dτ , 0 ≤ t ≤ T ,

(3.7)

the desired result follows when setting G = I .

3.2. Splitting methods

Approach. Exponential operator splitting methods rely on a decomposition of the right-hand
side of the differential equation (3.1) into two (or more) parts and the presumption that the
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initial value problems

z ′(t ) = A
(
z(t )

)
, t0 ≤ t ≤ T , z(t0) given,

z̃ ′(t ) = B
(
z̃(t )

)
, t0 ≤ t ≤ T , z̃(t0) given,

(3.8)

are solvable numerically in an accurate and efficient manner. The (approximate) solutions of
the initial value problems (3.8) are then composed in a suitable way; this yields an approxima-
tionΦA+B ≈ EA+B to the exact solution operator. For simplicity and in view of Gross–Pitaevskii
systems, we may assume that the exact solutions of (1.5)

z(t0 +τ) = EA
(
τ, t0, z(t0)

)
, 0 ≤ τ≤ T − t0 ,

z̃(t0 +τ) = EB
(
τ, t0, z̃(t0)

)
, 0 ≤ τ≤ T − t0 ,

are available.

General form of splitting method. Any exponential operator splitting method involving
several compositions can be cast into the following form

τ0 = t0 , Y0 = y0 ,

Yi = EB
(
bi h,τi−1 +ai h,EA

(
ai h,τi−1,Yi−1

))
, τi = τi−1 + (ai +bi )h , 1 ≤ i ≤ s ,

y1 = Ys ,

(3.9a)

yielding an approximation to the exact solution value

y(t1) = EA+B
(
h, t0, y(t0)

)
, h = h0 .

Employing the compact notation of Lie-derivative, we have

y1 =ΦA+B (h, t0, y0) =
s∏

i=1
eas+1−i h DA ebs+1−i h DB y0 , h = h0 ; (3.9b)

as before, the product is defined downwards. In comparison with (1.6), the order of the
compositions is reversed.

Explanation. Recall that by definition (3.4c) it holds eτDF G y(t0) =G
(
EF

(
τ, t0, y(t0)

))
. Conse-

quently, setting G = ebi h DB , i.e., G
(
z(τ)

)= EB
(
bi h,τ, z(τ)

)
, it follows

eai h DA ebi h DB Yi−1 =G
(
EA(ai h,τi−1,Yi−1)

)= EB
(
bi h,τi−1 +ai h,EA(ai h,τi−1,Yi−1)

)= Yi .

By repetition we obtain (3.9b).

Examples. The first-order Lie–Trotter splitting method (1.7) and the second-order Strang
splitting method (1.8) can be cast into the general form (3.9). As well, methods of higher order
are included, see also Table 1.
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3.3. Convergence analysis

Objective. In the following, we are concerned with deducing an estimate for the global
error yN − y(T ) of an exponential operator splitting method (3.9) when applied to the initial
value problem (3.1) To this purpose, as in the linear case, we follow a standard approach based
on a Lady Windermere’s Fan argument.

Local error and order. In the present situation, the local error equals

dn = D
(
hn−1, tn−1, y(tn−1)

)
=ΦA+B

(
hn−1, tn−1, y(tn−1)

)−EA+B
(
hn−1, tn−1, y(tn−1)

)
, 1 ≤ n ≤ N ,

see also (0.4). Thus, the numerical method (3.9) is consistent of order p iff

dn =O
(
hp+1

n−1

)
.

Again, it suffices to consider the case n = 1.

Lady Windermere’s Fan. For nonlinear differential equations, similarly as in the linear case,
the global error fulfills the telescopic identity

yN − y(tN ) =
N−1∏
j=0

ΦA+B (h j )
(
y0 − y(t0)

)+ N∑
n=1

N−1∏
j=n

ΦA+B (h j )dn , (3.10)

see also (1.10); here, we employ the short notation

m−1∏
j=k

ΦA+B (h j ) z(tk ) =ΦA+B

(
hm−1, tm−1,ΦA+B

(
. . . ,ΦA+B

(
hk , tk , z(tk )

)))
, m > k ≥ 0.

In Section 3.3.1, we are concerned with extending the local error expansion of Section 1.2.2 to
nonlinear problems.

3.3.1. Local error expansion

Situation. For the following, to avoid technicalities, we consider exponential operator split-
ting methods (3.9) that involve two compositions only

y1 =ΦA+B
(
h, t0, y(t0)

)= ea1h DA eb1h DB ea 2h DA eb 2 h DB y0 , h = h0 .

Method examples that can be cast into this form are the Lie–Trotter splitting method (1.7) and
the Strang splitting method (1.8).
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Objective. We are concerned with deducing a suitable expansion of the defect

d1 =ΦA+B
(
h, t0, y(t0)

)−EA+B
(
h, t0, y(t0)

)
= ea1h DA eb1h DB ea 2h DA eb 2 h DB y(t0) − eh D A+B y(t0) , h = h0 ,

with respect to h, see also (3.2) and (3.9).

Approach. For the solution of an initial value problem of the form (0.2), we employ a Taylor
series expansion and further express the arising derivatives of y by means of the function F
defining the right-hand side of the differential equation; more precisely, using that y ′= F (y)
and thus by the chain rule y ′′= F ′(y) y ′= F ′(y)F (y), we obtain

EF
(
τ, t0, y(t0)

)= y(t0)+τ y ′(t0)+ 1
2 τ

2 y ′′(t0)+O
(
τ3)

= y(t0)+τF
(
y(t0)

)+ 1
2 τ

2 F ′(y(t0)
)

F
(
y(t0)

)+O
(
τ3) , τ≥ 0,

(3.11)

with remainder depending on y ′′′.

Remark. The above relation (3.11) corresponds to the formal expansion

eτDF y(t0) =
(
I +τDF + 1

2 τ
2D 2

F +O
(
τ3)) y(t0) ,

= y(t0)+τDF y(t0)+ 1
2 τ

2D 2
F y(t0)+O

(
τ3) .

Namely, applying definition (3.4c), it follows

G(z) = DF z = F (z) , G ′(z) = F ′(z) ,

H(z) = D 2
F z = (

DF G
)
(z) =G ′(z)F (z) = F ′(z)F (z) .

Expansion (Exact solution). Expanding the exact solution value by means of (3.11), yields

EA+B
(
h, t0, y(t0)

)= y(t0)+h
(

A
(
y(t0)

)+B
(
y(t0)

))
+ 1

2 h2
(

A ′(y(t0)
)+B ′(y(t0)

))(
A

(
y(t0)

)+B
(
y(t0)

))+O
(
h3)

= y(t0)+h
(

A
(
y(t0)

)+B
(
y(t0)

))
+ 1

2 h2
(

A ′(y(t0)
)

A
(
y(t0)

)+ A ′(y(t0)
)
B

(
y(t0)

)+B ′(y(t0)
)

A
(
y(t0)

)
+B ′(y(t0)

)
B

(
y(t0)

))+O
(
h3) ,

which corresponds to the formal expansion

ehD A+B y(t0) = y(t0)+h DA+B y(t0)+ 1
2 h2D 2

A+B y(t0)+O
(
h3) .
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Expansion (Splitting solution, single composition). We first consider a single composition

eai h DA ebi h DB z(τ) = EB
(
bi h, τ̃, z̃(τ)

)
, τ̃= τ+ai h , z̃(τ̃) = EA

(
ai h,τ, z(τ)

)
.

The above relation (3.11) implies

EB
(
bi h, τ̃, z̃(τ̃)

)= z̃(τ̃)+O (h)

= z̃(τ̃)+bi h B
(
z̃(τ̃)

)+O
(
h2)

= z̃(τ̃)+bi h B
(
z̃(τ̃)

)+ 1
2 b2

i h2B ′(z̃(τ̃)
)

B
(
z̃(τ̃)

)+O
(
h3) .

In a similar manner, we have

z̃(τ̃) = EA
(
ai h,τ, z(τ)

)= z(τ)+O (h)

= z(τ)+ai h A
(
z(τ)

)+O
(
h2)

= z(τ)+ai h A
(
z(τ)

)+ 1
2 a2

i h2 A ′(z(τ)
)

A
(
z(τ)

)+O
(
h3) .

Consequently, by additional Taylor series expansions, it follows

B
(
z̃(τ̃)

)= B
(
z(τ)

)+O (h) = B
(
z(τ)

)+ai h B ′(z(τ)
)

A
(
z(τ)

)+O
(
h2) ,

B ′(z̃(τ̃)
)= B ′(z(τ)

)+O (h) , B ′(z̃(τ̃)
)

B
(
z̃(τ̃)

)= B ′(z(τ)
)

B
(
z(τ)

)+O (h) ,

wherefore we finally obtain

EB
(
bi h, τ̃, z̃(τ̃)

)= z(τ)+h
(
ai A

(
z(τ)

)+bi B
(
z(τ)

))
+h2

(
1
2 a2

i A ′(z(τ)
)

A
(
z(τ)

)+ai bi B ′(z(τ)
)

A
(
z(τ)

)+ 1
2 b2

i B ′(z(τ)
)

B
(
z(τ)

))
+O

(
h3) .

Note that DF (z) = F (z), D2
F z = F ′(z)F (z), and further

G(z) = DB z = B(z) , G ′(z) = B ′(z) , DADB z =G ′(z) A(z) = B ′(z) A(z) ;

we thus conclude that the formal expansion

eai hDA ebi hDB z(τ) = (
I +ai h DA + 1

2 a2
i h2D2

A

)(
I +bi h DB + 1

2 b2
i h2D2

B

)
z(τ)+O

(
h3)

=
(
I +h

(
ai DA +bi DB

)+h2 (1
2 a2

i D2
A +ai bi DADB + 1

2 b2
i D2

B

))
z(τ)+O

(
h3)

= z(τ)+h
(
ai DA +bi DB

)
z(τ)+h2(1

2 a2
i D2

A +ai bi DADB + 1
2 b2

i D2
B

)
z(τ)

+O
(
h3)

= z(τ)+h
(
ai A

(
z(τ)

)+bi B
(
z(τ)

))
+h2

(
1
2 a2

i A ′(z(τ)
)

A
(
z(τ)

)+ai bi B ′(z(τ)
)

A
(
z(τ)

)+ 1
2 b2

i B ′(z(τ)
)

B
(
z(τ)

))
+O

(
h3)
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is in accordance with the above relation deduced by Taylor series expansions.

Expansion (Splitting solution). We next apply the previously verified formal expansion to a
splitting method involving two compositions; this yields

ΦA+B
(
h, t0, y(t0)

)= ea1h DA eb1h DB ea 2h DA eb 2 h DB y(t0)

=
(
I +h

(
a1DA +b1DB

)+h2 (1
2 a2

1D 2
A +a1b1DADB + 1

2 b2
1D 2

B

))(
I +h

(
a 2DA +b 2DB

)+h2 (1
2 a2

2D 2
A +a 2b 2DADB + 1

2 b2
2D 2

B

))
y(t0)+O

(
h3)

= y(t0)+h
(
(a1 +a 2)DA + (b1 +b 2)DB

)
y(t0)

+h2
(

1
2

(
a2

1 +a2
2

)
D 2

A + (a1b1 +a 2b 2)DADB + 1
2

(
b2

1 +b2
2

)
D 2

B

+ (
a1DA +b1DB

)(
a 2DA +b 2DB

))
y(t0)+O

(
h3)

= y(t0)+h
(
(a1 +a 2)DA + (b1 +b 2)DB

)
y(t0)

+h2
(

1
2 (a1 +a 2)2D 2

A + (
a1(b1 +b 2)+a 2b 2

)
DADB +b1a 2DB DA

+ 1
2 (b1 +b 2)2D 2

B

)
y(t0)+O

(
h3) .

Recalling the identities DF z = F (z), D 2
F z = F ′(z)F (z), and DF DG z =G ′(z)F (z), we finally have

ΦA+B
(
h, t0, y(t0)

)= y(t0)+h
(
(a1 +a 2)A

(
y(t0)

)+ (b1 +b 2)B
(
y(t0)

))
+h2

(
1
2 (a1 +a 2)2 A ′(y(t0)

)
A

(
y(t0)

)+ 1
2 (b1 +b 2)2B ′(y(t0)

)
B

(
y(t0)

)
+b1a 2 A ′(y(t0)

)
B

(
y(t0)

)+ (
a1(b1 +b 2)+a 2b 2

)
B ′(y(t0)

)
A

(
y(t0)

))
+O

(
h3) .

Expansion (Local error). Altogether, the above expansions of the exact and numerical solu-
tion value imply

d1 =ΦA+B
(
h, t0, y(t0)

)−EA+B
(
h, t0, y(t0)

)
= h

(
(a1 +a 2 −1)A

(
y(t0)

)+ (b1 +b 2 −1)B
(
y(t0)

))
+h2

(
1
2

(
(a1 +a 2)2 −1

)
A ′(y(t0)

)
A

(
y(t0)

)+ 1
2

(
(b1 +b 2)2 −1

)
B ′(y(t0)

)
B

(
y(t0)

)
+ (

b1a 2 − 1
2

)
A ′(y(t0)

)
B

(
y(t0)

)+ (
a1(b1 +b 2)+a 2b 2 − 1

2

)
B ′(y(t0)

)
A

(
y(t0)

))
+O

(
h3) ,

and, as a consequence, we retain the first and second order conditions (1.19) from requiring
d1 =O

(
hp+1

)
for p = 1 or p = 2, respectively.
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Part II.

Fourier and Hermite spectral methods
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Notation. Henceforth, we let N = {
m ∈ Z : m ≥ 0

}
. Further, we employ the multi-index

notation m = (m1, . . . ,md ) ∈ Zd and the compact vector notation x = (x1, . . . , xd ) ∈ Rd . We
denote by ∂k

xi
, 1 ≤ i ≤ d , the partial derivatives of order k and by ∆ = ∆x = ∂2

x1
+ ·· ·+∂2

xd
the

d-dimensional Laplace operator. For a domainΩ⊂Rd , the Lebesgue space L2(Ω) = L2(Ω,C) of
square integrable complex-valued functions is endowed with standard scalar product (· | ·)L2

and corresponding norm ‖ ·‖L2 , defined by

(
f
∣∣g

)
L2 =

∫
Ω

f (x ) g (x ) dx ,
∥∥ f

∥∥
L2 =

√(
f
∣∣ f

)
L2 , f , g ∈ L2(Ω) .

Objective. We are concerned with the efficient numerical solution of the linear partial differ-
ential equation

i ∂tψ(x, t ) =A(x )ψ(x, t ) , x ∈Ω , t ≥ 0, (3.12)

involving a second order differential operator A . Regarding the spatial discretisation of non-
linear Schrödiger equations by Fourier and Hermite spectral methods, we focus on the cases
A =−∆ and A =−∆+Uγ, where Uγ denotes a scaled harmonic potential.

Approach. For solving (3.12), we make use of the fact that there exists a family
(
Bm

)
m∈M

which forms a complete orthonormal system of the function space L2(Ω), i.e., for any element
ϕ ∈ L2(Ω) the representation

ϕ= ∑
m∈M

ϕm Bm , ϕm = (
ϕ

∣∣Bm
)
L2 ,

holds. Moreover, the basis functions
(
Bm

)
m∈M are eigenfunctions of the linear operator A ;

more precisely, the eigenvalue relation

A Bm =λm Bm , m ∈M ,

is valid with real eigenvalues (λm)m∈M . The above identity motivates the definition of a linear
operator F (A ) through

F (A )ϕ= ∑
m∈M

ϕm F (A ) Bm = ∑
m∈M

ϕm F (λm)Bm ;

for instance, the linear operator ecA is given by

ecAϕ= ∑
m∈M

ϕm ecλm Bm .

By Parseval’s identity, provided that the sequence
(
ϕm F (λm)

)
m∈M is square-summable, the

above definition is well-defined; in particular, for c ∈ iR it follows∥∥ecAϕ
∥∥

L2 =
∥∥ϕ∥∥

L2 , ϕ ∈ L2(Ω) .
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As a consequence, the solution of (3.12) possesses the following representation

ψ(·, t ) = e− i t Aψ(·,0) = ∑
m∈M

ψm(0) e− i t λm Bm , t ≥ 0, ψ(·,0) = ∑
m∈M

ψm(0) Bm .

For the numerical realisation of the above relation, the infinite sum is truncated and the
spectral coefficients ψm(0) are approximated by means of a quadrature formula.
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4. Fourier spectral method

Objective. In the following, we are concerned with the numerical solution of the linear partial
differential equation (3.12) involving the d-dimensional Laplace operator

A =−∆

on a bounded (symmetric) domainΩ= (−a1, a1)×·· ·× (−ad , ad ) ⊂Rd with ai > 0 (sufficiently
large), 1 ≤ i ≤ d ; furthermore, we impose periodic boundary conditions. We first restrict
ourselves to the case d = 1 and then extend our considerations to arbitrary space dimensions.

4.1. Approach in one space dimension

Notation. For a > 0 we setΩ= (−a, a) ⊂R and further M =Z.

Approach. For the construction of the Fourier basis functions (Fm)m∈M and the derivation of
basic relations we refer to [46]. Combining the theories of Sobolev spaces and selfadjoint linear
operators on Hilbert spaces, it is shown that the linear differential operator A =−∂ 2

x , subject
to periodic boundary conditions, is selfadjoint on a suitably chosen domain D(A ) ⊂ L2(Ω).
Further, the corresponding eigenfunctions (Fm)m∈M , which form a complete orthonormal
system of the function space L2(Ω), and the eigenvalues (λm)m∈M are determined.

4.1.1. Basic relations

Fourier basis functions. The Fourier basis functions (Fm)m∈M are given by

Fm(x ) = 1p
2a

e iπm
(

1
a x+1

)
, x ∈Ω , m ∈M .

In particular, they fulfill the orthonormality relation(
Fk

∣∣Fm
)
L2 = δkm , k,m ∈M . (4.1)

Fourier series expansion. The family (Fm)m∈M is complete in L2(Ω), i.e., for any function
ϕ ∈ L2(Ω) the representation

ϕ= ∑
m∈M

ϕm Fm , ϕm = (
ϕ

∣∣Fm
)
L2 , (4.2)
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holds with spectral coefficients (ϕm)m∈M ; the convergence of the infinite sum versus ϕ is
ensured in L2(Ω).

Parseval’s identity. The above relations (4.1) and (4.2) imply∥∥ϕ∥∥2
L2 =

∑
m∈M

∣∣ϕm
∣∣2 , ϕ ∈ L2(Ω) . (4.3)

Eigenvalue relation. The differential operator A = −∂ 2
x fulfills the following eigenvalue

relation with eigenfunctions (Fm)m∈M and associated eigenvalues (λm)m∈M

−∂ 2
x Fm =λm Fm , λm = 1

a 2 m 2π2 , m ∈M . (4.4)

Explanations. The orthononality relation (4.1) also follows from a straightforward calculation

(
Fk

∣∣Fm
)
L2 =

∫ a

−a
Fk (x ) Fm(x ) dx = 1

2a

∫ a

−a
e iπ(k−m)

(
1
a x+1

)
dx =

{
1, k = m ,

0 , k 6= m ,
k,m ∈M .

Moreover, in an easy manner, the eigenvalues are obtained by differentiation

∂x Fm = i 1
a mπFm , ∂ 2

x Fm =− 1
a 2 m 2π2 Fm , m ∈M .

4.1.2. Discretisation

Notations. For an even integer number M > 0 we set MM = {
m ∈Z : −1

2 M ≤ m ≤ 1
2 M −1

}
and

further J = {
j ∈Z : 0 ≤ j ≤ M −1

}
.

Approach. We first consider a real-valued regular periodic function f :Ω→Rwith continuous
extension toΩ; in particular, it holds f (−a) = f (a). For the quadrature approximation of the
integral ∫

Ω
f (x ) dx

we apply the trapezoidal rule with equidistant nodes and corresponding weights (xj ,ωj )j∈J

∑
j∈J

ωj f (xj ) ≈
∫
Ω

f (x ) dx , xj =−a + 2a
M j , ωj = 2a

M , j ∈J . (4.5)

The above quadrature approximation extends to complex-valued function f :Ω→C by consid-
ering the real and imaginary part of f .

Approximation of spectral coefficients. Note that

Fm(xj ) = 1p
2a

e i 2π j m
M , m ∈MM , j ∈J . (4.6)
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An application of the trapezoidal rule (4.5) yields

ϕm = (
ϕ

∣∣Fm
)
L2 =

∫
Ω
ϕ(x ) Fm(x ) dx ≈ 2a

M

∑
j∈J

ϕ(xj ) Fm(xj ) , m ∈MM ,

see also (4.2); we thus obtain the following approximations to the Fourier spectral coefficients

ϕm ≈
p

2a
M

∑
j∈J

ϕ(xj ) e− i 2π j m
M , m ∈MM . (4.7)

Approximation of function values. On the other hand, from the Fourier spectral coeffi-
cients (ϕm)m∈MM approximations to the values of ϕ at the grid points (xj )j∈J are retained
through

ϕ(xj ) ≈ 1p
2a

∑
m∈MM

ϕm e i 2π j m
M , j ∈J , (4.8)

see also (4.2) and (4.6).

4.1.3. Implementation

Notations. As before, for an even integer M > 0 we set MM = {
m ∈Z : −1

2 M ≤ m ≤ 1
2 M −1

}
and further J = {

j ∈Z : 0 ≤ j ≤ M −1
}
.

Implementation. The efficient implementation of the Fourier spectral method relies on
Fast Fourier Techniques. In the following, we discuss the realisation of the pseudo-spectral
transformations (4.7) and (4.8) in MATLAB. For notational simplicity, we do not employ differ-
ent notations for the exact spectral coefficients and the numerical approximations obtained
through (4.7); similarly, we do not distinguish between the function values and the numerical
approximations (4.8). Tilded letters correspond to quantities in MATLAB.

Grid points. For the Fourier pseudo-spectral transformations, we employ a collocation at the
trapezoidal quadrature nodes

x̃j+1 =̃ xj , j ∈J .

Real to spectral. For given function values

ϕ̃j+1 =̃ϕ(xj ) , j ∈J ,
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approximations to the spectral coefficients (ϕm)m∈MM are computed through (4.7)

ϕm =
p

2a
M

∑
j∈J

ϕ(xj ) e− i 2π j m
M

=
p

2a
M

M∑
j=1

ϕ(xj−1) e− i 2π ( j−1)m
M

=̃
p

2a
M

M∑
j=1

ϕ̃j e− i 2π ( j−1)m
M , m ∈MM .

Note that the periodicity of the Fourier basis functions and the (tacitly assumed) periodicity
of ϕ implies ϕm+`M =ϕm for any ` ∈Z. In MATLAB, an application of the command fft results
in

fft
(
ϕ̃1, . . . ,ϕ̃M

)= (
ϕ̃(s)

1 , . . . ,ϕ̃(s)
M

)
, ϕ̃(s)

k =
M∑

j=1
ϕ̃j e− i 2π ( j−1)(k−1)

M , 1 ≤ k ≤ M .

A comparison of the above relations shows that(
ϕ̃(s)

1 , . . . ,ϕ̃(s)
M

) =̃ Mp
2a

(
ϕ0, . . . ,ϕ1

2 M−1,ϕ− 1
2 M , . . . ,ϕ−1

)
.

Altogether, with the help of the command fftshift which swaps the left and right halves of a
vector, we obtain approximations to the spectral coefficients through

p
2a

M fftshift
(
fft

(
ϕ̃1, . . . ,ϕ̃M

)) =̃ p
2a

M fftshift
(
ϕ̃(s)

1 , . . . ,ϕ̃(s)
M

)
=̃ fftshift

(
ϕ0, . . . ,ϕ1

2 M−1,ϕ− 1
2 M , . . . ,ϕ−1

)
= (

ϕ− 1
2 M , . . . ,ϕ−1,ϕ0, . . . ,ϕ1

2 M−1

)
.

Spectral to real. On the other hand, starting with given spectral coefficients(
ϕ− 1

2 M , . . . ,ϕ−1,ϕ0, . . . ,ϕ1
2 M−1

)= (
ϕ1

2 M , . . . ,ϕM−1,ϕ0, . . . ,ϕ1
2 M−1

)
=̃ (

ϕ̃(s)
1
2 M+1

, . . . ,ϕ̃(s)
M ,ϕ̃(s)

1 , . . . ,ϕ̃(s)
1
2 M

)
,

an application of the command ifft results in

ifft
(
ϕ̃(s)

1 , . . . ,ϕ̃(s)
M

)= (
ϕ̃1, . . . ,ϕ̃M

)
, ϕ̃k = 1

M

M∑
j=1

ϕ̃(s)
j e i 2π ( j−1)(k−1)

M , 1 ≤ k ≤ M .

Moreover, making use of the fact that

Mp
2a
ϕ̃k = 1p

2a

M∑
j=1

ϕ̃(s)
j e i 2π ( j−1)(k−1)

M
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and thus

Mp
2a
ϕ̃k =̃ 1p

2a

M∑
j=1

ϕj−1 e i 2π ( j−1)(k−1)
M

= 1p
2a

∑
j∈J

ϕj e i 2π j (k−1)
M

= 1p
2a

∑
m∈MM

ϕm e i 2π m(k−1)
M

=̃ϕ(xk−1) , 1 ≤ k ≤ M ,

and that the command ifftshift swaps the left and right halves of a vector, approximations
to the function values are obtained through

Mp
2a

ifft
(
ifftshift

(
ϕ− 1

2 M , . . . ,ϕ−1,ϕ0, . . . ,ϕ1
2 M−1

)
=̃ Mp

2a
ifft

(
ifftshift

(
ϕ̃(s)

1
2 M+1

, . . . ,ϕ̃(s)
M ,ϕ̃(s)

1 , . . . ,ϕ̃(s)
1
2 M

)
= Mp

2a
ifft

(
ϕ̃(s)

1 , . . . ,ϕ̃(s)
M

)
= Mp

2a

(
ϕ̃1, . . . ,ϕ̃M

)
=̃ (

ϕ(x 0), . . . ,ϕM−1(xM−1)
)

.

4.2. Approach in several space dimensions

Notation. For ai > 0, 1 ≤ i ≤ d , we setΩ= (−a1, a1)×·· ·× (−ad , ad ) ⊂Rd and further M =Zd .

Approach. The considerations for one space dimensions are extended to the general case.

4.2.1. Basic relations

Fourier basis functions. In d space dimensions, the Fourier basis functions (Fm)m∈M are
given by

Fm(x ) =Fm1(x1) · · · Fmd(xd ) , x ∈Ω , m ∈M ,

Fmi(xi ) = 1p
2ai

e
iπmi

(
1

ai
x i+1

)
, 1 ≤ i ≤ d .

In particular, the orthonormality relation (4.1) holds.

Fourier series expansion. The family (Fm)m∈M is complete in L2(Ω), i.e., for any function
ϕ ∈ L2(Ω) the representation (4.2) holds with spectral coefficients (ϕm)m∈M .

Parseval’s identity. Relations (4.1) and (4.2) imply (4.3).
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Eigenvalue relation. The Laplace operator A(x ) =−∆ fulfills the following eigenvalue rela-
tion with eigenfunctions (Fm)m∈M and associated eigenvalues (λm)m∈M

−∆Fm =λm Fm , λm =
d∑

i=1
λmi =π2

d∑
i=1

1
a 2

i
m 2

i , m ∈M . (4.9)

Explanation. Due to the fact that

−∆Fm =−Fm2 · · · Fmd ∂
2
x1

Fm1 −·· ·−Fm1 · · · Fmd−1 ∂
2
xd

Fmd = (
λm1 +·· ·+λmd

)
Fm ,

the above relation follows by means of (4.4).

4.2.2. Discretisation

Notations. For M ∈Nd with Mi > 0 an even integer number for 1 ≤ i ≤ d , we set

MM = {
m ∈Zd : −1

2 Mi ≤ mi ≤ 1
2 Mi −1,1 ≤ i ≤ d

}
,

J = {
j ∈Zd : 0 ≤ ji ≤ Mi −1,1 ≤ i ≤ d

}
.

Further, we employ the short notation

ec j ·m
M = e

c
∑d

i=1
ji mi
Mi , c ∈C , j ∈J , m ∈MM .

Approach. We consider a complex-valued regular periodic function f : Ω→ Cd with con-
tinuous extension to Ω, i.e. it holds f (−a) = f (a). For the quadrature approximation of the
multiple integral ∫

Ω
f (x ) dx

we apply the trapezoidal rule with equidistant nodes and corresponding weights (xj ,ωj )j∈J ,
which are given by the quadrature nodes and weights of the one-dimensional trapezoidal rule

∑
j∈J

ωj f (xj ) ≈
∫
Ω

f (x ) dx , xj = (xj1 , . . . , xjd ) , ωj =ωj1 · · ·ωjd , j ∈J ,

xji =−ai + 2ai
Mi

ji , ωji = 2ai
Mi

, 1 ≤ ji ≤ Mi , 1 ≤ i ≤ d .

(4.10)

Approximation of spectral coefficients. Note that

Fm(xj ) =
d∏

i=1

1p
2ai

e i 2π j ·m
M , m ∈MM , j ∈J . (4.11)
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An application of the trapezoidal rule (4.10) yields the following approximations to the Fourier
spectral coefficients

ϕm ≈
d∏

i=1

p
2ai

Mi

∑
j∈J

ϕ(xj ) e− i 2π j ·m
M , m ∈MM , (4.12)

see also (4.2).

Approximation of function values. On the other hand, from the Fourier spectral coeffi-
cients (ϕm)m∈MM approximations to the values of ϕ at the grid points (xj )j∈J are retained
through

ϕ(xj ) ≈
d∏

i=1

1p
2ai

∑
m∈MM

ϕm e i 2π j ·m
M , j ∈J , (4.13)

see also (4.2) and (4.11).

4.2.3. Implementation

Notations. As before, for M ∈Nd with Mi > 0 an even integer number for 1 ≤ i ≤ d , we set

MM = {
m ∈Zd : −1

2 Mi ≤ mi ≤ 1
2 Mi −1,1 ≤ i ≤ d

}
,

J = {
j ∈Zd : 0 ≤ ji ≤ Mi −1,1 ≤ i ≤ d

}
.

Implementation. It is straightforward to extend the considerations of Section 4.1.3 to several
space dimensions; again, the pseudo-spectral transformations (4.12) and (4.13) are realised by
Fast Fourier Techniques.

Real to spectral. In several space dimensions, approximations to the spectral coefficients are
obtained through (

ϕm
) =̃ d∏

i=1

p
2ai

Mi
fftshift

(
fftn

(
ϕ(xj )

))
.

Spectral to real. In several space dimensions, approximations to the function values are
obtained through (

ϕ(xj )
) =̃ d∏

i=1

Mip
2ai

ifftn
(
ifftshift

(
ϕm

))
.

49



50



5. Hermite spectral method

Objective. In the following, we are concerned with the numerical solution of the linear partial
differential equation (3.12) involving the second order differential operator

A(x ) =−∆+Uγ(x ) , Uγ(x ) =
d∑

i=1
γ4

i x 2
i , γi > 0, 1 ≤ i ≤ d , (5.1)

on the unbounded domainΩ=Rd ; furthermore, we impose asymptotic boundary conditions.
We first restrict ourselves to the case d = 1 and then extend our considerations to arbitrary
space dimensions.

5.1. Approach in one space dimension

Notation. We setΩ=R and M =N ; further, we denote by γ> 0 a positive weight.

Approach. As before, we also refer to [46] for the construction of the Hermite basis func-
tions (H γ

m)m∈M and the derivation of basic relations. Combining the theories of Sobolev
spaces and selfadjoint linear operators on Hilbert spaces, it is shown that the linear differential
operator A(x ) =−∂ 2

x +γ4x 2, subject to asymptotic boundary conditions, is selfadjoint on a
suitably chosen domain D(A ) ⊂ L2(Ω). Further, the corresponding eigenfunctions (H γ

m)m∈M ,
which form a complete orthonormal system of the function space L2(Ω), and the eigenval-
ues (λm)m∈M are determined.

5.1.1. Hermite basis functions

Objective. In the following, we are concerned with constructing the orthonormal Hermite
basis functions

(
H

γ
m

)
m∈M which fulfill the eigenvalue relation

A H
γ

m =λm H
γ

m , m ∈M , (5.2)

with associated eigenvalues (λm)m∈M .

Ladder operators. The construction of the Hermite basis functions is based on the approach
of ladder operators. The algebraic identity a 2 −b 2 = (a −b)(a +b) motivates the consideration
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of the differential operators

A(x ) =−∂ 2
x +γ4x 2 , P (x ) = ∂x +γ2x , Q(x ) =−∂x +γ2x .

Although the operators P and Q do not commute, that is, it holds A 6=QP and A 6=P Q, we
may take advantage of the fact that the product of P and Q is close to A ; more precisely, we
have

QP =A −γ2I , P Q =A +γ2I ,

and, as a consequence, we further obtain

PA = (
A +2γ2I

)
P , QA = (

A −2γ2I
)
Q .

Explanations. For a regular function y , it follows

Q(x )P (x ) y(x ) = (−∂x +γ2x
)(
∂x y(x )+γ2x y(x )

)
=−∂ 2

x y(x )−γ2(y(x )±x ∂x y(x )
)+γ4x 2 y(x ) =A(x ) y(x )−γ2 y(x ) ,

P (x )Q(x ) y(x ) = (
∂x +γ2x

)(−∂x y(x )+γ2x y(x )
)

=−∂ 2
x y(x )+γ2(y(x )±x ∂x y(x )

)+γ4x 2 y(x ) =A(x ) y(x )+γ2 y(x ) .

Hence, using that A =QP +γ2I =P Q−γ2I we obtain

PA =P
(
QP +γ2I

)= (
P Q+γ2I

)
P = (

A +2γ2I
)
P ,

QA =Q
(
P Q−γ2I

)= (
QP −γ2I

)
Q = (

A −2γ2I
)
Q .

First Hermite basis function. The first Hermite basis function H
γ

0 is related to the weight

function w(x ) = e−
1
2 γ

2x 2
; namely, using that P w = 0 it follows A w = (

QP +γ2I
)

w = γ2w .
Due to the fact that ∥∥w

∥∥2
L2 =

∫
Ω

e− γ
2x 2

dx =
√

π
γ2 ,

it is seen that the first normalised Hermite basis function H
γ

0 is given by

H
γ

0 (x ) = 4

√
γ2

π e−
1
2 γ

2x 2
, x ∈Ω ,

with associated eigenvalue λ0 = γ2.

Preliminaries. We first note that by partial integration the relation∫
Ω

(
∂xH

γ
m(x )

)2 dx =−
∫
Ω

H
γ

m(x )∂ 2
x H

γ
m(x ) dx
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follows. Thus, the eigenvalue relation (5.2) and the normalisation condition
∥∥H

γ
m

∥∥
L2 = 1 imply∫

Ω

(
∂x H

γ
m(x )

)2 +γ4x 2(H γ
m(x )

)2 dx =
∫
Ω

H
γ

m(x )
(− ∂ 2

x H
γ

m(x )+γ4x 2H
γ

m(x )
)

dx

=
∫
Ω

H
γ

m(x )A(x )H γ
m(x ) dx =λm

∫
Ω

(
H

γ
m(x )

)2 dx =λm ;

in a similar manner, by partial integration it follows∫
Ω

x H
γ

m(x )∂xH
γ

m(x ) dx =− 1
2 .

Altogether, we obtain the following identities

∥∥QH
γ

m

∥∥2
L2 =

∫
Ω

(−∂xH
γ

m(x )+γ2x H
γ

m(x )
)2 dx

=
∫
Ω

(
∂xH

γ
m(x )

)2 −2γ2x H
γ

m(x )∂xH
γ

m(x )+γ4x 2(H γ
m(x )

)2 dx =λm +γ2 ,∥∥P H
γ

m

∥∥2
L2 =

∫
Ω

(
∂xH

γ
m(x )+γ2x H

γ
m(x )

)2 dx

=
∫
Ω

(
∂xH

γ
m(x )

)2 +2γ2x H
γ

m(x )∂xH
γ

m(x )+γ4x 2(H γ
m(x )

)2 dx =λm −γ2 .

Up. We consider the eigenvalue relation (5.2) for the m-th Hermite basis function H
γ

m with
corresponding eigenvalue λm . Applying the operator Q and making use of the previously
derived relation QA = (

A −2γ2I
)
Q, we obtain

AQH
γ

m = (
λm +2γ2) QH

γ
m ;

that is, QH
γ

m is also an eigenfunction of A with associated eigenvalue λm+1 =λm +2γ2. Due
to the fact that λ0 = γ2, it follows

λm = γ2(1+2m) , m ∈M .

The above considerations imply
∥∥QH

γ
m

∥∥2
L2 = 2(m +1)γ2 and thus H

γ
m+1 = 1

‖QH
γ

m‖L2
QH

γ
m , i.e.

H
γ

m+1(x ) = 1p
2(m+1) γ

(− ∂xH
γ

m(x )+γ2x H
γ

m(x )
)

, x ∈Ω . (5.3)

Down. We consider the eigenvalue relation (5.2). Applying the operator P and employing
the relation PA = (

A +2γ2I
)
P , we obtain

A P H
γ

m = (
λm −2γ2) P H

γ
m ;
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that is, P H
γ

m is also eigenfunction of A with associated eigenvalue λm −2γ2. Due to the fact
that

∥∥P H
γ

m

∥∥2
L2 = 2mγ2 and H

γ
m−1 = 1

‖P H
γ

m‖L2
P H

γ
m , we thus have

H
γ

m−1(x ) = 1p
2m γ

(
∂xH

γ
m(x )+γ2x H

γ
m(x )

)
, x ∈Ω . (5.4)

Recall that P H
γ

0 = 0, i.e. H
γ

0 is indeed the first eigenfunction of A .

Recurrence relation. The identities (5.3) and (5.4) yield the recurrence relation

H
γ

0 (x ) = 4

√
γ2

π
e−

1
2 γ

2x 2
, H

γ
1 (x ) = 4

√
4γ6

π
x e−

1
2 γ

2x 2
,

H
γ

m+1(x ) = 1p
m+1

(p
2 γx H

γ
m(x )−p

m H
γ

m−1(x )
)

, m ≥ 1, x ∈Ω .
(5.5)

Note that H
γ

m(x ) is of the form

H
γ

m(x ) = H γ
m(x ) e−

1
2 γ

2x 2
, x ∈Ω , m ∈M ,

with H γ
m a polynomial of degree m. Clearly, the Hermite polynomials

(
H γ

m
)
m∈M also fulfill the

recurrence relation in (5.5).

5.1.2. Basic relations

Hermite basis functions. The Hermite basis functions
(
H

γ
m

)
m∈M are given by

H
γ

m(x ) = H γ
m(x ) e−

1
2 γ

2x 2
, x ∈Ω , m ∈M ; (5.6a)

here, we denote by H γ
m the m-th Hermite polynomial which fulfills the recurrence relation

H γ
0 (x ) = 4

√
γ2

π , H γ
1 (x ) = 4

√
4γ6

π x ,

H γ
m+1(x ) = 1p

m+1

(p
2 γx H γ

m(x )−p
m H γ

m−1(x )
)

, m ≥ 1, x ∈Ω ,
(5.6b)

see also (5.5). The Hermite basis functions satisfy the orthonormality relation(
H

γ

k

∣∣H γ
m

)
L2 = δkm , k,m ∈M . (5.7)

Hermite series expansion. The family
(
H

γ
m

)
m∈M is complete in L2(Ω), i.e., for any function

ϕ ∈ L2(Ω) the representation

ϕ= ∑
m∈M

ϕm H
γ

m , ϕm = (
ϕ

∣∣H γ
m

)
L2 , (5.8)
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holds with spectral coefficients (ϕm)m∈M ; the convergence of the infinite series versus ϕ is
ensured in L2(Ω).

Parseval’s identity. The above relations (5.7) and (5.8) imply (4.3).

Eigenvalue relation. The space dependent differential operator A(x ) =−∂ 2
x +γ4x 2 fulfills

the following eigenvalue relation with eigenfunctions
(
H

γ
m

)
m∈M and eigenvalues (λm)m∈M(− ∂ 2

x +γ4x 2) H
γ

m(x ) =λm H
γ

m(x ) , λm = γ2(1+2m) , x ∈Ω , m ∈M .

5.1.3. Discretisation

Notations. For a positive integers M ,K > 0 we set MM = {
m ∈N : 0 ≤ m ≤ M −1

}
and further

J = {
j ∈N : 0 ≤ j ≤ K −1

}
.

Approach. We first consider a real-valued regular function f :Ω→ R. For the quadrature
approximation of an integral of the form∫

Ω
f (x ) e− γ

2x 2
dx

we apply the Gauß–Hermite quadrature formula with nodes and weights (xj ,ωj )j∈J

∑
j∈J

ωj f (xj ) ≈
∫
Ω

f (x ) e− γ
2x 2

dx . (5.9)

The above quadrature approximation extends to complex-valued function f :Ω→C by consid-
ering the real and imaginary part of f .

Approximation of spectral coefficients. An application of the Gauß–Hermite quadrature
formula (5.9) yields

ϕm = (
ϕ

∣∣H γ
m

)
L2 =

∫
Ω
ϕ(x )H γ

m(x ) dx =
∫
Ω

e
1
2 γ

2x 2
ϕ(x ) H γ

m(x ) e− γ
2x 2

dx

≈ ∑
j∈J

ωj e
1
2 γ

2x2
j ϕ(xj ) H γ

m(xj ) , m ∈MM ,

see also (5.8); we thus obtain the following approximations to the Hermite spectral coefficients

ϕm ≈ ∑
j∈J

ωj e
1
2 γ

2x2
j ϕ(xj ) H γ

m(xj ) , m ∈MM . (5.10)
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Approximation of function values. On the other hand, from the Hermite spectral coeffi-
cients (ϕm)m∈MM approximations to the values of ϕ at the grid points (xj )j∈J are retained
through

ϕ(xj ) ≈ ∑
m∈MM

ϕm H
γ

m(xj ) , j ∈J , (5.11)

see also (5.8).

5.1.4. Gauß–Hermite quadrature formula

Order. We recall that a quadrature formula is said to be of order p iff the quadrature ap-
proximation yields the exact result for any polynomial f with deg f ≤ p −1. In particular, the
Gauß–Hermite quadrature formula (xj ,ωj )j∈J is said to be of order p iff

∑
j∈J

ωj f (xj ) =
∫
Ω

f (x ) w(x)dx , deg f ≤ p −1, (5.12)

with weight function w(x ) = e−γ
2x 2

, x ∈Ω.

Approach. The construction of the Gauß–Hermite quadrature formula (xj ,ωj )j∈J is in the
lines of the construction of the Gauß quadrature formula. For the Gauß–Hermite quadrature
formula, the associated orthogonal polynomials are the Hermite polynomials

(
H γ

m
)

m∈N, i.e., it
holds (

w H γ

k

∣∣H γ
m

)
L2 =

(
H

γ

k

∣∣H γ
m

)
L2 = δkm , k,m ∈N ,

see also (5.7). The Gauß–Hermite quadrature nodes (xj )j∈J are the roots of H γ

K ; the correspond-
ing weights (ωj )j∈J are obtained through the order conditions for order K . By construction,
the Gauß–Hermite quadrature formula is of order 2K .

Computation of quadrature nodes. The Gauß–Hermite quadrature nodes (xj )j∈J are com-
puted numerically through the solution of an eigenvalue problem; this approach is closely
related to Sturm’s chains. Namely, we make use of the fact that the characteristic polynomial
associated with a symmetric tridiagonal matrix

Am =


a1 b1

b1 a 2 b 2

. . .

bm−1 a m

 ∈Rm×m (5.13a)

fulfills a three-term recurrence relation. More precisely, we consider the polynomial

χm :R→R : x 7−→χ(x) = cm det(Am −xI ) , m ≥ 1,
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with leading coefficient cm . Expanding the determinant of Am −xI with respect to the last row
and with respect to the last column, respectively, yields

det
(

Am+1 −xI
)= det



a1 −x b1

b1 a 2 −x b 2
. . .

. . .
bm−2 a m−1 −x bm−1

bm−1 a m −x bm

bm a m+1 −x



= (a m+1 −x) det
(

Am −xI
)− bm det


a1 −x b1

. . .

bm−2 a m−1 −x
bm−1 bm


= (a m+1 −x) det

(
Am −xI

)− b2
m det

(
Am−1 −xI

)
,

and, as a consequence, the recurrence relation

χ0(x ) = c0 , χ1(x ) = c1 (a1 −x) ,

χm+1(x ) = dm+1
(
(a m+1 −x)χm(x )−dm b 2

m χm−1(x )
)

, m ≥ 1,

follows, where dm = cm
cm−1

for m ≥ 1. Comparing the above relation with the recurrence rela-

tion (5.6b) for the Hermite polynomials, we conclude that χm = H γ
m , provided that

c0 = 4

√
γ2

π , a m = 0, bm = 1
γ

√
m
2 , m ≥ 1. (5.13b)

Thus, the Gauß–Hermite quadrature nodes (xj )j∈J , that is, the roots of the K -th Hermite
polynomial, coincide with the eigenvalues of the associated matrix AK , see (5.13a). Note that

for any xj , j ∈J , the function values
(
H γ

0 (xj ), . . . , H γ

K−1(xj )
)T form an eigenvector of AK with

associated eigenvalue xj .

Computation of quadrature weights. Inserting the Hermite polynomials
(
H γ

m
)
m∈J into the

order conditions (5.12) and applying the orthonormality relation (5.7), yields the following
system of linear equations for the Gauß–Hermite quadrature weights (ωj )j∈J

Hω= 4
√

π
γ2 e1 ,

H =

 H γ
0 (x 0) . . . H γ

0 (xK−1)
...

...
H γ

K−1(x 0) . . . H γ

K−1(xK−1)

 , ω= (
ω0, . . . ,ωK−1

)T , e1 =
(
1,0, . . . ,0

)T ∈Rk .
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Recall that the vectors
(
H γ

0 (xj ), . . . , H γ

K−1(xj )
)T , j ∈J , form an orthogonal eigenbasis of AK .

Therefore, due to the fact that

H TH = D = diag
(
d0, . . . ,dK−1

)
, dj =

∑
m∈J

(
H γ

m(xj )
)2 , j ∈J ,

H Te1 =
(
H γ

0 (x 0), . . . , H γ
0 (xK−1)

)T = 4

√
γ2

π

(
1, . . . ,1

)T , D−1(1, . . . ,1
)T = ( 1

d0
, . . . , 1

dK−1

)T ,

it follows ω= 4
√

π
γ2 D−1H Te1, that is

ω= ( 1
d0

, . . . , 1
dK−1

)T .

Interpolation. The above considerations further imply∑
m∈J

H γ
m(xj ) H γ

m(xk ) = 1
ωj
δj k , j ,k ∈J .

As a consequence, for any (regular) function of the form

ϕ= ∑
m∈M

ϕm H
γ

m

the following interpolatory relation at the quadrature nodes

ϕ(xk ) = ∑
m∈J

ϕ̃m H
γ

m(xk ) , ϕ̃m = ∑
j∈J

ωj e
1
2 γ

2x2
j ϕ(xj ) H γ

m(xj ) , m ∈J ,

follows. Namely, a short argument shows that∑
m∈J

ϕ̃m H
γ

m(xk ) = ∑
m∈J

∑
j∈J

ωj e
1
2 γ

2(x2
j −x2

k )
ϕ(xj ) H γ

m(xj ) H γ
m(xk )

= ∑
j∈J

ωj e
1
2 γ

2(x2
j −x2

k )
ϕ(xj )

∑
m∈J

H γ
m(xj ) H γ

m(xk ) =ϕ(xk ) .

5.1.5. Implementation

Notations. As before, for integers M ,K > 0 we set MM = {
m ∈N : 0 ≤ m ≤ M −1

}
as well as

J = {
j ∈N : 0 ≤ j ≤ K −1

}
.

Approach. The implementation of the Hermite spectral transformations (5.10) and (5.11) in
MATLAB relies on matrix–matrix multiplications. For notational simplicity, we do not employ
different notations for the exact spectral coefficients or function values and the numerical
approximations.
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Preliminaries. Clearly, the multiplication of a full matrix A by a diagonal matrix D yields

A D =
a11 a12 a13

a21 a22 a23

a31 a32 a33

d1

d2

d3

=
d1a11 d2a12 d3a13

d1a21 d2a22 d3a23

d1a31 d2a32 d3a33

 ,

D A =
d1

d2

d3

a11 a12 a13

a21 a22 a23

a31 a32 a33

=
d1a11 d1a12 d1a13

d2a21 d2a22 d2a23

d3a31 d3a32 d3a33

 .

Real to spectral. For given function values ϕ= (
ϕ(x 0), . . . ,ϕ(xK−1)

)T approximations to the

spectral coefficients ϕ(s) = (
ϕ0, . . . ,ϕM−1

)T are computed through

ϕ(s) =Tr2sϕ , Tr2s = H Dr2s ,

H =

 H γ
0 (x 0) . . . H γ

0 (xK−1)
...

...
H γ

M−1(x 0) . . . H γ

M−1(xK−1)

 , Dr2s =


ω0 e

1
2γ

2x 2
0

. . .

ωK−1 e
1
2γ

2x 2
K−1

 ,

see also (5.10).

Spectral to real. On the other hand, for given spectral coefficients ϕ(s) approximations to the
function values ψ are computed through

ϕ=Ts2rϕ
(s) , Ts2r = Ds2r H T ,

Ds2r =


e−

1
2γ

2x 2
0

. . .

e−
1
2γ

2x 2
K−1

 ,

see also (5.11).

5.2. Approach in several space dimensions

Notation. We setΩ=Rd and further M =Nd .

Approach. The considerations for one space dimensions are extended to the general case.

5.2.1. Basic relations

Hermite basis functions. In d space dimensions, the Hermite basis functions
(
H

γ
m

)
m∈M are

given by
H

γ
m(x ) =H

γ1
m1

(x1) · · · H
γd

md
(xd ) , x ∈Ω , m ∈M ,
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see also (5.6). In particular, the orthonormality relation (5.7) holds.

Hermite series expansion. The family
(
H

γ
m

)
m∈M is complete in L2(Ω), i.e., for any function

ϕ ∈ L2(Ω) the representation (5.8) holds with spectral coefficients (ϕm)m∈M .

Parseval’s identity. Relations (5.7) and (5.8) imply (4.3).

Eigenvalue relation. The differential operator A =−∆+Uγ, see also (5.1), fulfills the follow-
ing eigenvalue relation with eigenfunctions

(
H

γ
m

)
m∈M and associated eigenvalues (λm)m∈M

(− ∆+Uγ

)
H

γ
m =λm H

γ
m , λm =

d∑
i=1

λmi =
d∑

i=1
γ2

i (1+2mi ) , m ∈M . (5.14)

5.2.2. Discretisation

Notations. For M ,K ∈Nd with Mi ,Ki > 0 for 1 ≤ i ≤ d we set

MM = {
m ∈Nd : 0 ≤ mi ≤ Mi −1,1 ≤ i ≤ d

}
, J = {

j ∈Nd : 0 ≤ ji ≤ Ki −1,1 ≤ i ≤ d
}

.

Further, we employ the short notation

ec γ2·x 2 = ec
∑d

i=1γ
2

i x 2
i , c ∈R , γ ∈Rd , x ∈Ω .

Approach. We consider a complex-valued regular function f :Ω→Cd . For the quadrature
approximation of a multiple integral of the form∫

Ω
f (x ) e− γ

2·x 2
dx

we apply the Gauß–Hermite quadrature formula with nodes and weights (xj ,ωj )j∈J given by
the quadrature nodes and weights of the one-dimensional Gauß–Hermite quadrature formula

∑
j∈J

ωj f (xj ) ≈
∫
Ω

f (x ) e− γ
2·x 2

dx , xj = (xj1 , . . . , xjd ) , ωj =ωj1 · · ·ωjd , j ∈J . (5.15)

Approximation of spectral coefficients. An application of the Gauß–Hermite quadrature
formula (5.15) yields the following approximations to the Hermite spectral coefficients

ϕm ≈ ∑
j∈J

ωj e
1
2 γ

2·x2
j ϕ(xj ) H γ

m(xj ) , m ∈MM , (5.16)

see also (5.8).
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Approximation of function values. On the other hand, from the Hermite spectral coeffi-
cients (ϕm)m∈MM approximations to the values of ϕ at the grid points (xj )j∈J are retained
through (5.11), see also (5.8).

5.2.3. Approximation result

Approximation result. A result on the accuracy of the Hermite spectral method is found in
the recent work [26]. For M ∈Nd with Mi > 0 for 1 ≤ i ≤ d , we set

M max = max
{

Mi : 1 ≤ i ≤ d
}

,

MM = {
m ∈Nd : 0 ≤ mi ≤ Mi −1,1 ≤ i ≤ d

}
, J = {

j ∈Nd : 0 ≤ ji ≤ Mi −1,1 ≤ i ≤ d
}

.

Moreover, we employ the notations

ϕ̃= ∑
m∈MM

ϕ̃m H
γ

m , ϕ̃m = ∑
j∈J

ωj e
1
2 γ

2·x 2
ϕ(xj ) H γ

m(xj ) , m ∈MM .

Then, the following spatial error estimate is valid

∥∥A α
(
ϕ̃−ϕ)∥∥

L2 ≤C M
−
(
β−α−d

3

)
max

∥∥A βϕ
∥∥

L2 .

5.2.4. Implementation

Approach. Especially, for two space dimensions an efficient implementation of the Hermite
spectral transformations (5.16) and (5.11) relies on matrix–matrix multiplications.
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6. Laguerre–Fourier–Hermite spectral
method

Objective. In the following, we are concerned with the numerical solution of the linear partial
differential equation (3.12) involving the second order differential operator

A(x, y, z) =−∆+Uγ(x, y, z)+ iωL(x, y) ,

Uγ(x, y, z) = γ4
x

(
x 2 + y 2)+γ4

z z 2 , L(x, y) = x ∂y − y ∂x , (x, y, z) ∈R3 ;
(6.1)

furthermore, we impose asymptotic boundary conditions on the unbounded domain.

6.1. Preliminaries

6.1.1. Cylindric coordinates

In the following, we consider cylindric coordinates

ϕ :R>0 × (−π,π)×R−→ (
R2 \ {0}

)×R : (r,ϑ, z)T 7−→ (x, y, z)T =ϕ(r,ϑ, z) = (
r cosϑ,r sinϑ, z

)T .

By means of the rule for the first derivative of the inverse function, we have

∂(r,ϑ)

∂(x, y)
=

(
∂(x, y)

∂(r,ϑ)

)−1

,(
∂xr ∂y r
∂xϑ ∂yϑ

)
=

(
∂r x ∂ϑx
∂r y ∂ϑy

)−1

=
(
cosϑ −r sinϑ
sinϑ r cosϑ

)−1

=
(

cosϑ sinϑ
− 1

r sinϑ 1
r cosϑ

)
.

Applying the chain rule to f (r,ϑ) = f
(
r (x, y),ϑ(x, y)

)
, it thus follows

∂x f (r,ϑ) = (
∂xr ∂r +∂xϑ ∂ϑ

)
f (r,ϑ) = (

cosϑ ∂r − 1
r sinϑ ∂ϑ

)
f (r,ϑ) ,

∂y f (r,ϑ) = (
∂y r ∂r +∂yϑ ∂ϑ

)
f (r,ϑ) = (

sinϑ ∂r + 1
r cosϑ ∂ϑ

)
f (r,ϑ) .
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Furthermore, we obtain the relations

∂ 2
x f (r,ϑ) = (

cosϑ ∂r − 1
r sinϑ ∂ϑ

)2 f (r,ϑ)

= (
cos2ϑ ∂ 2

r − 1
r sin(2ϑ) ∂rϑ+ 1

r 2 sin2ϑ ∂ 2
ϑ + 1

r sin2ϑ ∂r + 1
r 2 sin(2ϑ) ∂ϑ

)
f (r,ϑ)

∂ 2
y f (r,ϑ) = (

sinϑ ∂r + 1
r cosϑ ∂ϑ

)2 f (r,ϑ)

= (
sin2ϑ ∂ 2

r + 1
r sin(2ϑ) ∂rϑ+ 1

r 2 cos2ϑ ∂ 2
ϑ + 1

r cos2ϑ ∂r − 1
r 2 sin(2ϑ) ∂ϑ

)
f (r,ϑ) .

As a consequence, in cylindric coordinates the Laplace operator ∆ = ∂ 2
x + ∂ 2

y + ∂ 2
z and the

operator L(x, y) = x ∂y − y ∂x , which is related to the angular momentum, take the form

∆= ∂ 2
r + 1

r ∂r + 1
r 2 ∂

2
ϑ +∂ 2

z = 1
r ∂r (r∂r )+ 1

r 2 ∂
2
ϑ +∂ 2

z , L = ∂ϑ .

Moreover, due to the fact that
∣∣detϕ′(r,ϑ, z)

∣∣= r , the transformation rule for multiple integrals
implies the relation∫

R3
f (x, y, z) d(x, y, z) =

∫
R>0×(−π,π)×R

r f
(
ϕ(r,ϑ, z)

)
d(r,ϑ, z) .

6.1.2. Generalised Laguerre polynomials

Notations. We setΩ= (0,∞) and M =N ; further, we denote by κ>−1 a certain weight.

Generalised Laguerre polynomials. The generalised Laguerre polynomials
(
L̃ (κ)

j

)
j∈M are

defined through the following relations. They fulfill the relation

Ã (ξ)L̃ (κ)
j (ξ) = 0, j ∈M , ξ ∈Ω ,

with second order differential operator

Ã (ξ) = ξ∂2
ξ + (κ+1−ξ)∂ξ+ j I , j ∈M , ξ ∈Ω .

Further, the generalised Laguerre polynomials are orthonormal with respect to the weight
function w̃(ξ) = ξκe−ξ, i.e., it holds(

w̃L̃ (κ)
j

∣∣L̃ (κ)
j̃

)
L2 = δj j̃ , j , j̃ ∈M .

Explicit representation. Inserting the representations

L̃(κ)
j (ξ) =

j∑
i=0

αi ξ
i ,

∂ξL̃(κ)
j (ξ) =

j∑
i=1

i αi ξ
i−1 =

j−1∑
i=0

(i +1)αi+1ξ
i , ∂2

ξ L̃(κ)
j (ξ) =

j−1∑
i=1

i (i +1)αi+1ξ
i−1 ,
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into the eigenvalue relation yields

0 = Ã (ξ) L̃(κ)
j (ξ) =

(
ξ∂2

ξ + (κ+1)∂ξ−ξ∂ξ+ j I
)

L̃(κ)
j (ξ)

=
j−1∑
i=1

(
(i +1)(κ+ i +1)αi+1 + ( j − i )αi

)
ξi + (κ+1)α1 + jα0 ,

which implies

L̃(κ)
j (ξ) =

j∑
i=0

αi ξ
i , αi+1 = i− j

(i+1)(κ+i+1) αi , 0 ≤ i ≤ j −1, α0 given.

By the normalisation condition, we therefore obtain the following representation for the
generalised Laguerre polynomials

L̃ (κ)
j (ξ) =

(
1

j !Γ(κ+1)

j∏
`=1

(κ+`)
) 1

2
L̃(κ)

j (ξ) , j ∈M .

Recurrence relation. The generalised Laguerre polynomials can also be constructed by
means of the recurrence relation

˜̃L(κ)
0 (ξ) = 1, ˜̃L(κ)

1 (ξ) = κ+1−ξ ,˜̃L(κ)
j+1(ξ) = 1

( j+1)

(
(κ+2 j +1−ξ) ˜̃L(κ)

j (ξ)− (κ+ j ) ˜̃L(κ)
j−1(ξ)

)
, j ≥ 1, ξ ∈Ω .

Namely, by the normalisation condition it follows

L̃ (κ)
j (ξ) =

(
j !

Γ(κ+ j+1)

) 1
2 ˜̃L(κ)

j (ξ) , j ∈M .

6.1.3. Scaled generalised Laguerre polynomials

Notations. As before, we setΩ= (0,∞) and M =N ; further, we denote by γ> 0 and κ>−1 a
certain weight.

Scaled generalised Laguerre polynomials. We further introduce the scaled generalised La-
guerre polynomials

(
L (κ)

j

)
j∈M through

L (κ)
j (x ) =p

2 γκ+1 xκe−
1
2 γ

2x 2
L̃ (κ)

j

(
γ2x 2) , j ∈M , x ∈Ω ,

Then, the orthonormality relation(
w L (κ)

j

∣∣L (κ)
j̃

)
L2 = δj j̃ , j , j̃ ∈M ,

65



with weight function w(x ) = x follows. Namely, it holds

(
wL (κ)

j

∣∣L (κ)
j̃

)
L2 = 2γ2(κ+1)

∫
Ω

x2κ+1 e−γ
2x 2

L̃ (κ)
j (γ2x 2)L̃ (κ)

j̃
(γ2x 2) dx

=
∫
Ω
ξκe−ξ L̃ (κ)

j (ξ)L̃ (κ)
j̃

(ξ) dξ

= (
w̃L̃ (κ)

j

∣∣L̃ (κ)
j̃

)
L2 = δj j̃ , j , j̃ ∈M .

Eigenvalue relation. We consider the second order differential operator

A(x ) =−∂ 2
x − 1

x ∂x +
(
κ2

x 2 +γ4x 2) I , x ∈Ω .

A straightforward calculation shows that the first and second derivative of L (κ)
j is given by

∂xL (κ)
j (x ) =p

2 γκ+1 xκe−
1
2 γ

2x 2
(
2γ2x ∂ξ+

(
κ
x −γ2x

)
I
)
L̃ (κ)

j

(
γ2x 2) ,

∂ 2
x L (κ)

j (x ) =p
2 γκ+1 xκe−

1
2 γ

2x 2
(
4 γ4x 2∂2

ξ +4 γ2 (
κ−γ2x 2 + 1

2

)
∂ξ

+ (
γ4x 2 − (2κ+1)γ2 + κ(κ−1)

x 2

)
I
)
L̃ (κ)

j

(
γ2x 2) .

As a consequence, this yields(
∂ 2

x + 1
x ∂x

)
L (κ)

j (x ) =p
2 γκ+1 xκe−

1
2 γ

2x 2
(
4 γ4x 2∂2

ξ +4 γ2 (
κ+1−γ2x 2)∂ξ

+ (
γ4x 2 −2(κ+1)γ2 + κ2

x 2

)
I
)
L̃ (κ)

j

(
γ2x 2) ,

and, furthermore, due to the fact that Ã L̃ (κ)
j = 0, it follows

A(x )L (κ)
j (x ) =

(
− ∂ 2

x − 1
x ∂x +

(
κ2

x 2 +γ4x 2) I
)
L (κ)

j (x )

=−p
2 ·4 γκ+3 xκe−

1
2 γ

2x 2
(
γ2x 2∂2

ξ +
(
κ+1−γ2x 2)∂ξ− 1

2 (κ+1) I
)
L̃ (κ)

j

(
γ2x 2)

=−p
2 ·4 γκ+3 xκe−

1
2 γ

2x 2
(
Ã

(
γ2x 2)− 1

2 (2 j +κ+1) I
)
L̃ (κ)

j

(
γ2x 2)

= 2 γ2 (
2 j +κ+1

)
L (κ)

j (x ) ,

We thus obtain the following eigenvalue relation for the scaled Laguerre polynomials

A(x )L (κ)
j (x ) = 2 γ2 (

2 j +κ+1
)
L (κ)

j (x ) , j ∈M , x ∈Ω .

Generalised Laguerre functions. The scaled generalised Laguerre functions
(
Lκj (x )

)
j∈M are

given by Lκj (x ) = p
x L (κ)

j (x ) for j ∈M and x ∈ Ω; they fulfill the orthonormality relation(
Lκj

∣∣Lκ
j̃

)
L2 = δj j̃ for all j , j̃ ∈M .
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6.2. Laguerre–Fourier–Hermite spectral method

Notation. We letΩ= {
(r,ϑ, z) ∈R3 : r > 0,−π<ϑ<π}

.

Objective. We are concerned with the efficient numerical solution of the linear partial differ-
ential equation i ∂tψ=A ψ, t ≥ 0, involving the second order differential operator

A(x, y, z) =−∆+Uγ(x, y, z)+ iωL(x, y) ,

Uγ(x, y, z) = γ4
x

(
x 2 + y 2)+γ4

z z 2 , L(x, y) = x ∂y − y ∂x , (x, y, z) ∈R3 ;

furthermore, we impose asymptotic boundary conditions on the unbounded domain.

Cylindric coordinates. Employing cylindric coordinates, by means of the previous consider-
ations, we obtain

A(r,ϑ, z) =−∂ 2
r − 1

r 2 ∂
2
ϑ − ∂ 2

z − 1
r ∂r + iω∂ϑ+γ4

x r 2 I +γ4
z z 2 I , (r,ϑ, z) ∈Ω .

6.2.1. Laguerre–Fourier–Hermite spectral decomposition

Notation. We set M = {
m = ( j ,k,`) ∈N×Z×N}

.

Objective. In the following, we are concerned with constructing orthonormal basis func-
tions

(
Bm

)
m∈M which fulfill the eigenvalue relation

A Bm =λm Bm , m ∈M , (6.2)

with associated eigenvalues (λm)m∈M . Then, the solution of i ∂tψ=A ψ is given by

ψ(·, t ) = e− i t Aψ(·,0) = ∑
m∈M

ψm(0) e− i t λm Bm , t ≥ 0, ψ(·,0) = ∑
m∈M

ψm(0) Bm .

Approach. We employ the following representation

Bm(r,ϑ, z) =L (|k|)
j (r )Fk (ϑ )H γz

`
(z) , m ∈M , (r,ϑ, z) ∈Ω , (6.3)

involving the scaled generalised Laguerre polynomials, the Fourier basis functions which are
given by Fk (ϑ) = 1p

2π
(−1)k e ikϑ for −π < ϑ < π and k ∈ Z, and further the Hermite basis

functions. We note that the basis functions
(
Bm

)
m∈M fulfill the orthonormality relation(

w Bm
∣∣Bm̃

)
L2 = δmm̃ , m,m̃ ∈M ,
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involving the weight function w(r,ϑ, z) = r . Inserting (6.3) into (6.2) and using that the eigen-
value relations(

− ∂ 2
r − 1

r ∂r + k 2

r 2 I +γ4
x r 2I

)
L (|k|)

j (r ) = 2 γ2
x

(
2 j +|k|+1

)
L (|k|)

j (r ) , j ∈N , k ∈Z , r > 0,

∂ϑFk (ϑ ) = ik Fk (ϑ ) , ∂ 2
ϑ Fk (ϑ ) =−k 2 Fk (ϑ ) , k ∈Z , −π<ϑ<π ,(− ∂ 2

z +γ4
z z 2I

)
H

γz

`
(z) = γ2

z

(
1+2`

)
H

γz

`
(z) , ` ∈N , z ∈R ,

are satisfied, we find that

A(r,ϑ, z)Bm(r,ϑ, z) =
(
− ∂ 2

r − 1
r 2 ∂

2
ϑ − ∂ 2

z − 1
r ∂r + iω∂ϑ+γ4

x r 2I +γ4
z z 2I

)
Bm(r,ϑ, z)

=Fk (ϑ )
(
− ∂ 2

r + k2

r 2 − ∂ 2
z − 1

r ∂r − kω+γ4
x r 2I +γ4

z z 2I
)
L (|k|)

j (r )H γz

`
(z)

=Fk (ϑ )H γz

`
(z)

(
− ∂ 2

r − 1
r ∂r + k2

r 2 +γ4
x r 2I

)
L (|k|)

j (r )

+Fk (ϑ )L (|k|)
j (r )

(
− ∂ 2

z +γ4
z z 2I

)
H

γz

`
(z)− kωBm(r,ϑ, z)

=
(
2 γ2

x

(
2 j +|k|+1

)+γ2
z

(
1+2`

)− kω
)
Bm(r,ϑ, z) .

We therefore have that

A Bm =λm Bm , λm = 2 γ2
x

(
2 j +|k|+1

)+γ2
z

(
1+2`

)− kω , m = ( j ,k,`) ∈M .

Spectral decomposition. For any function ϕ ∈ L2(Ω), the spectral coefficients (ϕm)m∈M with
respect to

(
Bm

)
m∈M are given by

ϕ= ∑
m∈M

ϕm Bm ,

ϕm = (
wϕ

∣∣Bm
)
L2 =

∫
R>0×(−π,π)×R

r ϕ(r,ϑ, z) Bm(r,ϑ, z) d(r,ϑ, z) .

6.3. Discretisation

Notation. For integers Mi > 0 and Ji > 0, 1 ≤ i ≤ 3, we set

MM = {
m = ( j ,k,`) ∈N×Z×N : j ≤ M1,k ≤ M2,`≤ M3

}
,

J = {
j = ( j1, j2, j3) ∈N3 : 0 ≤ ji ≤ Ji −1

}
.

Approach. The generalised Gauß–Laguerre quadrature formula (with κ= 0) is used for the
quadrature approximation of an integral of the form

J−1∑
j=0

ωj f (rj ) ≈
∫
R>0

e−r f (r ) dr ,
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where f : R>0 → C is a regular function; the quadrature nodes and weights (rj ,ωj )J−1
j=0 are

computed in a similar manner as the Gauß–Hermite quadrature nodes and weights.

Approximation of spectral coefficients. In the following, we let
(
rj1 ,ω(1)

j1

)J1−1
j1=0 denote the

Gauß–Laguerre quadrature nodes and weights,
(
ϑj2 ,ω(2)

j2

)J2−1
j2=0 the trapezoid quadrature nodes

and weights, and
(
zj3 ,ω(3)

j3

)J3−1
j3=0 the Gauß–Hermite quadrature nodes and weights. Then, for

ϕ ∈ L2(Ω) approximations to the spectral coefficients (ϕm)m∈M with respect to
(
Bm

)
m∈M are

given by

ϕm ≈ ∑
j∈J

ω(1)
j1
ω(2)

j2
ω(3)

j3
rj1 erj1 e

1
2 γ

2
z z2

j3 ϕ(rj1 ,ϑj2 , zj3 )Bm(rj1 ,ϑj2 , zj3 ) , m ∈MM .

Approximation of function values. From the spectral coefficients (ϕm)m∈MM approximations
to the values of ϕ at the grid points (rj1 ,ϑj2 , zj3 ) ji≤Ji−1,1≤i≤3 are retained through

ϕ(rj1 ,ϑj2 , zj3 ) ≈ ∑
m∈MM

ϕm Bm(rj1 ,ϑj2 , zj3 ) , j ∈J .

6.3.1. Gauß–Laguerre quadrature formula

Approach. The Gauß–Laguerre quadrature formula is used for the quadrature approximation
of an integral of the form

J−1∑
j=0

ω̃j f (r̃j ) ≈
∫
R>0

e−r f (r ) dr ,

where f : R>0 → C is a regular function; the quadrature nodes and weights (r̃j ,ω̃j )J−1
j=0 are

computed in a similar manner as the Gauß–Hermite quadrature nodes and weights, i.e. the
roots of L̃ (0)

J are obtained through the numerical solution of an associated eigenvalue problem.

The Gauß–Laguerre quadrature formula (r̃j ,ω̃j )J−1
j=0 is of order 2J , i.e, the quadrature formula

approximation is exact for any polynomial f of degree deg f ≤ 2J −1.

Modification. Let
rj = 1

γ

√
r̃j , ωj = 1

2γ2 ω̃j er̃j , 0 ≤ j ≤ J −1.

Then, it holds with w(ξ) = ξ
J−1∑
j=0

ωj f (rj )L (κ)
m (rj ) ≈ (

w f
∣∣L (κ)

m

)
L2 =

∫
R>0

ξ f (ξ)L (κ)
m (ξ) dξ
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and in particular for f =L (κ)
j̃

(equalitity in quadrature approximation)

J−1∑
j=0

ωj L (κ)
j (rj )L (κ)

j̃
(rj ) = (

w L (κ)
j

∣∣L (κ)
j̃

)
L2 = δj j̃ , j , j̃ ∈M .

Namely, using that

L (κ)
j (x ) =p

2 γκ+1 xκe−
1
2 γ

2x 2
L̃ (κ)

j

(
γ2x 2) , j ∈M , x ∈Ω ,

L̃ (κ)
j (y) = 1p

2γ
y− 1

2 κe
1
2 y L (κ)

j

( 1
γ

p
y
)

, j ∈M , y ∈Ω ,

and employing the transformation ξ= 1
γ

p
r , r = γ2ξ2, dr = 2γ2ξ, we obtain

J−1∑
j=0

ωj f (rj )L (κ)
j (rj ) = 1

2γ2

J−1∑
j=0

ω̃j er̃j f
(

1
γ

√
r̃j

)
L (κ)

j

(
1
γ

√
r̃j

)
= 1p

2γ

J−1∑
j=0

ω̃j r̃
κ
2

j e
1
2 r̃j f

(
1
γ

√
r̃j

)
L̃ (κ)

j (r̃j )

≈ 1p
2γ

∫
R>0

e−r r
κ
2 e

1
2 r f

(
1
γ

p
r
)
L̃ (κ)

j (r ) dr

= 1
2γ2

∫
R>0

f
(

1
γ

p
r
)
L (κ)

j

( 1
γ

p
r
)

dr

=
∫
R>0

ξ f (ξ)L (κ)
j (ξ) dξ

= (
w f

∣∣L (κ)
j

)
L2

with weight function w(ξ) = ξ.

Numerical approximation of spectral coefficients. Furthermore, an application of the Gauss–
Laguerre formula and the trapezoidal rule yields

ϕ= ∑
m∈M

ϕm Bm , Bm(r,ϑ) =L
(|m2|)
m1

(r )Fm2 (ϑ) , 0 < r <∞ , −π<ϑ<π ,

ϕm = (
wϕ

∣∣Bm
)
L2 =

∫
R>0×(−π,π)

r ϕ(r,ϑ)Bm(r,ϑ) d(r,ϑ)

≈
J1−1∑
j1=0

J2−1∑
j2=0

ω j 1ω j 2ϕ(r j1 ,ϑ j2 )L (|m2|)
m1

(r j1 )Fm2 (ϑ j2 ) ,

r j1 = 1
γ

√
r̃ j1 , ω j1 = 1

2γ2 ω̃ j1 er̃ j1 , ϑ j2 =−π+ 2π
J2

j2 , ω j2 = 2π
J2

, 0 ≤ j1 ≤ J1 −1, 0 ≤ j2 ≤ J2 −1.
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Part III.

Time integration of
Gross–Pitaevskii systems
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7. Gross–Pitaevskii systems

7.1. Original formulation

Gross–Pitaevskii systems. In certain respects, a multi-component Bose–Einstein condensate
is well described by a system of J coupled Gross–Pitaevskii equations

iħ ∂tΨj (x, t ) =
(
− ħ2

2mj
∆+Vj (x )+ħ2

J∑
k=1

gj k
∣∣Ψk (x, t )

∣∣2
)
Ψj (x, t ) ,∥∥Ψj (·,0)

∥∥2
L2 = Nj , x ∈Rd , t ≥ 0, 1 ≤ j ≤ J .

(7.1)

Here, we denote byΨj :Rd×R≥0 →C : (x, t) 7→Ψj (x, t ) the order parameters (wave functions),
by ħ≈ 1.054571628 ·10−34 Planck’s constant, by mj the masses of the atomic species, and by Nj

their total particle numbers, 1 ≤ j ≤ J . In the most relevant case of three space dimensions, the
intra-species coupling constants gj j and the inter-species coupling constants gj k are given

by gj k = 2πσj k
mj+mk

mj mk
with scattering lengths σj k , where σj k = σk j , 1 ≤ j ,k ≤ J . The external

trapping potentials are described by real-valued functions Vj : Rd → R, 1 ≤ j ≤ J . Further,
the partial differential equations in (7.1) are subject to asymptotic boundary conditions and
certain initial conditions.

External potentials. In many cases, the external trapping potentials are modelled by scaled
harmonic potentials

Vj (x ) = mj

2

d∑
i=1

ω2
ji (x i −ζj i )2 , x ∈Rd , 1 ≤ j ≤ J ,

with positive weights ωji > 0 and center displacements ζj i ∈R, 1 ≤ i ≤ d , 1 ≤ j ≤ J .

7.2. Normalised formulation

Normalisation. Employing a linear transformation of the spatial variable

ξ=p
c x , c = 1

ħ
J
p

m1 · · ·mJ ,

ψj (ξ, t ) = 1
C Ψj (x, t ) , C = 4

√
cd , Uj (ξ) = 1

ħ Vj (x ) , ϑj k =ħC 2gj k , 1 ≤ j ,k ≤ J ,
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we obtain the following normalised formulation of the Gross–Pitaevskii system (7.1)

i ∂tψj (ξ, t ) =
(
− cj ∆+Uj (ξ)+

J∑
k=1

ϑj k
∣∣ψk (ξ, t )

∣∣2
)
ψj (ξ, t ) , cj =

Jpm1···mJ

2mj
,∥∥ψj (·,0)

∥∥2
L2 = Nj , ξ ∈Rd , t ≥ 0, 1 ≤ j ≤ J .

(7.2)

In accordance with (7.1), the partial differential equations in (7.2) are subject to asymptotic
boundary conditions and certain initial conditions. The constant C is chosen such that the
total particle numbers are conserved.

Explanation. Multiplying the partial differential equation in (7.1) with 1
ħ yields

i ∂tΨj (x, t ) =
(
− ħ

2mj
∆+ 1

ħ Vj (x)+ħ
J∑

k=1
gj k

∣∣Ψk (x, t )
∣∣2

)
Ψj (x, t ) .

Note that ∂xi =
p

c ∂ξi , 1 ≤ i ≤ d , and thus ∆x = c∆ξ; therefore, substitutingΨj (x, t ) =C ψj (ξ, t )
as well as Vj (x) =ħUj (ξ) gives

iC ∂tψj (ξ, t ) =C
(
− ħc

2mj
∆+Uj (ξ)+ħC 2

J∑
k=1

gj k
∣∣ψk (ξ, t )

∣∣2
)
ψj (ξ, t ) .

Multiplying with 1
C and using that ħc = J

p
m1 · · ·mJ and ϑj k =ħC 2gj k , yields the partial differ-

ential equation in (7.2). Further, due to dξ=
p

cd dx =C 2 dx, it follows

∥∥ψj (·,0)
∥∥2

L2 =
∫
Rd

∣∣ψj (ξ,0)
∣∣2 dξ=

∫
Rd

∣∣Ψj (x,0)
∣∣2 dx = ∥∥Ψj (·,0)

∥∥2
L2 .

7.3. Special case

Special case. As an illustration, we specify a Gross–Pitaevskii system in three space dimen-
sions involving two coupled equations, that is, we set J = 2 and d = 3 in (7.1) and obtain

iħ ∂tΨ1(x, t ) =
(
− ħ2

2m1
∆+V1(x )+ħ2g11

∣∣Ψ1(x, t )
∣∣2 +ħ2g12

∣∣Ψ2(x, t )
∣∣2

)
Ψ1(x, t ) ,

iħ ∂tΨ2(x, t ) =
(
− ħ2

2m2
∆+V2(x )+ħ2g12

∣∣Ψ1(x, t )
∣∣2 +ħ2g22

∣∣Ψ2(x, t )
∣∣2

)
Ψ2(x, t ) ,∥∥Ψ1(·,0)

∥∥2
L2 = N 1 ,

∥∥Ψ2(·,0)
∥∥2

L2 = N 2 , x ∈R3 , t ≥ 0;

the scaled harmonic potentials are of the form

V1(x ) = m1
2

(
ω2

11(x1 −ζ11)2 +ω2
12(x2 −ζ12)2 +ω2

13(x3 −ζ13)2) , x ∈R3 ,

V2(x ) = m2
2

(
ω2

21(x1 −ζ21)2 +ω2
22(x2 −ζ22)2 +ω2

23(x3 −ζ23)2) , x ∈R3 .
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In compact vector and matrix notation, we have

m = (m1,m2) ∈R2 , N = (N 1, N 2) ∈R2 ,

g =
(

g11 g12

g12 g22

)
∈R2×2 , ω=

(
ω11 ω12 ω13

ω21 ω22 ω23

)
∈R2×3 , ζ=

(
ζ11 ζ12 ζ13

ζ21 ζ22 ζ23

)
∈R2×3 .

In the present situation, the linear transformation

ξ=p
c x , c =

p
m1m2
ħ ,

ψj (ξ, t ) = 1
C Ψj (x, t ) , C = 4

√
c3 , Uj (ξ) = 1

ħ Vj (x ) , j = 1,2, ϑ=ħC 2g ,

yields the following normalised system

i ∂tψ1(ξ, t ) =
(
−

p
m1m2
2m1

∆+U1(ξ)+ϑ11
∣∣ψ1(ξ, t )

∣∣2 +ϑ12
∣∣ψ2(ξ, t )

∣∣2
)
ψ1(ξ, t ) ,

i ∂tψ2(ξ, t ) =
(
−

p
m1m2
2m2

∆+U2(ξ)+ϑ12
∣∣ψ1(ξ, t )

∣∣2 +ϑ22
∣∣ψ2(ξ, t )

∣∣2
)
ψ2(ξ, t ) ,∥∥ψ1(·,0)

∥∥2
L2 = N 1 ,

∥∥ψ2(·,0)
∥∥2

L2 = N 2 , ξ ∈R3 , t ≥ 0.
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8. Ground state solution

8.1. Energy functional

Energy functional. For a nonlinear Schrödinger equation such as (7.2), the energy func-
tional E is given by

E(ϕ) =
J∑

j=1
Ej (ϕ) ,

Ej (ϕ) =
((− cj ∆+Uj

)
ϕj

∣∣∣ϕj

)
L2
+ 1

2

J∑
k=1

ϑj k

(
|ϕk |2ϕj

∣∣∣ϕj

)
L2

, 1 ≤ j ≤ J ,

(8.1)

where ϕ= (
ϕ1, . . . ,ϕJ

)
with ϕj :Rd →C for 1 ≤ j ≤ J .

Notations. In accordance with the eigenvalue relation (5.14) for the Hermite basis functions,
we henceforth denote

Gj (ϕ) = (
Aj +Bj (ϕ)

)
ϕj , G̃j (ϕ) = (

Aj +B̃j (ϕ)
)
ϕj ,

Bj (ϕ) =B(0)
j +

J∑
k=1

ϑj k B(k)
j (ϕ) , B̃j (ϕ) =B(0)

j + 1
2

J∑
k=1

ϑj k B(k)
j (ϕ) ,

Aj = cj
(− ∆+Uγ

)
, B(0)

j =Uj − cj Uγ , B(k)
j (ϕ) = |ϕk |2 , 1 ≤ j ≤ J .

(8.2)

With these abbrevitaions, the partial differential equations in (7.2) and the associated energies
are written in compact form

i ∂tψj (ξ, t ) =Gj
(
ψ(ξ, t )

)
, Ej (ϕ) =

(
G̃j (ϕ)

∣∣∣ϕj

)
L2

, 1 ≤ j ≤ J ,

see also (8.1).

Energy conservation. For the solution of the normalised Gross–Pitaevskii system (7.2) the
total energy (8.1) is a conserved quantity, that is, it holds

E
(
ψ(·, t )

)= E
(
ψ(·,0)

)
, t ≥ 0. (8.3)
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8.2. Ground state solution

Ground state solution. The ground state solution of the normalised Gross–Pitaevskii sys-
tem (7.2) is a solution of the special form

ψj (ξ, t ) = e− iµj t ϕj (ξ) , ξ ∈Rd , t ≥ 0, 1 ≤ j ≤ J ,

that minimises the energy functional E , see (8.1). Hereby, the chemical potentials µj ∈ R,
1 ≤ j ≤ J , are given by

Nj µj =
(
Gj (ϕ)

∣∣∣ϕj

)
L2

=
((− cj ∆+Uj

)
ϕj

∣∣∣ϕj

)
L2
+

J∑
k=1

ϑj k

(
|ϕk |2ϕj

∣∣∣ϕj

)
L2

, 1 ≤ j ≤ J .

8.3. A single Gross–Pitaevskii equation

Gross–Pitaevskii equation. For simplicity, we meanwhile consider a single Gross–Pitaevskii
equation of the form

i ∂tψ(ξ, t ) =
(
− 1

2 ∆+U (ξ)+ϑ ∣∣ψ(ξ, t )
∣∣2

)
ψ(ξ, t ) ,∥∥ψ(·,0)

∥∥2
L2 = N , ξ ∈Rd , t ≥ 0,

(8.4)

see also (7.2); in accordance with (8.2), we denote

G (ϕ) = (
A +B(ϕ)

)
ϕ , G̃ (ϕ) = (

A +B̃(ϕ)
)
ϕ ,

B(ϕ) =B(0) +ϑB(1)(ϕ) , B̃(ϕ) =B(0) + 1
2 ϑB(1)(ϕ) ,

A = 1
2

(− ∆+Uγ

)
, B(0) =U − 1

2 Uγ , B(1)(ϕ) = |ϕ|2 .

Particle number conservation. With the help of the eigenvalue relation (5.14) and Parseval’s
identity (4.3), it it seen that (

ψ(·, t )
∣∣∣G (

ψ(·, t )
))

L2
∈R .

As a consequence, for the solution of (8.4) we further obtain

∂t
∥∥ψ(ξ, t )

∥∥2
L2 =

(
∂tψ(ξ, t )

∣∣ψ(ξ, t )
)
L2 +

(
ψ(ξ, t )

∣∣∂tψ(ξ, t )
)
L2 = 2ℜ(

ψ(ξ, t )
∣∣∂tψ(ξ, t )

)
L2

= 2ℜ
(
− i

(
ψ(·, t )

∣∣∣G (
ψ(·, t )

))
L2

)
= 0, t ≥ 0,

which shows that the total particle number is conserved.

Energy conservation. In the present situation, the energy functional is given by

E(ϕ) = (
G̃ (ϕ)

∣∣ϕ)
L2 =

((− 1
2 ∆+U + 1

2 ϑ |ϕ|2
)
ϕ

∣∣∣ϕ)
L2

.
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We note that ∂ϕ|ϕ|2 =ϕ (·)+ϕ (·) and further

1
2 ϑ

(
ϕϕ (·)+ϕ2 (·) ∣∣ϕ)

L2 = 1
2 ϑ

(|ϕ|2ϕ ∣∣ (·))L2 + 1
2 ϑ

(
(·) ∣∣ |ϕ|2ϕ)

L2 .

Thus, making use of the fact that the Laplacian is a selfadjoint operator and that the potential U
is real-valued, the Fréchet derivative of E equals

∂ϕE(ϕ) =
((− 1

2 ∆+U +ϑ |ϕ|2)ϕ ∣∣∣ (·)
)
L2
+

((− 1
2 ∆+U +ϑ |ϕ|2) (·)

∣∣∣ϕ)
L2

= 2ℜ(
G (ϕ)

∣∣ (·))L2 .

As a consequence, the energy conservation (8.3) follows; namely, for the solution of (8.4), we
obtain

∂t E
(
ψ(·, t )

)= ∂ϕE
(
ψ(·, t )

)
∂tψ(·, t ) = 2ℜ

(
G

(
ψ(·, t )

)∣∣∣∂tψ(·, t )
)
L2

= 2ℜ
(
− i

∥∥G
(
ψ(·, t )

)∥∥2
L2

)
= 0, t ≥ 0.

Generalisation. Similar considerations apply to Gross–Pitaevskii systems (7.2) showing that
the total particle numbers and the total energy is conserved; more precisely, it follows

∂ϕj E(ϕ) = 2ℜ(
Gj (ϕ)

∣∣ (·))L2 , ∂t
∥∥ψj (·, t )

∥∥
L2 = 0,

∂t E
(
ψ(·, t )

)= ∂ϕE
(
ψ(·, t )

)
∂tψ(·, t ) = 0, t ≥ 0, 1 ≤ j ≤ J .

8.3.1. Groundstate solution

We next determine the ground state solution of the Gross–Pitaevskii equation (8.4) for the
limiting cases ϑ= 0 and ϑ>> 1; in particular, we consider a scaled harmonic potential

U (ξ) = 1
2

d∑
i=1

ω2
i ξ

2
i , ωi > 0, ξ ∈Rd .

These special solutions will serve as suitable initial values in the ground state computation by
the imaginary time method and a minimisation approach, respectively.

Linear Schrödinger equations

For ϑ= 0, problem (8.4) simplifies to a linear Schrödinger equation. In the above situation, the
ground state solution is given by the first Hermite basis function. More precisely, it holds

ψ(ξ, t ) =
p

N e− iµtϕ(ξ) , ξ ∈Rd , t ≥ 0,

ϕ=H
γ

0 , γi =p
ωi , 1 ≤ i ≤ d , µ= 1

2

d∑
i=1

ωi .
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Namely, inserting into (8.4) yields (due to λ0 = γ2
1 +·· ·+γ2

d =ω1 +·· ·+ωd )

µψ(ξ, t ) = i ∂tψ(ξ, t ) = (− 1
2 ∆+U (ξ)

)
ψ(ξ, t ) = 1

2

p
N e− iµt (− ∆+Uγ(ξ)

)
H

γ
0 (ξ)

= 1
2

p
N e− iµtλ0 H

γ
0 (ξ) = 1

2

d∑
i=1

ωi ψ(ξ, t ) ,

see also (5.14). Note that this is consistent with

µ= 1
N

(
1
2

(− ∆+Uγ

)
ψ(·, t )

∣∣∣ψ(·, t )
)
L2

= 1
2

(
λ0 H

γ
0

∣∣H γ
0

)
L2 = 1

2 λ0 = 1
2

d∑
i=1

ωi .

Thomas–Fermi approximation

For large values ofϑ, neglecting the Laplace operator in (8.4), the Thomas–Fermi approximation
yields an approximate ground state through

ψ(ξ, t ) =
p

N e− iµtϕ(ξ) ,

ϕ(ξ) =
{√

1
N ϑ

(
µ−U (ξ)

)
, if U (ξ) <µ ,

0 , otherwise,
, ‖ϕ‖L2 = 1, ξ ∈Rd , t ≥ 0.

This is seen by inserting the above relation into the differential equation

µψ(ξ, t ) = i ∂tψ(ξ, t ) =
(
U (ξ)+ϑ ∣∣ψ(ξ, t )

∣∣2
)
ψ(ξ, t )

which yields µ=U (ξ)+ϑ ∣∣ψ(ξ, t)
∣∣2. In particular, for a scaled harmonic potential Uγ, due to

the normalisation condition

1 = ‖ϕ‖2
L2 = 1

N ϑ

∫
U (ξ)<µ

(
µ−U (ξ)

)
dξ

the chemical potential µ is given by

µ=


1
4

3
√

18
(
Nϑω1

)2 , d = 1,
2
√

1
πNϑω1ω2 , d = 2,

1
4

5
√

450
( 1
πNϑω1ω2ω3

)2 , d = 3.
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9. Time-splitting pseudo-spectral methods

9.1. Abstract formulation

Abstract evolutionary problem. For the specification of the time integration method as
well as for theoretical considerations, it is convenient to formulate a nonlinear Schrödinger
equation as an abstract ordinary differential equation on a function space by formally omitting
the spatial variable. In particular, for the normalised Gross–Pitaevskii system (7.2) this yields
the following abstract initial value problem for u(t ) =ψ(·, t ) = (

ψ1(·, t ), . . . ,ψJ (·, t )
)

iu′(t ) = A u(t )+B
(
u(t )

)
u(t ) , t ≥ 0, u(0) given. (9.1)

Approach. In the following, we apply time-splitting spectral methods for discretising Gross–
Pitaevskii systems in space and time. More precisely, the time integration of (7.2) and (9.1),
respectively, relies on high-order exponential operator splitting methods, see Part I. For the
numerical solution of the associated initial value problems

iu′(t ) = A u(t ) , t ≥ 0, u(0) given, (9.2a)

iu′(t ) = B
(
u(t )

)
u(t ) , t ≥ 0, u(0) given, (9.2b)

we make use of Hermite and Fourier spectral methods, see Part II. In the subsequent Sec-
tions 9.2 and 9.3, we specify the definition of the unbounded operators A : D(A) ⊂ X → X
and B(v) : D(B) ⊂ X → X , v ∈V , which is closely related to the choice of the spectral method.
Moreover, we briefly discuss the numerical solution of the initial value problems (9.2).

9.2. Time-splitting Fourier pseudo-spectral method

For the Fourier spectral method, the numerical solution of the associated initial value prob-
lem (9.2a) relies on techniques that were the content of Section 4.2. Due to the fact that
Gross–Pitaevskii systems fulfill a certain invariance properties, the exact solution of (9.2b) is
available.

9.2.1. First part

Initial value problem. Regarding (9.2a), we consider the following initial value problem

i ∂tψ(·, t ) =Aψ(·, t ) , t ≥ 0, ψ(·,0) given, (9.3a)
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where the application of the Fourier spectral method suggests the choice

A =

A1
. . .

AJ

 , Aj =−cj ∆ , cj =
Jpm1···mJ

2mj
, 1 ≤ j ≤ J . (9.3b)

We are thus concerned with the componentwise numerical solution of the above problem, i.e.,
we consider

i ∂tψj (·, t ) =Aj ψj (·, t ) , t ≥ 0, ψj (·,0) given, 1 ≤ j ≤ J . (9.3c)

Exact solution. It is straightforward to extend the approach of Section 4.2. The eigenvalue
relation (4.9) for the differential operator −∆ with corresponding eigenfunctions (Fm)m∈M

and eigenvalues (λm)m∈M implies

Aj Fm = cjλm Fm , m ∈M , 1 ≤ j ≤ J .

Employing a spectral decomposition of the initial value into Fourier basis functions, we thus
obtain the following representation

ψj (·, t ) = ∑
m∈M

e− icjλm t ψj m(0) Fm , ψj (·,0) = ∑
m∈M

ψj m(0)Fm , 1 ≤ j ≤ J , (9.4)

see also (4.2) and (9.3).

Numerical solution. The numerical realisation of (9.4) relies on techniques that were dis-
cussed in Section 4.2.2.

9.2.2. Second part

Initial value problem. Regarding (9.2b), we consider the initial value problem

i ∂tψ(·, t ) =B
(
ψ(·, t )

)
ψ(·, t ) , t ≥ 0, ψ(·,0) given, (9.5a)

where the application of the Fourier spectral method for the first part (9.3) suggests the follow-
ing choice

B
(
ψ(·, t )

)=
B1

(
ψ(·, t )

)
. . .

BJ
(
ψ(·, t )

)
 ,

Bj
(
ψ(·, t )

)=Uj +
J∑

k=1
ϑj k

∣∣ψk (·, t )
∣∣2 , 1 ≤ j ≤ J .

(9.5b)
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We are thus concerned with the numerical solution of the initial value problem

i ∂tψj (·, t ) =Bj
(
ψ(·, t )

)
ψj (·, t ) , ψj (·,0) given, 1 ≤ j ≤ J . (9.5c)

Invariance and exact solution. Noting that the exact solution of (9.5) fulfills

∂t
∣∣ψj (·, t )

∣∣2 = 2 ℜ
(
ψj (·, t ) ∂tψj (·, t )

)
= 2 ℜ

(
− i Bj

(
ψ(·, t )

)∣∣ψj (·, t )
∣∣2

)
= 0,

we conclude that the following invariance property holds

Bj
(
ψ(·, t )

)=Bj
(
ψ(·,0)

)
, t ≥ 0, 1 ≤ j ≤ J . (9.6)

Consequently, the exact solution of the initial value problem (9.5) is obtained by a pointwise
multiplication

ψj (ξ, t ) = e− i t Bj (ψ(ξ,0))ψj (ξ,0) , ξ ∈Ω , t ≥ 0. (9.7)

Numerical solution. The numerical realisation of (9.7) relies on collocation at the trapezoid
quadrature nodes, see also Section 4.2.2.

9.3. Time-splitting Hermite pseudo-spectral method

For the Hermite spectral method, the numerical solution of the associated initial value prob-
lem (9.2a) relies on techniques that were the content of Section 5.2, see also Section 8.1. Due to
the fact that Gross–Pitaevskii systems fulfill a certain invariance properties, the exact solution
of (9.2b) is available. We recall the definition of the scaled harmonic potential

Uγ(ξ) =
d∑

i=1
γ4

i ξ
2
i , γi > 0, ξ ∈Rd , 1 ≤ i ≤ d ,

see also (5.1).

9.3.1. First part

Initial value problem. Regarding (9.2a), we consider the initial value problem (9.3a), where
the application of the Hermite spectral method suggests the choice

A =

A1
. . .

AJ

 , Aj =−cj
(
∆−Uγ

)
, cj =

Jpm1···mJ

2mj
, 1 ≤ j ≤ J .

In the same way as for the Fourier spectral method, we are thus concerned with the numerical
solution of (9.3c).

83



Exact solution. It is straightforward to extend the approach of Section 5.2. The eigenvalue
relation (5.14) for the differential operator −∆+Uγ with eigenfunctions (H γ

m)m∈M and eigen-
values (λm)m∈M implies

Aj H
γ

m = cjλm H
γ

m , m ∈M , 1 ≤ j ≤ J .

Employing a spectral decomposition of the initial value into Hermite basis functions, we thus
obtain the following representation

ψj (·, t ) = ∑
m∈M

e− icjλm t ψj m(0) H
γ

m , ψj (·,0) = ∑
m∈M

ψj m(0)H γ
m , 1 ≤ j ≤ J , (9.8)

see also (5.8) and (9.3c).

Numerical solution. The numerical realisation of (9.8) relies on techniques that were dis-
cussed in Section 5.2.2.

9.3.2. Second part

Initial value problem. Regarding (9.2b), we consider the initial value problem (9.5a), where
the application of the Hermite spectral method for the first part suggests the choice

B
(
ψ(·, t )

)=
B1

(
ψ(·, t )

)
. . .

BJ
(
ψ(·, t )

)
 ,

Bj
(
ψ(·, t )

)=Uj − cj Uγ+
J∑

k=1
ϑj k

∣∣ψk (·, t )
∣∣2 , 1 ≤ j ≤ J .

Similarly to before, due to the validity of the invariance property (9.6), the numerical solu-
tion of (9.5c) is realised by a pointwise multiplication and collocation at the Gauß–Hermite
quadrature nodes, see also Section 5.2.2.

9.4. Numerical illustrations

In the following, we illustrate the favourable behaviour of time-splitting Fourier and Hermite
pseudo-spectral methods for systems of coupled Gross–Pitaevskii equations (7.1). A detailed
description of the numerical examples is found in [13], see also [36, 44].

9.4.1. Computation time

A comparison of the computation time of the Fourier and Hermite spectral method in one and
two space dimensions is given in Figure 1.
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Figure 1.: Computation time of the Fourier and Hermite spectral methods in one (left picture)
and two (right picture) space dimensions.

9.4.2. Spatial error

The accuracy of the Fourier and Hermite spectral methods is illustrated in Figure 2.

9.4.3. Temporal convergence order

The numerical convergence orders of various exponential operator splitting methods applied
to a two-dimensional Gross–Pitaevskii equation with external harmonic potential and coupling
constant ϑ= 1 and ϑ= 100, respectively, are given in Figures 3 and 4.
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Figure 2.: Spatial error of the Fourier (left picture) and Hermite (right picture) spectral method.
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Figure 3.: Temporal orders of various time-splitting Fourier (first row) and Hermite (second
row) spectral methods when applied to a Gross–Pitaevskii equation with ϑ= 1.

9.4.4. Long-term integration

The long-term behaviour of time-splitting Fourier and Hermite spectral methods for a two-
dimensional Gross–Pitaevskii equation with external harmonic potential and coupling con-
stant ϑ= 1 is illustrated in Table 1. For the time integration, the second-order Strang splitting
method, fourth- and sixth-order splitting methods proposed by BLANES & MOAN, and fourth-
order explicit Runge–Kutta methods are applied, see also Table 1. For a certain prescribed
tolerance, the required number of basis functions, the number of spectral transformations, the
particle number conservation error ∆pn = ∣∣∥∥ψ(·,0)

∥∥2
L2 −

∥∥ψ(·,T )
∥∥2

L2

∣∣, and the energy conserva-
tion error ∆E = ∣∣E(

ψ(·,0)
)−E

(
ψ(·,T )

)∣∣ are displayed.
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Figure 4.: Temporal orders of various time-splitting Fourier (first row) and Hermite (second
row) spectral methods when applied to a Gross–Pitaevskii equation with ϑ= 100.
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tol. method d.o.f. #transf. ∆pn ∆E

< 10−2 Hermite 2 32×32 16384 2.6 ·10−11 4.2 ·10−6

< 10−2 Fourier 2 64×64 32768 3.6 ·10−13 1.6 ·10−6

< 10−2 Hermite 4 32×32 6144 9.7 ·10−12 1.1 ·10−5

< 10−2 Fourier 4 64×64 12288 1.7 ·10−13 9.1 ·10−7

< 10−2 Hermite 6 32×32 14337 2.3 ·10−11 3.2 ·10−8

< 10−2 Fourier 6 64×64 7169 1.1 ·10−13 6.8 ·10−6

< 10−2 Hermite rk4 32×32 65532 2.1 ·10−5 1.2 ·10−4

< 10−2 Fourier rk4 64×64 524284 6.4 ·10−10 3.7 ·10−9

< 10−2 Hermite ode45 32×32 208376 2.6 ·10−8 1.5 ·10−7

< 10−2 Fourier ode45 64×64 1132436 5.6 ·10−12 3.1 ·10−11

< 10−6 Hermite 4 64×64 24576 1.0 ·10−10 1.1 ·10−10

< 10−6 Fourier 4 128×128 49152 6.7 ·10−12 1.2 ·10−11

< 10−6 Hermite 6 64×64 28673 1.2 ·10−8 2.1 ·10−10

< 10−6 Fourier 6 128×128 28673 4.2 ·10−12 8.7 ·10−12

< 10−6 Hermite rk4 64×64 524284 6.4 ·10−10 3.7 ·10−9

< 10−6 Fourier rk4 128×128 524284 6.4 ·10−10 3.7 ·10−9

< 10−6 Hermite ode45 64×64 509816 3.6 ·10−10 2.1 ·10−9

< 10−6 Fourier ode45 128×128 1411448 2.2 ·10−12 1.1 ·10−11

Table 1.: Time integration of a two-dimensional Gross–Pitaevskii equation up to T = 400. For a
tolerance (tol.), the degree of freedom (d.o.f.), the number of spectral transformations
(#transf.), the particle number conservation error ∆pn, and the energy conservation
error ∆E are displayed.
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